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Action Anticipation using Pairwise Human-Object
Interactions and Transformers

Debaditya Roy and Basura Fernando

Abstract—The ability to anticipate future actions of humans is
useful in application areas such as automated driving, robot-
assisted manufacturing, and smart homes. These applications
require representing and anticipating human actions involving
the use of objects. Existing methods that use human-object inter-
actions for anticipation require object affordance labels for every
relevant object in the scene that match the ongoing action. Hence,
we propose to represent every pairwise human-object (HO)
interaction using only their visual features. Next, we use cross-
correlation to capture the second-order statistics across human-
object pairs in a frame. Cross-correlation produces a holistic rep-
resentation of the frame that can also handle a variable number
of human-object pairs in every frame of the observation period.
We show that cross-correlation based frame representation is
more suited for action anticipation than attention-based and
other second-order approaches. Furthermore, we observe that
using a transformer model for temporal aggregation of frame-
wise HO representations results in better action anticipation than
other temporal networks. So, we propose two approaches for
constructing an end-to-end trainable multi-modal transformer
(MM-Transformer)1 model that combines the evidence across
spatio-temporal, motion, and HO representations. We show the
performance of MM-Transformer on procedural datasets like
50 Salads and Breakfast, and an unscripted dataset like EPIC-
KITCHENS55. Finally, we demonstrate that the combination of
human-object representation and MM-Transformers is effective
even for long-term anticipation.

I. INTRODUCTION

Action anticipation is defined as the task of predicting the
occurrence of an action before it starts [16], [41]. There are
many applications of action anticipation, e.g., robots assisting
humans by predicting upcoming actions [32], autonomous
vehicles anticipating pedestrian actions [48], and systems that
alert the user if the anticipated action deviates from the correct
sequence of actions [54]. It is beneficial to predict future
actions before they start to help the control (or decision)
systems in these applications. Furthermore, we focus on antici-
pating those actions that involve the use of objects because the
aforementioned applications mostly comprise of such actions.

An effective representation of human-object interactions has
been shown to be essential for recognition [46] and anticipa-
tion of actions [31] involving objects. Some existing works
exploit object affordance (actions possible with an object) and
its correlation with the ongoing action label [27]. Other works
consider the change in proximity between humans and the
various objects throughout an action [46]. An assumption in
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Fig. 1. Frame-wise action anticipation. We observe to seconds (no frames)
of a video and predict actions for future frames after a gap of ta seconds.

these approaches is that the number of objects detected in
the scene is constant throughout the action. However, objects
being interacted with can become occluded [33], or they may
appear or disappear from the view due to ego-motion [9].
Another assumption is that all possible object affordances are
known beforehand, which may not be possible for all objects
in the scene. Hence, we propose a representation to explicitly
model pairwise human-object interaction using visual features
of humans and objects, and therefore this approach does
not require object affordance labels. Specifically, we use
cross-correlation across all the pairwise interactions to handle
variable number of objects in every frame. Cross-correlation
produces a holistic frame representation for the ongoing action
that can be used to anticipate future actions.

Human action anticipation models can exploit the fact that
humans act in a temporally coherent manner where certain
actions are always executed in chronological order. For exam-
ple, during the process of making a salad, “cutting vegetables”
generally precedes “seasoning the salad”, as shown in Figure
1, where the action of “cutting tomato” during the observation
period is followed by the action of “adding pepper” during
anticipation. Hence, there is a direct correlation between the
actions in the observed frames and future frames. So, action
anticipation can be considered as a sequence to sequence
(seq2seq) modeling task [57] where the future actions can be
generated based on the observed actions. Existing works have
used observed action labels to anticipate future action labels
using both convolutional and recurrent networks. Convolu-
tional networks can only aggregate information from a local
temporal neighborhood dictated by the convolution’s kernel
size. Similarly, recurrent networks are not adept at learning
long-range dependencies where the forward and backward sig-
nals have to traverse long paths [25]. Owing to the limitation
of convolutional and recurrent architectures, we propose to use
Transformers that have been shown to be the most effective
on seq2seq modeling tasks [60].

A significant difference between seq2seq modeling in ma-
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chine translation and action anticipation is that we do not
have access to the observed sequence’s ground truth actions.
Therefore, we rely on encoder-decoder networks [12], [60],
[69] that can generate features of future frames from observed
frames. We explore different encoder and decoder frameworks
in conjunction with transformers to aggregate human-object
representations of observed frames and generate features for
future frames. We show that transformers perform better
temporal aggregation as an encoder and anticipation as a
decoder than other encoder-decoder networks [12], [69].

Some of the pioneering works in action anticipation have
combined motion and spatial representations with object fea-
tures to improve the anticipation of future actions [16]. We
propose a multi-modal transformer network that aggregates
evidence across different representations to generate future
frame features. Our end-to-end trainable multi-modal trans-
former combines the proposed human-object interaction with
motion and spatio-temporal features and anticipates actions
better for both the immediate and long-term future. Our ex-
periments are performed on two procedural cooking datasets-
Breakfast [33], 50Salads [55] where the action sequences are
regularly ordered and one unscripted regular activities dataset -
EPIC-KITCHENS55 [9] where the actions can be of somewhat
arbitrary order.

In summary, our contributions are as follows:
• Representing pairwise human-object interactions with

visual features and using cross-correlation to obtain a
holistic representation for variable number of human-
object pairs in every frame of the observation period.

• Propose a new multi-modal transformer that combines
human-object, spatio-temporal, and motion representa-
tions to anticipate future actions.

• Robust long-term action anticipation using human-object
representation combined with other representations using
the multi-modal transformer.

Next, we discuss the related work.

II. RELATED WORK

We discuss three types of related work; human-object inter-
action methods (section II-A), models for action anticipation
(section II-B) and finally methods that use second-order statis-
tics from features for various tasks (section II-B).

A. Human-object interaction

Human-object interactions can provide a deeper under-
standing of human actions based on the object’s affordance
and its relative proximity to the human. Understanding and
representing human-object interactions has been shown to
be effective on a variety of tasks like action specific image
retrieval [47], caption generation [70], and question answer-
ing [39], [70]. Human-object interactions were used to predict
both object and actions using a jointly trained object and
action recognition 2D CNNs [28]. In [21], a third input stream
called the interaction branch was added to utilize the output
from both objects and humans to improve action recognition
performance. A fusion technique was proposed in [40] that

encoded features from actors, objects, and their spatial rela-
tions into a single representation to model actions for zero-
shot learning. In [46], the combined feature representation was
replaced by a graph-based representation of humans, objects,
and their interactions annotated by object affordances. Each
node in the graph used a convolutional LSTM [68] to model
the evolution of the graph over time for action localization in
videos. The convolutional LSTM model used CNNs in every
frame for object detection that requires object annotations and
affordances for training. In [27], all nodes and edges in the
human-object interaction graph were represented by Recurrent
Neural Networks to form a structural RNN (S-RNN). Object
affordance and activity labels were predicted at each object
and human node, respectively. We utilize only visual features
to represent human-object interactions as object affordances
are challenging to obtain for all types of objects.

In [5], a relation network composed only of objects was
proposed to model their temporal evolution for action recog-
nition. The method relied on annotated objects but did not
model the relationship between the objects and the actors. An
actor-centric network was proposed in [56] to implicitly model
the interactions between actors and objects without object
annotations for training. Particularly, relational networks avoid
explicitly modeling objects by treating each location in an
image as an object proxy and aggregating the representations
across all the locations. In [71], relevant objects and humans
were tracked over time to extract long-term motion pat-
terns called tubelets. The interactions between these tubelets
was represented using graph convolution networks for action
recognition. All the temporal networks rely on robust tracking
of humans and/or objects over time that is affected when
objects are occluded [33], objects move in and out of the scene
due to ego motion [9], or the human is not visible in some
frames [55].

B. Action Anticipation

One of the earliest works presented action anticipation as
that task of generating the visual representation of future
frames by leveraging the temporal structure of videos [62].
From a single input frame, multiple possible future frames
were generated using a regression-based CNN network and
subsequently classified to predict the action label. In [41],
instead of generating frames, the action label of a frame 1
second into the future was predicted after observing a set
number of frames in the recent past. The representation for
each observed frame was extracted using a CNN network and
sent to a linear model called the predictive model to formulate
the sequence’s representation. A low-rank linear model called
the transitional model was used to predict the future frame
label using the sequence representation.

A method that correlates the past video representations
with the future for action anticipation using new Jaccard
vector similarity measure is presented in [13]. Predicting a
sequence of future actions instead of only one future frame was
considered in [1], [29], [43]. An RNN and a CNN network
were constructed to predict the future action label sequence
using only the action labels as input in [1]. On the other
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hand, attended temporal features and time-conditioned skip
connections were used for anticipating future actions in [29]. A
weakly supervised encoder-decoder model is presented in [43].
All these methods [1], [29], [43] observe multiple actions
in the past to predict multiple actions in the future. In this
paper, we focus on predicting the action labels of multiple
frames in the immediate future. Our method also differs
from approaches like [18], [49]–[51], [64] that predict future
visual representations from a few early frames to predict the
ongoing action which is termed as early action recognition.
Especially in [64], the problem of early action recognition
is solved in a multi-camera setup by integrating information
from multiple cameras. The integration is performed using a
modified recurrent network that can that can perform action
recognition by reconstructing missing information arising due
to variable frame rates of different cameras. Different from
early action recognition, we consider the case where the labels
predicted for the future frames correspond to a different action
than the one in the observed frames.

Along with the action labels for each frame, the spatial
representation of a frame was added to forecast future ac-
tion labels in [17]. A neural memory network was proposed
that stores information in an LSTM cell by comparing the
similarity of the input with the existing memory content. The
temporal information for both the labels and spatial streams
were propagated using the neural memory networks to obtain
better forecasting accuracy. Another approach that considered
three frame-based representations - spatial, motion, and object,
to predict future actions was proposed in [16]. Using an un-
rolling LSTM, the authors showed that multiple time-steps in
the future could be predicted. A multi-modal attention network
was used to decide the best possible combination of the spatial,
motion and object representations. Hence, we also propose
a multi-modal network to leverage different representations
of the observed frames. Particularly, we use transformers to
model the temporal attention across each modality inspired
by action recognition models using transformers [19], [20].
Transformer based approaches use self-attention to summarize
each actor’s movement for group activity recognition [19]
or the entire scene for simultaneous action detection and
localization [20]. In both [20] and [19], transformers are used
to process the output of pose networks or I3D spatio-temporal
features. Instead, we use transformers for temporal aggregation
of frame-based cross-correlated human-object pairs and to
summarize features of observed frames as well as generating
features of future frames.

Other temporal networks that have been used extensively
used for action anticipation include Recurrent Neural Net-
works (RNN) [7], [44], [48], [53], [58] and Conditional
Random Fields (CRF) [31], [67]. The transition matrix in
CRF learns all action-to-action transition probabilities that can
help in anticipating future actions that are far apart [72]. An
RNN like Gated Recurrent Unit (GRU) can learn to represent
the entire frame sequence using a single representation that
can also be used to predict one or more future action labels
(by unfolding) [16]. A graph-based CRF was used to model
human-object-action relations for action anticipation in [31]
using object affordance labels and action labels for predicting

the entire graph for future frames. In [42], different spatial
zones were manually identified from egocentric videos along
with the actions supported by these zones to form a topological
map. Each node in the topological map is populated with
visually similar zones from different videos and the nodes are
connected sequentially based on the order in which they are
visited. For action anticipation, the observed video segment
is matched to a node, and the actions corresponding to the
next node in the topological map are the anticipated actions.
A simpler approach for aggregating both recent and long-
term temporal history using non-local blocks [66] for action
anticipation was presented in [52]. They showed that while
long-term aggregation can sometimes play a part in antic-
ipation, recent actions are more informative in determining
the immediate future. Our proposed model that only uses the
recent past demonstrates that very limited temporal history
is sufficient to accurately anticipate actions not only in the
immediate but distant future as well.

C. Second-order statistics from features

Cross-correlation and covariance are both second-order
statistics derived from features. Covariance matrices of
features have been used extensively for pedestrian detec-
tion [59],fine grained image recognition [11], [37], [65], scene
categorization [65], and facial expression recognition [2].
Covariance matrices are symmetrical positive definite (SPD)
and hence, both Riemannian [45], [59] and Log-Euclidean
metrics [3], [8] have been used to compare the similarities
across them. With the advent of deep learning, many works
have proposed the extraction of second-order statistics from
CNN features [26], [37], [65] using covariance pooling. The
main difference between the various approaches on covariance
pooling in CNNs is the way of normalizing the SPD matrices.
Different from the approaches discussed above, we aim to
capture the similarity between human-object interactions by
their second-order statistics captured using cross-correlation.
A cross-correlation matrix is a rectangular matrix that does
not possess the SPD properties of the covariance matrix.

Covariance pooling approaches compute the second-order
statistics between different representations of the same image
either using hand-crafted local features [11], [59] or CNN
feature maps [26], [37], [65]. Instead, we use only the detected
humans and objects to extract second-order statistics as the
focus is human-object interactions. So, the proposed cross-
correlation features use a refined subset of the inputs used
for covariance pooling. Also, co-occurrence [30] and correla-
tion [63] between a human and a particular object in the frame
have been proposed to represent human-object interaction. We
were inspired by these ideas to consider correlation between
humans and objects as a frame representation. However,
humans can possibly interact with multiple objects in the
frame during the actions in 50Salads, Breakfast, and EPIC-
KITCHENS55 datasets. So, we decided to derive second-
order characteristics using cross-correlation to account for all
possible human-object interactions.
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III. PROPOSED APPROACH

In this section, the proposed approach is described in detail.
We present the problem statement and an overview of the en-
tire approach. Then, we discuss how cross-correlated human-
object features are computed and used with a transformer
architecture to generate sequence of action labels. Finally, we
describe how a multi-modal transformer is used to combine
different representations with human-object features.

A. Problem Statement

We observe a video segment Vo = {v1,v2, · · · ,vno
}

for to seconds containing no frames called the observation
period. The task of action anticipation is to predict a sequence
of actions ta seconds (or na frames) after the observation
period as shown in Figure 1. In our formulation, the sequence
of predicted actions has the same length as the number of
observed frames no. Hence, the predicted action sequence can
be denoted as {y(no+na)+1, y(no+na)+2, · · · , y(no+na)+no

}. A
model Φ can be trained to learn a set of parameters Θ that
can predict the future action sequence as follows:

{y(no+na)+1, y(no+na)+2, · · · , y(no+na)+no
} =

Φ({v1,v2, · · · ,vno
},Θ). (1)

Our formulation of the action anticipation task is simi-
lar to the sequence to sequence modeling task in machine
translation [57]. During training, the model accepts an input
sequence that is the observed frame sequence and produces
an output sequence, which predicts future action sequence.
During testing, we use majority voting on the predicted action
sequence to obtain a single anticipated action. It is necessary
to obtain a single anticipated action for a fair comparison with
existing approaches that predict only a single action from the
observed frame sequence.

B. Overview of proposed approach

We use cross-correlation between human and object features
to obtain a frame-based representation for every frame in the
observation period. Next, we use the sequence of frame-wise
human-object (HO) features as input to a transformer encoder
and use a transformer decoder to output a sequence of action
labels for the immediate future. Finally, we train a multi-modal
network that has separate transformer encoders for human-
object, spatio-temporal, and motion features. The decoder for
the multimodal networks combines the evidence across the
various modalities to output a sequence of future action labels.

C. Pairwise human-object interactions

A majority of daily human actions comprise of interacting
with various objects. Identifying such actions depends on how
well pairwise human-object interactions are represented. In
this work, we consider the pairwise relationship between every
object and human in a given frame. Figure 2 shows the con-
struction of the frame representation using pairwise human-
object interactions. Human(s) and object(s) are detected in
every frame using an object detector, and the corresponding
regions are cropped from the frame. The cropped regions

are used to train a CNN-based classifier to recognize object
classes that human interacts. Then a feature representation is
constructed from each human and object region in every frame
using corresponding human and object features. Specifically,
we make use of cross-correlation between human and object
features to build the frame representation. Let P represent all
human-object pairs in a frame. Every pair is df -dimensional
representation, constructed by concatenating a human and an
object feature, hfeat and ofeat, respectively. As a baseline
model, we use a sum of these pairwise features with a shared
weight matrix to represent a frame as follows:

v =
∑
p∈P

ReLU(W[hfeat,ofeat]
T
p )), (2)

where [·, ·] represents vector concatenation, and W is a
learnable projection matrix of size dl × df that projects the
pairwise feature [hfeat, ofeat] into a lower dimension dl. We
can model W as a linear layer in a neural network that obtains
a compressed representation of the pairwise feature.

The ReLU function used here to provide non-linearity has
been shown to be faster and effective for the training of neural
networks due to sparse activation, better gradient propagation,
simpler operations, and scale invariance [22]. We call this
representation as the non-linear projected sum of pairwise
features (NPS).

D. Cross-correlation of pairwise human-object features

Different human-object pairs in a frame are important
in identifying different actions [46]. Determining the most
relevant human-object pair is challenging without the action
label being provided. We can only observe the frames in the
observation period without the corresponding action labels
as per the protocol for action anticipation followed in liter-
ature [16], [52]. Hence, we use cross-correlation to learn a
holistic representation for all human-object pairs in a frame.
At first, we obtain non-linear low-dimensional projections of
for each human-object feature as

wp = (tanh(W[hfeat,ofeat]
T
p )) (3)

where W is the same learnable projection matrix as in
Equation 2. The tanh function is used to associate a negative
or positive value to each dimension in the dl × 1-dimensional
weight vector. Then, we use cross-correlation to measure the
similarity of every dimension in the pairwise feature to their
corresponding weight vectors for all pairs

C =
∑
p∈P

wp[hfeat,ofeat]p. (4)

The resultant cross-correlation matrix C is a dl × df high-
dimensional representation for a frame that captures the vari-
ability across the weights and the pairwise features across
all the pairs. As the number of human-object pairs is not
constant over the frames in the observation period, cross-
correlation allows us to obtain a fixed-sized representation C
for every frame. Using covariance pooling [11], [37], [65]
across concatenated human-object features results in even
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Fig. 2. Constructing a frame representation using cross-correlation of pairwise human-object interactions. Human-object pairwise features are formed with
the features of detected objects and human in the frame. The weight vectors of each pair are computed using a non-linear low-dimensional projection.
Cross-correlation measures the similarity of every dimension in the pairwise feature to their corresponding weight vectors cross-correlation matrix. Finally,
three different frame representations can be obtained from the cross-correlation matrix by a) sum-pooling over pairwise feature dimension, b) sum-pooling
over weight vector dimension, or c) linear low-dimension projection.

higher dimensional covariance matrix of size df × df . Using
a high-dimensional cross-correlation or covariance matrix as a
frame representation would require estimating a large number
of parameters and may lead to overfitting [14]. A method
suggested in [37] is to apply average-pooling on the covariance
matrix to obtain a bilinear vector. For our cross-correlation
matrix, we use both sum-pooling and non-linear projection
to encode the higher-order statistics captured in the cross-
correlation matrix in a low-dimensional representation.
• CC(F)- Sum-pooling over pairwise feature dimension df

to aggregate cross-correlation across the dimensions of
the concatenated features. The frame representation is a
dl × 1 vector computed as follows:

v = [v1, v2, · · · , vi]T , (5)

vi =
∑
j

cij

where cij represents the (i, j)th element of C.
• CC(W)- Sum-pooling over weight vector dimension dl to

aggregate cross-correlation across the dimensions of the
projected concatenated features. The frame representation
is a df × 1 vector calculated as follows:

v = [v1, v2, · · · , vj ]T , (6)

vj =
∑
i

cij .

• CC(LP)- Low-dimensional projection using a linear layer
w of dimension dl × 1 to obtain a frame representation
of dimension df × 1 as follows:

v = wT
∑
p∈P

wp[hfeat,ofeat]
T
p . (7)

While performing a particular action, the object(s) being
interacted with are closer to the human compared to other
objects in the scene. So, we concatenate the displacement
between humans and objects to the individual weight vectors
computed in Equation 3 as follows

wd
p = tanh(Wd[dp,w

T
p ]T ) (8)

where Wd is a dll × dl + 2 matrix that projects the con-
catenated weight vector from (dl + 2) dimensions (+2 for

the displacement) into a lower dimension dll. The term dp
is the normalized displacement vector (with respect to the
frame size) between center of the human and center of the
object in the pair p, as detected in the frame by the Mask R-
CNN architecture [24]. The cross-correlation matrix can then
be determined similar to Equation 4 as

Cd =
∑
p∈P

wd
p[hfeat,ofeat]p). (9)

We can obtain different frame representations (CC-D) from the
displacement-based cross-correlation matrix using the tech-
niques described above for the regular cross-correlation matrix.

E. Multi-modal Transformers
The set of cross-correlation based frame representations

obtained for the observation period Vo = {v1,v2, · · · ,vno
}

are used to predict the future action sequence. Our approach
consists of comparing the similarity of frame features in the
observation period using self-attention. Then, we use these
self-attention scores along with the cross-correlation based
frame representations to predict the labels for the future
sequence. Self-attention has been shown to very effective
for computing similarities across tokens in a sequence to
perform sequence to sequence translation tasks [61]. Instead
of directly comparing the cross-correlation based frame fea-
tures, we use three abstractions called query, key, and value
obtained from the frame features using learnable weights
Wq,Wk, and Wυ , respectively, as

Q = VoW
q,K = VoW

k, and Υ = VoW
υ. (10)

The matrices Q, K, and Υ represent the packed query, key,
and value vectors for each frame in the observed sequence. The
self attention score vectors for the human-object representation
AHO = [aT1 , · · · ,aTno

]T are based on the similarity of the
query and key vectors across the observation sequence scaled
by
√
dk, i.e., the dimension of the key vector as

AHO = softmax(
QKT

√
dk

)Υ. (11)

The entire encoder-decoder process in the transformer model
is shown in Figure 3. Finally, a classifier is applied on the
anticipated feature sequence to obtain the action labels.
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Fig. 3. Anticipation of future action labels using the encoder-decoder
transformer model.

Using multiple representations of the same video sequence
has been shown to improve anticipation performance [16].
So, we propose to utilize the spatial-temporal, motion, and
the proposed human-object interaction-based representation
from each frame to exploit the complementary information in
each of them. While the spatial-temporal (ST) representation
provides how the entire scene changes while the action is
being performed, the motion representation describes only
those parts of the video that move during each action. Finally,
the human-object interaction captures the relationship between
the actor and the objects.

We propose two mechanisms for combining these represen-
tations - i) separate encoders for each modality with a shared
decoder as shown in Figure 4(a), and ii) separate encoder-
decoder for each modality with pooled output as shown in
Figure 4(b). Using a shared decoder for multiple encoders
is inspired by the multi-source language translation task that
takes in multiple input sequences to produce a single output
sequence [35]. The attention layer in the encoder computes
self-attention independently over each input modality. The
resulting contexts are then treated as states of an input and
self-attention is computed once again as follows

Kmulti = Υmulti = concat(AHO,AST ,AM )

Ai = softmax(
QKmulti√

dk
)Υmulti, i ∈ {HO,ST,M} (12)

The entire multi-modal network is fine-tuned to learn the
weights of the decoder. The concatenation of the encoder states
is performed after observing the entire frame feature sequence
instead of every frame as in Modality Attention [16].

Another way to combine the evidence across modalities is to
pool the classifier outputs of the individual transformers. The
classifier produces class-wise confidence scores for every an-
ticipated feature generated by the decoder. Confidence scores
are accumulated across the classifiers from each modality and
added for every output class separately. We repeat this ac-
cumulation and addition process for every anticipated feature.
The final predicted action for each anticipated feature is based

(a) Shared decoder (b) Separate decoders
Fig. 4. Proposed mechanisms for designing multi-modal transformers.

on these consolidated confidence scores computed across the
modalities. The entire multi-modal network is trained using
the cross-entropy loss between the target actions and the final
predicted actions.

IV. EXPERIMENTS AND RESULTS

In this section, we describe various experiments for action
anticipation on 50 Salads, Breakfast, and EPIC-KITCHENS55.

A. Datasets and Features

50 Salads [55] dataset consists of 50 videos of 25 actors
making salads based on recipes provided beforehand. The
videos are recorded with a resolution of 640×480 at 30 frames
per second. The actors perform 17 different fine-grained ac-
tions, and the gaps between these actions are annotated using
a background class. The average video length is 6.4 minutes,
and there are 20 action instances per video. The published
dataset provides five splits, and all the results presented here
are averaged over the five splits.

Breakfast [33] dataset consists of 77 hours of procedural
videos or 4.1 million frames of 52 actors making breakfast
that yields 48 fine-grained action classes. Indeed, it is a large
scale video dataset. The videos are recorded with a resolution
of 320 × 240 at 15 frames per second. The average duration
of the videos is comparably shorter at 2.3 minutes with an
average of 6 action instances. All the results presented here
are averaged over the four splits provided by the authors of
the dataset [33].

EPIC-KITCHENS55 [9] contains 55 hours of unscripted
videos comprising 39,596 action annotations, 125 verbs, 351
nouns, and 2,513 actions. All the videos are recorded at 60
frames per second with a resolution of 1920×1080. We down-
sample the videos to 10 frames per second for our experiments.
The training set is divided into 232 videos for training (23,493
segments), and 40 videos for validation (4,979 segments)
based on the splits provided by [16]. We also evaluate our
results using the test set of EPIC-KITCHENS55.

The 50Salads dataset has top-down videos, and this view-
point is not encountered often in the COCO dataset [36] that
is used for training the Mask R-CNN architecture. Hence, we
manually segregate the cropped images of each detected object
into 10 categories - bottle, bowl, cheese, cucumber, knife,
lettuce, peeler, spoon, tomato, and hands (human) based on
the actions in the dataset. Then, we train a classifier based on
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TABLE I
COMPARISON OF CROSS-CORRELATION USING DIFFERENT OBJECT

DETECTORS ON ACTION ANTICIPATION

Detector 50 Salads Breakfast
SSD [38] 38.5 29.6

Mask R-CNN [24] 41.7 31.6

Fig. 5. Examples of Mask R-CNN detections from the 50 Salads dataset.
Humans and objects being interacted with are detected though the class labels
for objects are not correct. The detection outputs are segregated manually
by the correct object type and a classifier based on ResNet50-FPN [24]
architecture is learnt to be used during inference.

the ResNet-50 Feature Pyramid Network (FPN) [24] for these
10 categories. The trained classifier achieves a mean accuracy
of 97.5% which means that both objects and hands are detected
with high confidence. Further, we can use the features from the
penultimate layer of this classifier to get distinct visual features
for different objects and humans. Hence, during testing, we run
the Mask R-CNN on every frame and extract 256-dimensional
features from each detected object. The features are then used
for two tasks - a) classification into one of the 10 categories
mentioned above, and b) forming the human-object pairs.

The Mask R-CNN network [24] object detections per frame
is shown in Figure 5 for 50Salads. For the Breakfast dataset,
we consider 15 categories of common kitchen objects plus the
person category from the COCO dataset. As the Mask R-CNN
is already trained on the COCO dataset, we can directly extract
features from the ResNet-50 FPN network. A trained Faster
R-CNN based object detector and hand masks are provided
for the EPIC-KITCHENS55 dataset [9]. The detected objects
and hand masks can be directly used to obtain the features as
the other datasets.

Detecting objects accurately in every frame is vital for
the current proposed framework based on human-object in-
teraction. To demonstrate the effect of Mask R-CNN we
replace it with a weaker detector like SSD [38] based on
the performance on COCO dataset). Table I shows that using
a stronger detector like Mask R-CNN improves the action
anticipation performance compared to SSD for both 50 Salads
and Breakfast dataset. Therefore, we resort to stronger object
detector such as Mask R-CNN in the rest of the experiments.

B. Overview of Experiments

In the following subsections, the results of many ablation
studies are presented. In Section IV-C, we compare the pro-
posed cross-correlation based features with self-attention and
covariance pooling. Section IV-D compares the transformers
to various temporal networks both as an end-to-end architec-
ture and separately as an encoder or a decoder. Finally, in

TABLE II
COMPARISON OF DIFFERENT CROSS-CORRELATION METHODS ON ACTION

ANTICIPATION

Cross-correlation type Observation period
1s 2s 3s 5s

50 Salads
NPS 37.3 36.2 36.1 35.1
CC(F) 41.7 38.9 38.4 37.5
CC(W) 41.5 38.8 38.3 37.4
CC(LP) 41.4 38.3 38.1 37.2
CC-D(F) 41.1 39.1 38.3 37.4
CC-D(W) 41.1 39.0 38.2 37.3
CC-D(LP) 40.9 39.1 38.1 37.1

Breakfast
NPS 29.4 28.2 27.3 27.4
CC(F) 31.6 30.4 29.6 29.2
CC(W) 31.4 30.3 29.5 29.3
CC(LP) 31.3 30.2 29.7 29.4
CCD(F) 31.3 30.9 29.1 28.5
CCD(W) 31.2 30.8 29.3 28.4
CCD(LP) 31.1 30.9 29.1 28.6

Section IV-D, we show the effect of incorporating different
features in the multi-modal transformer and then compare
with state-of-the-art approaches on three different datasets in
Section IV-F and IV-G.

C. Comparison of Human-object representations

For both the 50 Salads and Breakfast dataset, we consider
an anticipation period of 1 second for a fair comparison with
existing approaches [1], [41], [62]. The transformer encoder-
decoder architecture consists of 2 encoders and 2 decoders.
Every encoder and decoder has a hidden layer dimension of 64,
feed-forward layer dimension of 2048, and 2 attention heads
based on empirical performance. To determine the optimal
observation period, we ran an ablation study with observation
periods of 1, 2, 3, and 5 seconds to denote varying amounts
of recent temporal history also used in [52].

Using the transformer architecture described above, we
compare the performance of different human-object repre-
sentations (discussed in Section III-C) in Table II. All three
techniques for obtaining low-dimensional representation from
the cross-correlation matrix CC(F), CC(W), and CC(LP) pro-
duce similar performance, which shows that the projection
method is not crucial for frame representation. Finally, adding
displacement to the cross-correlation (CC-D) does not improve
anticipation performance, indicating that displacement does
not contribute to refining the choice of the most important
human-object interaction in the frame. We use the best per-
forming CC(F) and CC-D(F) versions of the CC and CC-D
representations in the rest of the experiments.

We compare cross-correlation to other approaches that
compare similarities across features like scalar attention
weights [4], self-attention [61] and covariance pooling [37].
For covariance pooling, we compute the covariance matrices
between i) concatenated human-object features (concat), and
ii) human feature with every object feature in the frame
(paired). Then, we perform i) average-pooling following [37]
to produce a fixed-dimensional frame representation called
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TABLE III
COMPARISON OF CROSS-CORRELATION WITH OTHER COMBINATION

METHODS ON ACTION ANTICIPATION

Human-Object (HO)
Representation

Observation period
1s 2s 3s 5s

50 Salads
Vec. cov. (concat) 37.4 35.2 36.5 34.1
Vec. cov. (paired) 37.1 35.4 36.2 34.2
SVD cov. (concat) 37.3 35.8 36.5 35.7
SVD cov. (paired) 37.8 35.7 36.2 36.1
Bilinear cov. (concat) [37] 39.8 39.2 38.2 37.1
Bilinear cov. (paired) [37] 39.6 38.5 37.5 36.2
Attention [4] 37.6 36.5 36.2 35.9
Self-Attention [60] 38.2 36.9 36.6 36.1
Self-Attention (obj) 38.2 36.9 36.6 36.1
Cross-correlation 41.7 38.9 38.4 37.5

Breakfast
SVD cov. (concat) 29.5 28.7 28.5 28.2
SVD cov. (paired) 29.4 28.8 28.6 28.1
Vec. cov. (concat) 28.5 26.7 28.5 27.2
Vec. cov. (paired) 28.4 27.8 27.6 24.7
Bilinear cov. (concat) [37] 29.9 29.7 27.5 27.4
Bilinear cov. (paired) [37] 29.4 29.6 29.2 27.3
Attention 29.2 28.1 27.1 27.3
Self-Attention 30.2 28.8 28.2 27.9
Self-Attention (obj) 30.6 28.7 28.1 27.8
Cross-correlation 31.6 30.4 29.6 29.2

bilinear vector in [37], ii) vectorizing the covariance matrix
and applying a linear projection to obtain a low-dimensional
representation called vectorized covariance vector (Vec. Cov.),
and iii) singular value decomposition of covariance matrix
to obtain singular value matrix that is vectorized to get a
singular value vector (SVD Cov.). The bilinear vector, vec-
torized covariance, or singular value vector, is used to train
the transformer similar to the sum-pooled cross-correlation
frame representation CC(F). Finally, we also compare against
a modified self-attention network that computes the similarity
between the human feature (query) and all the object features
(keys) in the frame. Each concatenated human-object feature
(value) is then weighted by its corresponding similarity score
normalized across all pairs and denoted as Self-Attention (obj)
in Table III.

Table III shows that cross-correlation performs better than
scalar attention, self-attention, and covariance pooling for
both datasets. Among covariance pooling methods, bilinear
pooling demonstrates the best anticipation performance and is
even better than attention-based methods. Comparing second-
order methods like covariance and cross-correlation across
concatenated human-object pairs shows that cross-correlation
is more effective for action anticipation. The proposed cross-
correlation approach is able to better represent the human-
object interactions in a frame compared to covariance pooling.

Further, as shown in Table II and III, the observation period
of 1 second is optimal for anticipation accuracy across differ-
ent human-object representations. Furthermore, for both 50
Salads and Breakfast, the anticipation accuracy deteriorates as
the observation period increases. As increasing the observation
period leads to longer anticipation sequences, the network
must anticipate further into the future that introduces more
uncertainty. So, the likelihood of making false predictions

increases which affect overall anticipation accuracy.

D. Comparison of Temporal Networks

In this subsection, we evaluate the performance of different
temporal networks as shown in Table IV and V. The different
temporal networks used for comparison with the transformer
model are described below.
• GRU+CRF- The HO features for every frame in the

observation period are passed as input to a single layer
GRU with a hidden unit dimension of 32 to add temporal
information from the preceding frames. A classifier is
used on the hidden state for every frame in the observa-
tion period to get the observed action labels. Then, a CRF
is trained to learn the transitions between the observed
action and anticipated action labels.

• MS-TCN Encoder-Decoder [12]- Multi-stage Temporal
Convolution Networks is a multi-stage architecture for
temporal action segmentation. At each stage, a set of
dilated 1D temporal convolutions is used to generate
an initial prediction refined by the next stage. In our
implementation, we use 4 stages of 1D convolutions in
both the encoder and decoder following [12].

• TempRec Encoder-Decoder [69]- Temporal Recurrent
Networks have an encoder-decoder structure. The encoder
is an RNN that has a hidden state output for every frame
representation in the observation period. The decoder
generates a sequence of future features using each hidden
state output. The future features are combined to produce
a “future” context according to [69]. The hidden state and
future context are concatenated to obtain each observed
frame’s action label. In our implementation, we use the
future context of each observed frame to anticipate future
action labels.

• TempRelNet [73]- Temporal Relation Networks learn
temporal dependencies between video frames at multiple
time-scales for action recognition. Each time-scale is
represented by the temporal relationship between a par-
ticular number of frames. We consider temporal relations
comprising of d frames - d = {4, 5, 6, 7} for 50 Salads
and d = {2, 3, 4} for Breakfast. The frame relations are
based on the number of observed frames for Breakfast
(15) and 50 Salads (30). For each d, we choose 3 ran-
dom samples from the observation period and aggregate
their corresponding HO representations using a linear
layer [73]. Finally, the aggregated representations are
added to obtain a representation for the observed frame,
which is used then used for anticipating a single future
action after the anticipation period.

In both Table IV and V, we compare the different temporal
networks described above using different human-object repre-
sentations. As a baseline frame representation, we consider the
average of object and human features in every frame (AVG).
All temporal networks benefit from using HO representations
rather than AVG for anticipation. The GRU+CRF lags behind
other temporal networks for all the frame representations.
The classifier used to obtain observed action labels from the
GRU hidden states can lead to misclassification errors that
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TABLE IV
PERFORMANCE OF TEMPORAL NETWORKS ON 50 SALADS

Temporal Network AVG HO Representation
NPS CC CC-D

GRU+CRF 23.8 30.1 26.9 26.2
MS-TCN Encoder-Decoder [12] 26.5 34.3 36.3 36.1
TempRec Encoder-Decoder [69] 28.3 34.6 36.8 35.9
TempRelNet [73] 29.8 36.1 36.9 36.7
Transformer Encoder-Decoder 33.4 38.3 41.7 41.2

TABLE V
PERFORMANCE OF TEMPORAL NETWORKS ON BREAKFAST

Temporal Network AVG HO Representation
NPS CC CC-D

GRU+CRF 9.3 13.1 14.2 14.1
MS-TCN Encoder-Decoder [12] 19.3 25.9 27.5 26.2
TempRec Encoder-Decoder [69] 19.6 27.8 28.4 28.3

TempRelNet [73] 21.5 29.6 31.2 31.3
Transformer Encoder-Decoder 22.4 29.4 31.6 31.5

adversely affect the CRF’s anticipation. Interestingly, Tem-
pRelNet performs better than MS-TCN and TempRec which
demonstrates that considering sequences of various lengths in
the observation period is more effective in capturing temporal
context than temporal convolution or recurrence. However,
the best performance is obtained by the transformer model
that employs self-attention for capturing temporal context and
anticipating future actions. Also, we found that the using
2 encoder and 2 decoder layers in the transformer network
produces the best anticipation accuracy as shown in Table VI.

To understand the efficacy of transformers, it is important to
study the influence of the encoder and decoder in anticipation.
We measure the performance of the transformer encoder by
using different networks as a decoder -

• linear layer,
• CRF with action labels predicted from the transformer

encoder,
• MS-TCN decoder with average pooled output from the

transformer encoder for every stage (as the decoder
expects a single output from the encoder), and

• TempRec decoder.

Similarly, we design networks with the transformer model as
decoder but use different encoders

• GRU hidden states for every observed frame,
• MS-TCN encoder with one output per stage (4 as per [12])

that are padded to match the number of frames in the
observation period, and

• TempRelNet with the same number of sub-samples as the
number of frames in the observation period.

TABLE VI
EFFECT OF TRANSFORMER LAYERS ON ACTION ANTICIPATION

Encoder
layers

Decoder
layers 50Salads Breakfast

1 1 35.6 24.8
2 1 38.9 29.6
1 2 38.1 29.3
2 2 41.7 31.6

TABLE VII
PERFORMANCE OF TRANSFORMER ENCODER AND DECODER WITH OTHER

TEMPORAL NETWORKS

Encoder Decoder Anticipation Accuracy
50Salads Breakfast

Linear Linear 23.2 9.8
Transformer Linear 34.3 19.9
GRU CRF 26.9 14.2
GRU Transformer 35.6 22.5
Transformer CRF 32.9 20.5
MS-TCN MS-TCN 36.3 28.7
Transformer MS-TCN 36.4 29.4
MS-TCN Transformer 36.8 29.1
TempRec TempRec 36.8 30.6
Transformer TempRec 37.1 30.5
TempRelNet Linear 36.9 29.9
TempRelNet Transformer 39.2 30.9
Transformer Transformer 41.7 31.6

In Table VII, the performance of the various networks con-
sidered above are presented in relation to their non-transformer
based counterparts from Table IV and V. All the experiments
are conducted using the cross-correlation based human-object
interaction feature (CC). Compared to the GRU+CRF network,
adding either the transformer encoder to replace the GRU
or the transformer decoder to replace the CRF improves the
performance for both 50 Salads and Breakfast dataset. Hence,
self-attention is more effective at capturing temporal context
than GRU and anticipating actions than a CRF. For both
the MS-TCN and TempRec decoder, the transformer encoder
output has to be averaged across the entire sequence before
anticipation, which negates the use of self-attention, and no
significant improvement is observed. As a decoder, the trans-
former can anticipate better with TempRelNet encoder as input
compared to GRU or MS-TCN. Hence, the temporal context
captured using sub-samples of different lengths in TempRel-
Net is more descriptive for anticipation than recurrence or
temporal convolution. After comparing the various networks,
we can observe that replacing the encoder or decoder with
transformers improves the anticipation performance. Hence,
we can conclude that self-attention is equally useful in both
the encoding and decoding processes.

E. Performance of multi-modal transformers

Providing multiple representations of the frame can bene-
fit action anticipation by adding complementary information
to the proposed pairwise human-object representation. We
provide spatial-temporal representation in the form of I3D
features for both Breakfast and 50 Salads datasets as they
have been shown to perform better at action anticipation than
similar features like R(2+1)D [52]. Following the protocol
in [52], we use the 2048-dimensional frame-wise I3D features
for Breakfast provided along with the dataset [33] and the I3D
features provided by [12] for the 50 Salads dataset. As I3D
features are 2048 dimensions compared to 512-dimensional
HO representation, we use larger (512-dimensional) hidden
layers in the transformer’s encoder and decoder for the I3D
features. In addition to spatio-temporal features, we use motion
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TABLE VIII
COMPARISON OF MODALITIES AND MULTI-MODAL TRANSFORMERS

Modality
Multi-modal

Network
Anticipation

Accuracy
50 Salads Breakfast

HO(CC) - 41.7 31.6
Spatio-Temp. (I3D) - 39.4 15.8
Motion (Dense Traj.) - 43.1 17.1
Spatio-Temp. (ST)
+ Motion (M) Shared

Decoder
(MM-Sha)

44.1 19.7

HO + ST 40.2 40.2
HO + Motion 43.7 41.1
HO + ST + M 44.6 43.5
ST + M Separate

Decoders
(MM-Sep)

44.5 22.8
HO + ST 41.2 40.6
HO + M 44.1 41.7
HO + ST + M 46.8 44.9

TABLE IX
EFFECT OF FEATURE, COMBINATION, AND ANTICIPATION NETWORK ON

ACTION ANTICIPATION

Feature Combination
Mechanism

Anticipation
Network 50Salads Breakfast

HO NPS Linear 21.4 7.9
HO CC Linear 23.2 9.8
HO CC Transformer 41.7 31.6

HO+ST+M CC (for HO) Multi-modal
Transformer 46.8 44.9

information in the form of 64 dimensional Fisher vectors of
Dense Trajectory features provided by [34] for the 50 Salads
dataset and provided by [33] for the Breakfast dataset.

We compare the two multi-modal transformer architectures,
as discussed in Section III-E. The individual transformer
encoder-decoders are trained for 10 epochs with a learning
rate of 0.001 using the Adam optimizer. Then, the multi-
modal network is fine-tuned for 5 epochs with a learn-
ing rate of 0.0001. As shown in Table VIII, both spatial-
temporal and motion representation are effective at action
anticipation. However, the best performance is obtained with
the multi-modal transformers involving all three modalities.
Interestingly, multi-modal transformers can exploit comple-
mentary information in motion and spatial-temporal features
for Breakfast dataset, where a substantial improvement is
seen compared to the individual modalities. In the 50 Salads
dataset, the multi-modal transformer provides only a modest
improvement as all modalities have similar anticipation perfor-
mance. Furthermore, using separate decoders and pooling the
outputs shows better performance than using a shared decoder,
demonstrating that individual decoders play an important role
in anticipation. Even when two input modalities are combined,
separate decoders perform slightly better than the shared
decoder architecture that shows that a shared decoder may
not be able to leverage all the information from the different
incoming encoders.

Finally, in Table IX, we summarize the effect of each com-
ponent in our approach on the overall anticipation accuracy
across the two datasets - Breakfast and 50 Salads.

Fig. 6. Examples of objects detected in the observation period leading to the
correctly anticipated action. Spoon powder is anticipated due to spoon and
cup being detected in the observed frames while spoon flour is anticipated
based on the detection of spoon and bowl.

F. Comparison with state-of-the-art:50Salads & Breakfast

In Table X, we compare the performance of the proposed
human-object representation and multi-modal transformer on
50Salads dataset. The frame information for a single frame
was used for anticipation using a regression network in [62].
Temporal context was added to the frame information obtained
in [62] using an RNN. In [1], both an RNN and a CNN
were employed to aggregate the action sequence information
in the observed frames. Temporal aggregation using non-
local blocks was used in [52]. Even with the human-object
representation, we were able to outperform all the existing
approaches. Hence, accounting for human-object interactions
is essential in anticipating actions involving objects. Some
qualitative examples are shown in Figure 6.

TABLE X
COMPARISON WITH STATE-OF-THE-ART ON 50 SALADS

Method Anticipation
Accuracy

Deep Regression [62] 8.1
RNN [1] 30.1
CNN [1] 29.8
Temporal Aggregation
(w/o segmentation) [52] 40.7

HO(CC) + Transformer 41.7
Multi-modal Transformer (MM-Sep) 46.8

In Table XI, we compare our approach with the existing
approaches on the Breakfast dataset. Apart from the ap-
proaches used in 50Salads, we also compare with a prediction
and transitional model proposed in [41]. We can observe
that the human-object representation performs not as well
as the existing approaches, which contrasts the results on
50Salads dataset. We attribute this to poor object detection
in the Breakfast dataset due to occlusion due to many camera
views compared to the top-down perspective in 50 Salads,
as shown in Figure 7. Further, it is challenging to detect
objects in frames of size 320× 240 compared to 640× 480 in
the 50Salads dataset. Combining spatio-temporal and motion
representations using the multi-modal transformer leads to an
improvement over other methods. Multi-modal transformers
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TABLE XI
COMPARISON WITH STATE-OF-THE-ART ON BREAKFAST

Method Anticipation
Accuracy

Deep Regression [62] 6.2
RNN [1] 30.1
CNN [1] 27.0
Predictive+
Transitional [41] 32.3

Temporal Aggregation
(w segmentation) [52] 47.0

Temporal Aggregation
(w/o segmentation) [52] 40.7

Multi-modal Transformer (MM-Sep)
(HO + ST + M) 44.9

MM-Sep
(HO + ST + M + frame-wise labels) 48.4

(a) (b)
Fig. 7. Examples of scenes with occluded objects in the Breakfast dataset.

with recent temporal context (1 second) fare better than tem-
poral aggregation over longer contexts (5 to 30) seconds [52].
The temporal aggregation framework anticipates better when
information about the start and end of action segments is
provided. We also incorporated frame-wise ground truth action
labels as an added modality to our multi-modal transformer
and saw an improvement of 3.5% which outperforms the
temporal aggregation approach.

G. Performance comparison on EPIC-KITCHENS55

EPIC-KITCHENS55 is a dataset where the actors perform
daily activities in the kitchen without a script. The action
anticipation problem consists of predicting the correct verb
and noun simultaneously. Hence, we train two different trans-
former networks for nouns and verbs with an increased hidden
layer dimension of 512 in the encoders and decoders due to
many noun (125) and verb (351) classes. For a fair comparison
with existing methods, we also include results for the Top-5
anticipation accuracy as has been suggested by the authors of
EPIC-KITCHENS55 [15]. As RGB and optical flow frames
were provided in the dataset, I3D features were extracted on
both.

In Table XII (a), we compare the results of existing ap-
proaches on the validation set of EPIC-KITCHENS55. The
other approaches comprise of the Verb-Noun Cross-Entropy
(VN-CE) [15], Temporal Segment Networks combined with
SVM Top-5 loss (TSN+SVM) [6], rolling-unrolling LSTM
(RU-LSTM) [16], prediction+translation [41]. From these re-
sults, we can see that ”HO (CC)” alone does not perform
well. Even when we make use of spatial-temporal features and
motions features, still the performance is somewhat limited.

The bag-of-objects (BOO) features are histograms of de-
tected objects in a frame normalized by the total number of
appearances of every object in the entire training set. The
BOO features can explicitly emphasize which objects are in
the frame compared to all objects. Hence, we obtain better
anticipation performance when BOO features are added to the
multi-modal transformer on the validation set.

We also compare the performance of the proposed method
on test-sets of EPIC-KITCHENS55 in Table XII (b) and (c).2

In terms of noun anticipation, multi-modal transformer outper-
forms the existing approaches both in terms of top-1 and top-5
accuracy. The multi-modal transformer can generalize well to
unknown surroundings and predict the next noun. Multi-modal
transformer performs poorly for verb anticipation compared to
temporal aggregation [52] or RU-LSTM [16] in-terms of top-1
accuracy. The verb anticipation performance of our model is
comparable (on S1) or better (on S2) than existing approaches
in-terms of top-5 accuracy. In an unscripted dataset like EPIC-
KITCHENS55, multiple future verbs can naturally follow a
given observation and top-k accuracy has been proposed as a
more natural way to quantify performance [15].

We analyzed the confidence scores of verb anticipation
between RU-LSTM and MM-Transformers when the 1st,
2nd, 3rd, 4th, and 5th predictions are correct on EPIC-
KTICHENS55 validation set as shown in Figure 8. The
analysis was done on the validation set as the test set ground
truth is not available. The average confidence score of the
top prediction (Rank 1) MM-Transformer is much lower
than RU-LSTM while the next prediction confidence scores
are almost equal for both the methods. So, there is lower
confidence in the correct prediction that increases the chances
of incorrect predictions. This can be reason why the top-1
accuracy of MM-Transformer is lower than RU-LSTM and
temporal aggregation (uses RU-LSTM) on test sets. Another
observation is that the confidence scores for 2nd, 3rd, 4th,
and 5th predictions are better than RU-LSTM for all cases
(1st, 2nd, 3rd, 4th, or 5th predictions are correct). Hence, it
is highly likely that the target verb will be among the top-5
predictions and so, MM-Transformer has comparable or better
top-5 accuracy even with lower top-1 accuracy. The property
of transformers excelling especially in top-k accuracy over
LSTM architectures has also been reported for other prediction
tasks like next point of interest recommendation [23].

Somewhat surprisingly, despite our top-5 noun and verb
anticipation performance is comparable or better than prior
state-of-the-art methods in both S1 and S2 sets, our action
anticipation performance remains poor on both S1 and S2.
This can be due the fact that when our noun model is correct,
it seems the verb model is not and vice-versa. This could
lead to poor action anticipation results. Secondly, 92% of
the actions in EPIC-KITCHENS dataset have fewer than 5
examples in total across training, validation and two test
sets [10]. Consequently, many of the actions may not be
observed during training. So, it is possible that we are not able
to learn the human-object interactions in many actions during
training. When these actions appear in test set, our model is

2Results on test server are under the username debadityaroy
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(a) 1st rank correct (b) 2nd rank correct (c) 3rd rank correct (d) 4th rank correct (e) 5th rank correct
Fig. 8. Comparison of average confidence scores for verb anticipation between RU-LSTM and MM-Transformer when different ranked predictions are correct
on EPIC-KITCHENS55 validation set for verb anticipation. MM-Transformer scores are higher than RU-LSTM on average which means the there is a higher
chance that will be included in Top-5 predictions. The top prediction confidence is lower than MM-Transformer is lower than RU-LSTM and can lead to
lower Top-1 accuracy.

not able to anticipate such combinations of nouns and verbs
at the same-time. However, as nouns and verbs are shared by
many actions, still the top-5 noun and verb performance is
satisfactory or better than state-of-the-art methods.

TABLE XII
COMPARISON WITH STATE-OF-THE-ART ON EPIC-KITCHENS55

Method
Top-1 Anticipation

Accuracy
Top-5 Anticipation

Accuracy
VERB NOUN ACT. VERB NOUN ACT.

(a) Validation Set
VN-CE [9] 31.77 15.81 5.79 77.67 39.50 17.3
TSN+SVM [6] 25.65 15.99 11.09 72.70 38.41 25.42
RU-LSTM [16] 32.66 21.74 14.18 79.55 51.79 35.32
HO (CC)
+ Transformer 24.57 13.65 9.34 67.62 35.21 21.34

I3D-RGB (ST)
+ Transformer 23.42 11.32 10.17 65.45 32.19 21.44

I3D-Flow (M)
+ Transformer 24.51 10.35 9.15 63.54 30.95 20.65

Bag of objects
(BOO) + Trans. 27.63 22.14 13.52 73.54 51.95 32.65

MM-Sep
(HO+ST+M) 27.51 14.62 12.56 67.22 35.96 21.43

MM-Sep
(HO+ST+M+BOO) 32.93 22.91 14.62 79.54 52.07 35.65

(b) Test Set - Seen Kitchens (S1)
Pred+Trans [41] 30.70 16.50 09.70 76.20 42.70 25.40
TSN+SVM [9] 31.81 16.22 06.00 76.56 42.15 28.21
RU-LSTM [16] 33.04 22.78 14.39 79.55 50.95 33.73
Temp. Agg. [52] 37.87 24.10 16.64 79.74 53.98 36.06
MM-Sep
(HO+ST+M+BOO) 28.59 27.18 10.85 78.64 57.66 30.83

(c) Test Set - Unseen Kitchens (S2)
Pred+Trans [41] 28.40 12.40 07.20 69.80 32.20 19.30
TSN+SVM [9] 25.30 10.41 02.29 68.32 27.38 09.35
RU-LSTM [16] 27.01 15.19 08.16 69.55 34.38 21.10
Temp. Agg. [52] 29.50 16.52 10.04 70.13 37.83 23.42
MM-Sep
(HO+ST+M+BOO) 26.80 18.40 06.76 70.40 44.18 20.04

H. Anticipating actions in long-term future

Long-term anticipation is especially useful in planning
for actions that can help prevent mishaps in manufacturing
scenarios or assisted living scenarios. Hence, we consider
anticipation times of 1, 2, and 3 minutes while keeping the
observation fixed to 1 second. We choose the 50Salads dataset

with relatively long videos of around 6.4 minutes on average
and 20 action instances per video for this task. The results are
presented in Table XIII, and we compare with other temporal
networks like GRU+CRF, MS-TCN, and TRN. All the models
were trained for the respective anticipation periods and then
evaluated. Human-object features perform consistently well
when paired with different temporal networks for long-term
anticipation. The performance of the temporal networks on
long-term anticipation follows the same trend as immediate an-
ticipation (Table IV), with transformers performing better than
other networks. Interestingly, both human-object based and
multi-modal transformer predict actions far into the future with
similar accuracy. So, we can conclude that the representation
of human-object interactions can provide enough information
for effective long-range anticipation.

TABLE XIII
LONG-TERM ACTION ANTICIPATION ACCURACY ON 50 SALADS DATASET

Method Anticipation Period
1 min 2 min 3 min

HO(CC) + GRU+CRF 19.1 16.5 15.6
HO(CC) + MS-TCN 29.3 27.1 23.7
HO(CC) + TempRec 32.6 29.1 27.5
HO(CC) + TempRelNet 32.8 29.5 27.9
HO(CC) + Transformer 34.1 32.1 30.1
Multi-modal Transformer (MM-Sep) 34.3 32.3 30.3

V. DISCUSSION AND CONCLUSION

In this work, we addressed the problem of anticipation of
actions using pairwise human-object interactions by consider-
ing only their visual features. We proposed cross-correlation
as a way to capture higher-order statistics across human-
object pairs in a frame. We showed that cross-correlation
achieves better action anticipation compared to both attention
and covariance pooling on scripted datasets. Further, our
experiments showed that for the proposed approach, relative
proximity between humans and objects is not as crucial for
anticipation when using cross-correlation. In certain frames,
objects are not detected due to either occlusion (Breakfast)
or camera motion in egocentric videos (EPIC-KITCHENS55).
As action instances in both Breakfast and EPIC-KITCHENS55
are generally long in duration, we can recover at least 1
second of observed frames (15 for Breakfast or 30 for
EPIC-KITCHENS55) to obtain relevant information. Also,
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sudden appearance and disappearance of objects in EPIC-
KTICHENS55 can be handled using cross-correlation as we
can obtain a fixed-dimensional representation from variable
number of human-object relations per frame.

Different temporal networks were evaluated for action antic-
ipation with pairwise human-object interaction representation,
and transformer was found to be the most effective. Our
ablation studies showed that use of transformer models at
both encoder and the decoder improves the action anticipation
performance on both 50 Salads and Breakfast datasets. We also
proposed two approaches to build multi-modal Transformer
that can leverage the evidence across different frame repre-
sentations. Multi-modal transformer is trained using human-
object, spatio-temporal, and motion features and it showed
improved performance than existing methods on both 50Salads
and Breakfast datasets. We were able to obtain good long-
term anticipation performance by using pairwise human-object
representation as well, including when we predict 3 minutes
into the future. Finally, we can conclude that using only
visual features with cross-correlation is sufficient in represent-
ing human-object interactions and anticipating actions in the
immediate and long-term future.

One limitation of our current model is that it seems our
model performs exceptionally well on scripted datasets, while
the performance on unscripted datasets is not that convincing
except for out-of-domain evaluation such as test set 2 (S2) of
EPIC-KTICHENS55 dataset and good noun prediction perfor-
mance. In the future, other modalities like depth information
and language models can be explored in conjunction with
human-object pairs for better action anticipation.
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