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Abstract. The problem of predicting human actions from observed
videos is an inherently uncertain one. We present an action anticipation
model that leverages latent goal information to reduce the uncertainty in
future predictions. We develop a latent variable representing goal infor-
mation called abstract goal which is conditioned on observed sequences
of visual features for action anticipation. We design the abstract goal
as a distribution whose parameters are estimated using a variational re-
current model. We sample multiple candidates for the next action and
use goal consistency criterion to determine the best candidate that fol-
lows from the abstract goal. Our method obtains impressive results on
the very challenging Epic-Kitchens55 (EK55) and good results in Epic-
Kitchens100 (EK100) datasets.

Keywords: Action Anticipation · Stochastic Modeling· Variational In-
ference

1 Introduction

Anticipating human actions from videos has significant relevance across vari-
ous domains, including but not limited to human-robot collaboration, intelligent
domiciles, assistive robotics, and wearable virtual assistants. Specifically, ego-
centric videos, which capture the actions of the individual wearing the camera,
represent a valuable resource for the development of intelligent assistants capa-
ble of forecasting the wearer’s future actions and providing tailored assistance
accordingly. A fundamental challenge in action anticipation lies in the inherent
uncertainty surrounding future predictions. Human behavior is predominantly
steered by individual goals or intentions, thus guiding the sequence of actions
performed. Consequently, incorporating goal information holds promise for miti-
gating such uncertainty in forecasting future actions. For example, with informa-
tion about the goal wash pan, a model can predict that take pan will be followed
by rinse pan and not put pan on stove.
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Fig. 1. Model design for abstract goal-based action anticipation. Yellow ellipses repre-
sent distributions and pink boxes represent various variables of the model.

Goal and intentions have been adopted in some recent works for effective ac-
tion anticipation [27, 21, 30]. In this paper, we make use of a stochastic method [4,
9] for latent goal modeling to improve action anticipation that goes beyond the
deterministic latent goal representation in [27]. We propose to learn a new la-
tent variable called abstract goal as a latent distribution as shown in Figure 1.
We use two types of abstract goal distributions when predicting the next ac-
tion in the sequence. The first abstract goal distribution is learned using the
observed visual features and a stochastic recurrent neural network [4] which
we call “feature-based abstract goal” distribution. Furthermore, we design an
“action-based abstract goal” distribution using the next action representation
distribution and the observed action representation. We sample multiple next-
action-representation candidates and use the goal consistency criterion to find
the most likely next action–see Figure 1. The action that is most likely to happen
in the future (“next best action”) is the one that maximizes consistency between
the two latent abstract goal distributions. During learning, we use goal consis-
tency as a loss function to obtain a model informed of human behavior, i.e. the
sequences of actions. Such a mechanism is not present in previous stochastic
approaches [1, 22, 21] which only minimizes KL divergence between prior and
posterior latent distribution to obtain the best future actions. Also, we introduce
a goal consistency measure to choose the best next action candidate rather than
mean or median sampling used in [1, 22]. We show that goal consistency has
the biggest impact on action anticipation. Our approach yields improvements
when predicting the next action in unscripted activities on the Epic-Kitchens55
(EK55). Our contributions are:

– A new latent variable called abstract goal using a stochastic recurrent model
that uses two latent distributions for the observed and the next action and
enforces consistency among them to effectively predict the next action.

– A novel goal consistency term that measures how well a plausible future
action (next action) aligns with abstract goal distributions.
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2 Related work

Research in action anticipation has gained popularity in recent years thanks to
progress in datasets [6] and challenges [5]. The activity label of the entire action
sequence is used to anticipate the next action in [29]. In [27], observed features
are used to obtain a fixed latent goal from visual features. [3] conceptualizes goals
as the visual outputs of a sequence of actions. They predict each action in the
sequence based on its relative closeness to the goal as compared to the previous
action. [19] propose to use an external memory bank to store prototypes of the
overall activity and contrastive learning augmented with the memory bank for
forecasting the next action.

Predicting Future features for Anticipation. In [10] authors show that
LSTM can be unrolled for multiple time steps to predict future features can be
used to accurately predict the next action. In [26], Human-object interactions
are encoded as features and fed to a transformer encoder-decoder to predict the
features of future frames and the corresponding future actions. Authors in [18]
estimate spatial attention maps of future human-object interactions to predict
the next action. In [32], authors propose to summarize long-range sequences by
processing smaller temporal sequences and caching them in memory as context
and using the context for action anticipation. In [12], a real-time action an-
ticipation framework is presented using a two-stage transformer with reduced
parameters that is trained for future feature prediction and action anticipation.
Due to the lightweight nature of their model, the action inference is performed
in real-time. In [16], temporal features are computed using time-conditioned skip
connections to anticipate the next action. In [33], an RNN is used to generate
the intermediate frames between the observed frames and the anticipated ac-
tion. In [13], every frame is represented using a Visual Transformer (ViT) [7]
and combined using a temporal transformer to predict future features and ac-
tion labels. Authors in [34], train a transformer model to predict the next action
by reducing the amount of observed future available during learning from fully
available to completely absent. Authors in [28] model interactions using cross-
attention between humans and object visual features using a spatio-temporal
visual transformer and use the modeled interaction to predict the next action.

Long-term forecasting. In [2], future actions and their duration are pre-
dicted autoregressively using an RNN with observed action labels as input. In [2,
20], RNNs are used to predict future actions conditioned on observed action la-
bels. Latent distributions are used in literature to encode the observed action
and duration in [1, 22]. In [1], a sample from the latent distribution of observed
action is combined with previously predicted action in a decoder to predict the
multiple next actions and their duration. In [22], two decoders are used to pre-
dict the action labels and duration separately. The action decoder uses the action
labels in the observed video as input while the duration prediction decoder uses
the duration of actions. Similarly, in [14], a transformer is used to encode past
actions and duration while another transformer decoder is used to predict both
future actions and their duration. In [24], authors use two transformer encoders
for segment-level and long-term encoding and a decoder that fuses both en-
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coder inputs to predict future actions. In [21], goal labels and observed features
are used as input to a conditional variational encoder to predict future actions.
In [37], a large language model is prompted with observed actions and narrations
to predict future actions.

Correlating past and future. In [23], authors model the transition be-
tween the visual features of the observed and the next action to generate the
next action features. A similar action anticipation model that correlates past
observed features with the future using Jaccard vector similarity is presented
in [8]. In [16], time-conditioned skip connections are used to generate features
for predicting future actions at different anticipation time in the future. In [11],
authors propose a neural memory network to compare an input (spatial repre-
sentation or labels) with the existing memory content to predict future action
labels. Similarly, in [25], authors propose an action anticipation framework with
a self-regulated learning process. A counterfactual reasoning is used to improve
action anticipation in [36]. Our approach correlates the past and future by en-
forcing goal consistency between the two abstract goal distributions computed
using observed features and the next action.

3 Action anticipation with abstract goals

In this section, we explain our model design outlined in Figure 1. At first, we ex-
plain how to compute the feature-based abstract goal distribution in Section 3.1.
Then, we describe how to obtain next action candidates and action-based ab-
stract goal with respect to these candidates in Section 3.2 and 3.3, respectively.
We then explain the goal consistency criterion used to obtain the best next ac-
tion candidate in Section 3.4. Finally, we describe the various loss functions to
train our model in Section 3.5.

3.1 Observed Feature-based abstract goal representation

In this section, we describe how to generate feature-based abstract goal represen-
tation using variational recurrent neural network (VRNN) framework [4, 9]. Let
us denote the observed feature sequence by x1,x2, · · · ,xT where xt ∈ Rdf . Fol-
lowing standard VRNN, a Gaussian distribution qt(zt|x1:t−1) ∼ N (µt,prior,σt,prior)
is used to model the prior distribution of the abstract goal (zt) given the observed
feature sequence x1:t−1. The parameters µt,prior,σt,prior ∈ Rdz are estimated us-
ing the hidden state of the RNN (ht−1 ∈ Rdh) learned from the previous t − 1
features, i.e. (µt,prior,σt,prior) = ϕprior(ht−1). Note that ϕprior : Rdh → Rdz

refers to two separate MLPs, one to obtain µt,prior and another with softplus
activation to estimate the standard deviation (σt,prior). Unless otherwise speci-
fied, all MLPs are two layered neural networks with ReLU activation.

The posterior distribution of the abstract goal r(zt|x1:t) ∼ N (µt,pos,σt,pos)
computes the effect of observing the incoming new feature xt. The parameters
of posterior distribution r are computed as follows:

(µt,pos,σt,pos) = ϕpos([ϕx(xt), ϕh(ht−1)]), (1)
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where ϕpos : R2×dz → Rdz , ϕx : Rdf → Rdz , ϕh : Rdh → Rdz are linear layers and
[·, ·] represents vector concatenation. We use the reparameterization trick [17] to
sample an abstract goal (zt ∈ Rdz ) from the prior distribution q(zt|x1:t−1) as
follows:

zt = µt,prior + σt,prior ⊙ ϵ, (2)

where ϵ ∼ N (0,1) ∈ Rdz is a standard Gaussian distribution. Then sampled zt
is used to obtain the next hidden state of the RNN3 as follows:

ht = RNN(ht−1, [ϕx(xt), ϕz(zt)]),∀t ∈ 1, · · · , T (3)

where ϕz : Rdz → Rdz acts as a feature extractor over zt. The sampled abstract
goal (zt) can be used to reconstruct (or generate) the feature sequence as done in
VRNN framework [4, 9]. However, we use it to represent feature-based abstract
goal. Our intuition comes from the fact that humans derive action plans from
goals, and videos are a realization of this action plan. Therefore, by construc-
tion, goal determines the video (feature evolution in our case). Interestingly, as
the abstract goal latent variable encapsulates the video feature generation pro-
cess, by analogical similarity, we make the proposition that latent variable (zt)
represents the notion of feature-based abstract goal.

Therefore, we denote the “feature-based abstract goal distribution” as follows:

p(zT ) = q(zT |x1:T−1). (4)

The abstract goal distribution represents all abstract goals with respect to a
particular observed feature sequence. Any observed action may lead to more than
one goal. Our abstract goal representation captures these variations.

3.2 Action representations

Human actions are causal in nature and the next action in a sequence depends
on the earlier actions. For example, washing vegetables is succeeded by cutting
vegetables when the goal is “making a salad”. We capture the causality between
observed and next actions using “the observed action representation” and the
“next action representation”. We obtain the observed action representation
(aO) using feature-based abstract goal and the hidden state of RNN as follows:

aO = ϕO([ϕz(zT ), ϕh(hT )]). (5)

Here ϕO : R2×dz → Rdh and zT is sampled from the abstract goal distribution
p(zT ) using Equation 2.

Then we obtain the distribution of next action representation (aN ) con-
ditioned on the hidden state of the RNN and the observed action representation
denoted by p(aN |hT ,aO). The reason for modeling next action representation
as a distribution conditioned on hidden state and the observed action repre-
sentation is two-fold. First, a particular observed action may lead to different
3 Our RNN is a standard GRU cell.
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next actions depending on the context and goal. Note that in our model, both
observed action representation aO and the RNN hidden state hT depend on the
feature-based abstract goal representation. Second, there can be variations in
human behavior when executing the same task. The next action representations
are generated using a Gaussian distribution N (µaN

,σ2
aN

) where µaN
,σaN

∈ Rdz

The parameters of next action distribution are estimated as

p(aN |hT ,aO) ∼ N (µaN
,σ2

aN
), (6)

where (µaN
,σaN

) = ϕN ([ϕh(hT ), ϕa(aO)]). The mapping network ϕa : Rdh →
Rdz and ϕN : R2×dz → Rdz are two separate MLPs. Now we sample multiple next
action representations from the next action representation distribution using the
reparameterization trick as in Equation 7,

aN = µaN
+ σaN

⊙ ϵ, (7)

where ϵ ∼ N (0,1) ∈ Rdz is a standard Gaussian distribution.

3.3 Action-based abstract goal representation

Now, we obtain action-based abstract goal from observed and next action rep-
resentations using generative variational framework [17]. The distribution for
action-based abstract goal is modeled with a Gaussian distribution conditioned
on the next action representation denoted by q(zN |aN ) whose parameters are
computed as q(zN |aN ) ∼ N (µNq,σNq) where (µNq,σNq) = ϕNq(ϕa(aN )) and
µNq,σNq ∈ Rdz and ϕNq : Rdh → Rdz is implemented with two MLPs. On the
other hand, parameters of the action-based abstract goal distribution (r) condi-
tioned on both observed and next action representation are given as r(zN |aN ,aO) ∼
N (µNr,σNr) whose parameters are estimated as:

(µNr,σNr) = ϕNr([ϕa(aN ), ϕa(aO)]) (8)

where µNr,σNr ∈ Rdz and ϕNr : Rdh → Rdz is a dual headed MLP. Finally,
the action-based abstract goal distribution for the next action p(zN ) is given
by the distribution

p(zN ) = q(zN |aN ). (9)

We use both feature-based and action-based abstract goal representation to find
the best candidate for next action as explained in next section. It should be
noted that while the q(zN |aN ) only depends on next action representation and
r(zN |aN ,aO) depends on both observed and next action representation. As r()
has more evidence compared to q(), r() acts as the posterior distribution in our
modeling.

3.4 Next action anticipation with goal consistency

Given a sampled feature-based abstract goal zT , we select the best next action
representation a∗N using the divergence between p(zT ) distribution (eq. 4) and
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p(zN ) distribution (eq. 9). We call this divergence as the goal consistency
criterion. For a given zT , observed action aO and the next sampled action
aN , the goal consistency criterion is derived from the average of KL-divergence
DKL(p(zT )||p(zN ) and DKL(p(zN )||p(zT )) as follows:

D(aN ) =
DKL(p(zT )||p(zN )) +DKL(p(zN )||p(zT ))

2
. (10)

We choose the best next action candidate (i.e. the anticipated action candidate
representation) a∗N that minimizes the goal consistency criterion. The rationale
is that the best anticipated action should have an action-based abstract goal
representation p(zN ) that aligns with the feature-based abstract goal distribution
p(zT ). We use the following algorithm to find the best next action candidate a∗N .

Algorithm 1 Best next action selection
1: Sample feat-based abstract goal zt from eq. 4 → zt ∼ qt(zt|x1:t−1)
2: Get observed action representation aO (eq. 5)
3: Get next action representation distribution p(aN |ht,aO) (eq. 6)
4: Sample K next action representations N = {a1

N , · · ·aK
N} ∼ p(aN |ht,aO)

5: Best next action a∗
N = argminak

N
∈N D(ak

N ); k ∈ {1, · · · ,K}

Finally, we predict the anticipated action from the selected next action rep-
resentation as ŷ = ϕc(a

∗
N ). where ϕc : Rdz → Rdc is the MLP classifier and ŷ is

the class score vector. It should be noted that in Algorithm 1, we sample only
one feature-based abstraction goal in line 1 of the algorithm. However, during
training we sample Q number of feature-based abstraction goals and for each of
them we sample K number of next action representations. In this case, we select
the best candidate from all K × Q next action representation candidates using
Equation 10. Therefore, the next best action is consistent and does not rely too
much on sampling as long as we sample sufficient candidate next actions.

Even if the feature-based abstract goal P (zT ) is obtained from VRNN frame-
work [4, 9], the formulation of action representations aO and aN , action-based
abstract goal P (zN ) and goal consistency criterion is drastically different from
[1, 22]. In [27], goal consistency is defined between latent goals before and after
the action using a hard threshold. Instead, our goal consistency is a symmetric
KL divergence between p(zT ) and p(zN ) distributions which aims to align the
two abstract goal distributions. This also results in a massive improvement in
next action anticipation performance as shown in the experiments.

3.5 Loss functions and training of our model

Our anticipation network is trained using a number of losses. In contrast to prior
stochastic methods [22, 1, 21], we introduce three KL divergence losses, based on
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a) feature-based abstract goal (LOG), b) action-based abstract goal (LNG), and
c) goal-consistency (LGC). The first loss function is used to learn the parameters
of the feature-based abstract goal distribution. We compute the KL-divergence
between the conditional prior q(zt|x1:t−1) and posterior r(zt|x1:t) distributions
for every feature in the observed feature sequence and minimize the sum given
as follows LOG =

∑T
t=1 DKL(r(zt|x1:t)||q(zt|x1:t−1)) and we call this observed

goal loss. This loss is based on the intuition that the abstract goal should not
change due to a new observed feature.

Our second loss arises when we learn the action-based abstract goal distribu-
tion. We compute the KL-divergence between r(zN |a∗N ,aO) and q(zN |a∗N ) distri-
butions of action-based abstract goal distributions as LNG = DKL(r(zN |a∗N ,aO)
||q(zN |a∗N )). We denote the corresponding best action-based abstract goal dis-
tribution by p(z∗N ) = q(zN |a∗N ). The intuition is same as before, the goal should
not change because of the next best action a∗N .

Furthermore, the feature-based and action-based abstract goal distributions
should be aligned with respect to the selected next best action a∗N . Therefore,
we minimize the symmetric KL-Divergence between the feature-based and best-
action-based abstract goal distribution as follows:

LGC =
DKL(p(zT )||p(z∗N ) +DKL(p(z

∗
N )||p(zT )

2
. (11)

We coin this loss as goal consistency loss. This loss is based on D(aN ) in
Equation 10 with the only difference being that p(z∗N ) = q(zN |a∗N ) is computed
with respect to the selected best next action representation a∗N . Finally, we have
the cross-entropy loss for comparing the model’s prediction ŷ with the ground
truth one-hot label y as LNA = −

∑
y ⊙ log(ŷ). The loss function to train the

model is a combination of all losses given as follows:

Ltotal = LOG + LNG + LGC + LNA. (12)

We experimented with adding different weights to each loss but there is no
significant difference in performance. Therefore, we weigh them equally.

4 Experiments and results

4.1 Datasets, features, and training details

We use well known action anticipation datasets, Epic-Kitchens55 [5] (EK55) and
Epic-Kitchens100 [6] (EK100) to evaluate our approach.

We validate our models using the TSN features obtained from RGB and opti-
cal flow videos, and bag of object features provided by [10] for a fair comparison
with existing approaches. Our base model has the following parameters: observed
duration - 2 seconds, frame rate - 3 fps, RNN (GRU) hidden dimension dh =
256, abstract goal dimension dz = 128, number of sampled feature-based ab-
stract goals (Q = 3), number of next-action-representation candidates (K = 10),
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Table 1. Comparison of anticipation accuracy with state-of-the-art on EK55 evaluation
server with anticipation time of 1 sec. ACT: for action.

Method Top-1 accuracy(%) Top-5 accuracy(%) Precision(%) Recall(%)
VERB NOUN ACT. VERB NOUN ACT. VERB NOUN ACT VERB NOUN ACT.

Seen Kitchens (S1)
RU-LSTM [10] 33.04 22.78 14.39 79.55 50.95 33.73 25.50 24.12 07.37 15.73 19.81 07.66
Lat. Goal [27] 27.96 27.40 08.10 78.09 55.98 26.46 - - - - - -
SRL [25] 34.89 22.84 14.24 79.59 52.03 34.61 28.29 25.69 06.45 12.19 19.16 06.34
ImagineRNN [33] 35.44 22.79 14.66 79.72 52.09 34.98 28.04 24.18 06.66 16.03 19.61 07.08
Temp. Agg. [29] 37.87 24.10 16.64 79.74 53.98 36.06 36.41 25.20 09.64 15.67 22.01 10.05
MM-Trans [26] 28.59 27.18 10.85 78.64 57.66 30.83 17.50 26.20 03.81 10.81 24.89 04.49
MM-TCN [35] 37.16 23.75 15.45 79.48 51.86 34.37 28.18 23.82 06.94 16.05 22.31 08.40
AVT [13] 34.36 20.16 16.84 80.03 51.57 36.52 23.25 17.77 09.71 14.02 18.81 10.11
DCR [34] - - 17.70 - - 38.50 - - - - - -
Abstract Goal (VRNN) 51.56 35.34 22.03 82.56 58.01 38.29 34.83 31.33 13.08 26.67 31.42 12.20

Unseen Kitchens (S2)
RU-LSTM [10] 27.01 15.19 08.16 69.55 34.38 21.10 13.69 09.87 03.64 09.21 11.97 04.83
Lat. Goal [27] 22.40 19.12 04.78 72.07 42.68 16.97 - - - - - -
SRL [25] 27.42 15.47 08.88 71.90 36.80 22.06 20.23 12.48 02.84 07.83 12.25 04.33
ImagineRNN [33] 29.33 15.50 09.25 70.67 35.78 22.19 17.10 12.20 03.47 09.66 12.36 05.21
Temp. Agg. [29] 29.50 16.52 10.04 70.13 37.83 23.42 20.43 12.95 04.92 08.03 12.84 06.26
MM-Trans [26] 26.80 18.40 06.76 70.40 44.18 20.04 09.53 15.17 02.23 07.73 15.19 03.34
MM-TCN [35] 30.66 14.92 08.91 72.00 36.67 21.68 10.51 12.26 04.35 09.79 12.72 04.94
AVT [13] 30.66 15.64 10.41 72.17 40.76 24.27 12.86 11.83 04.84 09.89 13.46 06.41
DCR [34] - - 10.90 - - 24.80 - - - - - -
Abstract Goal (VRNN) 41.41 22.36 13.28 73.10 41.62 24.24 23.62 18.29 08.73 15.70 18.29 08.29

Ltotal loss, and fixed anticipation time - 1s (following EK55 and EK100 evalua-
tion server criteria), unless specified otherwise. We use a batch size of 128 videos
and train for 15 epochs with a learning rate of 0.001 using Adam optimizer with
weight decay (AdamW) in Pytorch. All our MLPs have 256 hidden dimensions.

4.2 Comparison with state-of-the-art

We compare the performance of Abstract Goal (our method) with current state-
of-the-art approaches on both the seen and unseen test sets of EK55 datasets
in Table 1 using a late fusion of TSN-RGB, TSN-Flow, and Object features
like most of the prior work. We train separate models for verb and noun an-
ticipation and combine their predictions to obtain action anticipation accuracy.
Our method outperforms all other prior state-of-the-art methods for both seen
kitchens (S1) and unseen kitchens (S2). Notably, we outperform Transformer-
based AVT [13] and Temporal-Aggregation [29] in all measures in both seen
and unseen kitchens except for Top-5 accuracy on unseen kitchens. We believe
this improvement is due to two factors, (i) stochastic modeling is massively im-
portant for action anticipation, and (ii) the effective use of goal information is
paramount for better action anticipation.

Despite, these excellent results on EK55, our overall results on EK100 are
not state-of-the-art–see Table 2. Our method performs not as well as recent
methods that are extensively pre-trained networks with image and action recog-
nition datasets before being trained for action anticipation [13, 12, 28]. On the
other hand, our model is trained directly on the target dataset using tempo-
ral segment network (TSN) [31] features. Compared to the best Transformer
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Table 2. Comparison on EK100 dataset on evaluation server using test set. Accuracy
measured by mean recall@5 (%) following the standard protocol.

Method Input Overall Unseen Kitchens Tail Classes
VERB NOUN ACT. VERB NOUN ACT. VERB NOUN ACT.

AVT [13] Frames 26.69 32.33 16.74 21.03 27.64 12.89 19.28 24.03 13.81
RAFTformer [12] Frames 30.10 34.10 15.40 - - - - - -
InAViT [28] Frames 49.14 49.97 23.75 44.36 49.28 23.49 43.17 39.91 18.11
RU-LSTM [6] TSN 25.25 26.69 11.19 19.36 26.87 09.65 17.56 15.97 07.92
Temp. Agg. [29] TSN 21.76 30.59 12.55 17.86 27.04 10.46 13.59 20.62 08.85
TransAction [15] TSN 36.15 32.20 13.39 27.60 24.24 10.05 32.06 29.87 11.88
DCR[34] TSN - - 17.30 - - 14.10 - - 14.30
Abstract Goal (VRNN) TSN 31.40 30.10 14.29 31.36 35.56 17.34 22.90 16.42 07.70
Abstract Goal (TF) TSN 37.63 38.70 14.21 34.92 38.88 14.25 30.67 29.10 09.11

model [15, 34] trained on TSN features, Abstract Goal - VRNN performs better
on both overall and unseen kitchens of the EK100 dataset but not as well on
tail classes. EK100 dataset is dominated by long-tailed distribution where 228
noun classes out of 300 are in the tail classes. Similarly, 86 verbs out of 97 are
in the tail classes. In our model, the next-action-representation is modeled with
a Gaussian distribution (Equation 6), and therefore, it is not able to cater to
exceptionally long tail class distributions as in EK100. This is a limitation of our
method. We do not witness the tail-class issue in EK55 as the performance mea-
sure used is accuracy compared to mean-recall in EK100. Accuracy is influenced
heavily by frequent classes but mean-recall treats all classes equally.

For completeness, we test whether the tail class issue on EK100 can be re-
solved using a transformer network (6 layers with 8 attention heads) instead
of a GRU for observed feature summarization. While abstract goal with trans-
former (TF) improves tail class performance it is not able to outperform [15, 34]
on tail classes. This confirms our hypothesis that using Gaussian distribution
for next-action-representation (action-based abstract goal) can limit tail class
performance but improves overall and unseen kitchens anticipation accuracy.

4.3 Impact of goal consistency criterion and loss

In this section, we evaluate the impact of Goal Consistency (GC) criterion and
the loss derived from it Lgc using the validation set of EK55 and EK100 datasets.
We train separate models for verb and noun anticipation using TSN-RGB (RGB)
and Object (OBJ) features, respectively. As Mean and Median sampling are used
in prior variational prediction models [1], here we use mean and median sampling
as two baselines to show the effect of GC. We sample Q × K number of next-
action representations (aN) instead of selecting the best next-action candidate
using GC (Algorithm 1). Then we obtain the mean/median vector of all sampled
candidates and then make the prediction using the classifier (e.g. mean vector=∑

aN

Q×K ). We also experimented with a majority/median class prediction baseline.
In this case, we take all Q × K predictions from the classifier (from the next
action-representation candidates) and pick the majority/median class as the final
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prediction. Everything else stays the same for all these mean/majority/median
baseline models, except we do not use the GC criterion (Equation 10) and the
goal consistency loss Lgc. Results are reported in Table 3.

Table 3. The impact of goal consistency criterion and loss. @1 and @5 denotes Top-1
and Top-5 accuracy and V stands for verb and N stands for noun.

Goal candidate (Q) &
Action candidate (K)

EK55 EK100
V@1 V@5 N@1 N@5 V@1 V@5 N@1 N@5

Mean
Q=1,
K=10

41.79 72.23 25.79 49.50 44.51 76.89 22.72 50.78
Median 41.16 71.32 24.30 48.31 45.44 77.91 22.15 51.23
Majority class 41.98 72.89 25.98 50.01 42.98 74.56 24.13 53.45
Median class 41.02 72.11 22.88 49.87 44.19 77.00 22.97 51.98
Our model 45.18 77.30 28.16 51.08 48.84 80.52 27.50 55.83
Mean

Q=3,
K=10

39.40 72.23 24.22 48.96 45.90 77.88 22.41 50.87
Median 41.32 71.32 26.60 51.70 45.63 77.02 24.33 52.87
Majority class 38.39 69.42 24.70 48.22 45.72 78.61 22.61 50.89
Median class 40.43 71.43 26.52 52.33 45.84 78.09 23.78 52.33
Our model 44.68 77.14 28.29 53.78 49.02 80.86 28.52 54.91
Without LGC Q=1,

K=1
38.31 70.77 19.74 43.11 43.82 77.45 21.25 51.99

With LGC 40.88 71.43 22.09 46.29 46.80 78.41 26.80 53.32

As can be seen from the results, there is a significant impact of GC. Especially,
there is an improvement of 3.39% and 2.37% for top-1 verb and noun accuracy
respectively using our GC model in the EK55 dataset for Q = 1,K = 10 over
Mean sampling baseline. A similar trend can be seen for EK100 and Q = 3,K =
10 as well. Our model also outperforms majority and median class sampling
baselines for both [Q = 1,K = 10] and [Q = 3,K = 10] configurations indicating
the effectiveness of goal consistency both as GC criterion and GC loss LGC .
Overall, our method with GC loss and criterion performs better than all other
variants. Perhaps this is because the GC criterion allows the model to regularize
the candidate selection while GC loss allows the model to enforce this during
the training. This clearly shows the impact of goal consistency formulation of
our model for action anticipation.

We perform a more controlled experiment to further evaluate the impact of
GC loss where we set Q = 1 and K = 1 and train our model with and without
GC loss (LGC). It should be noted that when Q = 1 and K = 1, GC criterion
has no impact because we do not have multiple candidates to evaluate. The only
meaningful way to see the effect of GC is to compare a model trained with and
without the GC loss. To obtain a statistically meaningful result, we repeat this
experiment 10 times and report the mean performance. As it can be seen from
the results in Table 3 (last two rows), clearly GC loss has a positive impact
even when we just sample a single action candidate from our stochastic model.
We see that compared to our model variant [Q = 1,K = 1 with LGC ], the
[Q = 1,K = 10 with LGC ] model performs significantly better (last row vs row
5 of Table 3). This indicates the impact of next-action-representation sampling
(Equation 6) even for a single sampled feature-based abstract goal (Q = 1).
We conclude that the goal consistency loss, the goal consistency criterion, and
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Table 4. Ablation on the sensitivity of number of sampled feature-based-abstract-goals
(Q) and next-action representation candidate K on EK55 and EK100 validation set.

parameter value EK55 EK100
V@1 V@5 N@1 N@5 V@1 V@5 N@1 N@5

num. feature-based
abstract goals (Q)
(K = 10)

1 45.18 77.30 28.16 51.08 48.84 80.52 27.50 55.83
2 44.44 76.19 28.47 52.38 49.25 80.44 28.41 55.65
3 44.68 77.14 28.29 53.78 49.02 80.86 28.52 54.91
4 45.31 77.91 26.28 50.33 48.86 80.46 28.16 55.11
5 45.80 77.40 26.95 51.93 49.71 80.40 28.04 55.16

num. next action
candidates (K)
(Q=3)

1 39.81 72.31 21.48 44.96 44.24 75.67 20.06 42.56
3 40.49 74.20 22.60 46.22 44.37 76.11 21.07 44.51
5 41.32 74.26 23.17 48.23 45.61 78.91 22.91 45.12
10 44.68 77.14 28.29 53.78 49.02 80.86 28.52 54.91
20 43.79 79.00 27.07 51.10 49.01 80.36 28.13 55.40
30 44.56 77.81 27.80 51.00 49.18 81.20 27.44 53.42

next-action-representation distribution modeling (all novel concepts introduced
in this paper) are effective for action anticipation.

Table 5. Loss ablation on EK55 and EK100 validation set. i.e.LNA-Next action cross-
entropy loss, LOG-Feature-based abstract goal loss, LNG-Action-based abstract goal
loss, LGC-Goal consistency loss.

Losses EK55 EK100
V@1 V@5 N@1 N@5 V@1 V@5 N@1 N@5

LNA 21.36 69.69 27.76 51.89 24.46 72.31 27.12 54.55
LNA + LOG 44.42 77.79 28.41 51.31 43.23 75.63 23.45 52.89
LNA + LNG 46.01 77.94 29.05 52.32 46.94 78.44 22.96 49.66
LNA + LGC 43.83 77.43 28.06 51.87 44.45 76.72 20.31 47.87
LNA + LOG + LNG 44.47 77.12 28.51 51.34 46.73 78.62 24.56 51.33
LNA + LOG + LGC 45.47 77.42 28.61 52.34 47.25 78.11 26.91 53.34
LNA + LOG + LNG + LGC 46.37 77.97 29.86 52.74 49.02 80.86 28.52 54.91

Apart from GC loss, we also study the impact of other loss functions described
in Section 3.5 and report the results in Table 5. If we use only the supervised
cross-entropy loss (i.e., LNA), then the performance is the worst, especially for
verbs. Both LOG and LNG help in regularizing the abstract goal representations
(zt and aN), and therefore results improve significantly. Especially, the LNA +
LNG is the best loss combination for a pair of losses. When we combine all
four losses, we get the best results. While LNA + LNG regularizes the learning
of abstract goal representations, LGC which minimizes the divergence between
feature-based and action-based goal distributions improves the choice of next
verb or noun among the plausible candidates. We conclude that all four losses
are important for our model.

4.4 Effect of action-based abstract goal distributions

We demonstrate the efficacy of action-based abstract goal in our model by com-
paring it to a variant of our model having only the feature-based abstract goal
(equivalent to a VRNN) in Table 6. For the feature-based abstract goal (Feat.
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abs. goal), we obtain a latent variable zT and the observed action representation
aO from Equation 5. We classify aO using a classifier to obtain the future action
and train using cross-entropy loss and KL-divergence (LOG). We do not have

Table 6. Effect of action-based abstract goal

Model V@1 V@5 N@1 N@5
Abs. Goal (Feat)–mean 27.76 61.23 22.34 46.78
Abs. Goal (Feat)–median 38.13 68.94 23.85 47.56
Abs. Goal (Feat+Act)–mean 39.40 72.23 24.22 48.96
Abs. goal (Feat+Act)–median 44.68 77.14 28.29 53.78

GC criterion when using only the feature abstract goal distribution and hence
we sample 30 candidates for aO and consider their mean or median. The num-
ber of sampled candidates is chosen to match our feature + action abstract goal
model with 30 next action candidates (Q = 3,K = 10). As shown in Table 6,
using action-based abstract goal in conjunction with feature-based abstract goal
performs much better than only feature abstract goal distribution (under both
mean or median prediction).

5 Conclusion

We present a novel approach for action anticipation where abstract goals are
learned with a stochastic recurrent model. We outperform existing approaches
on EK55 and our model generalizes to unseen kitchen environments in both EK55
and EK100 datasets. We also show the importance of goal consistency criterion,
goal consistency loss, next-action representation modeling, and architecture. One
limitation of the current work is the inability to directly interpret the latent
goal representation learned by our model. Second, our method is not able to
tackle long-tail-class distribution issues. In the future, we aim to address these
limitations of our model.
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