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Activation Control of Vision Models for Sustainable
AI Systems

Jonathan Burton-Barr, Basura Fernando, and Deepu Rajan

Abstract—As AI systems become more complex and
widespread, they require significant computational power, in-
creasing energy consumption. Addressing this challenge is essen-
tial for ensuring the long-term sustainability of AI technology.
AI-on-AI control refers to a system with a set of AI functions
controlled by an upper-level AI model. Previous work in AI-on-
AI control focuses on boosting accuracy or expanding system
capability by increasing overall system cost. Alternatively, we
focus on applying AI-on-AI control to decrease system cost and
increase the sustainability and viability of a system with multiple
AI functions. Our Supervised Image Classification Evaluative
Controller (SICEC) is a cost-reduction oriented AI-on-AI con-
troller that learns when vision models within an AI system should
be activated based on input features. The function controller
preprocesses an input and activates relevant functions, functions
being distinct units of AI functionality within the system. Some
functions have a set of same functional models. These models
take the same input and produce the same output but have ar-
chitectural differences. We introduce a same functional controller
to select a same functional model using the function controller’s
decision confidence. Results are promising, with a decrease of
up to 48.9% in inference time, 67.8% in FLOPs, and 66.4%
in energy usage. With SICEC showing significant reductions in
inference time and energy cost, our work contributes to limited
resource computing and sustainable AI technology.

Impact Statement—Research surrounding AI control mainly
focuses on non-AI functions with control over AI functions being
rare. Available works use AI control to select AI models for a
user-specified AI system or to increase the accuracy of an AI sys-
tem. When AI control is applied in such a fashion, it can increase
energy or inference cost [1][2][3]. Our paper lays foundation
for AI-on-AI control that reduces these costs for systems with
multiple computer vision functions. SICEC evaluates an input
and only activates the relevant system functions for that input.
SICEC also attempts to gauge the complexity of an image and
assign lower-cost function-related models when possible. Results
promote the viability of cost-reductive AI-on-AI control research
showing significant energy and inference time reductions. SICEC
like methodology could be applied to increase the long-term
sustainability of various AI systems, examples being computer
vision cloud, GPT constructed, and multi-model robotic systems.

Index Terms—Artificial intelligence in computational sustain-
ability, classification, deep learning, intelligent control, neural
networks

I. INTRODUCTION

Rising global utilization of AI technology has led to ques-
tions regarding its sustainability [4]. With a rising percentage
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of global energy consumption [5] and an increasing carbon
footprint [6][7], reports have suggested that the unregulated
adoption of AI technology could become unsustainable in the
near future [8]. A particular domain of concern is large vision
models which can have high energy consumption during run-
time [9] [10] [11]. This consumption is amplified when an
AI system employs multiple vision models per-input. Such
demands contribute to concerns about AI’s sustainability and
limit AI’s accessibility due to financial cost [12]. In conjunc-
tion, a collaboration of models can extend task completion
time, impacting the viability of multiple model systems in
some applications.

The current approach to designing multi-vision-model sys-
tems is to have all models active for each input [13] [14]
[15] [16]. Tasks that require complex vision systems may
include models that are irrelevant to a significant proportion
of inputs, examples being automated driving [17], robot-
environment interaction such as Boston dynamics ”Spot” [18],
GPT constructed systems [1][2], and intelligent multi-domain
video surveillance [19]. Incorporating a precursor model into
a system that prevents wasted model activation could reduce
task completion time and energy usage. This could increase the
time viability for certain tasks and the long-term sustainability
of multi-vision-model systems.

In Figure 1 we see an example of unnecessary model activa-
tion. The input is irrelevant to two models in the system. How-
ever, altering a system to only activate relevant models can
significantly reduce resource consumption. Figure 1 displays
two ways we can reduce unnecessary resource consumption.
Firstly through input-specific function activation and secondly,
through image complexity-based model selection where larger
models for ”tricky” inputs.

In this paper AI control refers to AI models instructing
behavioral changes for any type of function. The predominant
focus of AI control research pertains to control over non-
AI functions. Examples include efficiently managing cloud
resources [20], regulating voltage in power grid operations
[21], and optimizing smart manufacturing systems [22]. Works
on AI control over non-AI functions cannot be directly applied
to scenarios involving AI control over AI functions due
to significant variations in evaluation approaches and input
processing.

We define AI models that instruct behavioral changes specif-
ically for AI functions as AI-on-AI control. Previous literature
for AI-on-AI control is limited, and research can be split into
two main categories. The first are AI-based function selector’s
which build a multi-model AI system capable of executing
a given task [1][2]. The second are AI controller’s which
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Fig. 1. Example of cost impact from unnecessary model activation. Under
costs, ”E” stands for energy (in joules) and ”I” inference time.

receive an input and select a single best-fit model for that
input to be processed by [3][23]. A literature gap is presented
for scenarios involving input/model irrelevance in systems
requiring co-active AI functions. Additionally, in [1][2][3][23],
AI-on-AI control increased cost, leaving the application of AI-
on-AI control towards cost-reduction and sustainability to be
explored.

The framework we propose takes inspiration from works
surrounding resource allocation in the human brain. The brain
must perform well in a wide range of tasks with limited re-
sources to allocate [24]. Core research believed that the frontal
lobe central executive played a prominent role in resource
distribution and input attention [25] in a modular human
brain [26][27]. While the localization of such mechanisms
is questioned by some research [28], support of organized
resource distribution remains foundational [29][27]. The idea
of a localized control unit that observes an input and then
distributes input-related instructions can benefit AI systems. In
particular, our framework seeks to bridge the gap for co-active
multi-model systems, contributing insights to enhance resource
utilization and address challenges related to AI system costs.

This study introduces an AI-on-AI control methodology
tailored for co-active multi-vision-model systems. Our Super-
vised Image Classification Evaluative Controller (SICEC) em-
ploys image classification to preprocess inputs and make deci-
sions regarding model activation within the system. Diverging
from prevalent AI control methods, SICEC serves a dual
purpose: overseeing AI models and enabling multi-function
selection on a per-input basis. Function selection includes
function activation/deactivation through a function controller
(FC) and selection between same function-associated models
with differing architectures through a secondary same func-
tional controller (SFC). Our research aims to conceptualize and
validate SICEC and explore its potential to enhance efficiency
in multi-model AI systems. Instead of activating all models
for each input in a given task, we aim to create an AI
controller that understands the input and identifies necessary

model activations. This reduces redundant processing from
activating models irrelevant to the input. We aim to bridge
the aforementioned gap in input-specific control for reduced
resource consumption and make the following contributions:

• The novel application of image classification for activa-
tion control of co-active multi-model systems.

• Progression towards AI systems capable of adapting
functionality on a per-input basis.

• Methodology for input-complexity evaluation enabling
model size selection to reduce vision-system function
costs.

• Discussion promoting the development of AI-on-AI con-
trol for resource efficient multi-model AI systems.

Note that SICEC is developed as an initial version of AI-
on-AI control for future work to expand on. We are using
SICEC to present the viability of image classification for cost-
reductive AI system control. Our motivations are two-fold.
Firstly, employing multiple AI models will usually increase a
systems response time, better system management and removal
of irrelevant input-model processing can reduce response time.
Secondly, with the high-energy costs of AI and its sustainabil-
ity being questioned, cost-reductive AI research can reduce
both financial costs and the environmental impact of AI. If
AI research takes a direction where the employment of mul-
tiple models for a problem increases, reducing environmental
impact is particularly important.

II. RELATED RESEARCH

Rising reliance on power-heavy computational technology
has motivated computational sustainability research. In 2014,
[30] estimated the yearly energy consumption growth of three
information and communication technology (ICT) categories.
The growth of communication networks (10%), personal com-
puters (5%), and data centers (4%) was higher than the 3%
global average growth between 2007 and 2012. In 2015,
researchers forecasted that communications technology could
consume up to 51% of global electricity by 2030 [31]. These
and similar works [32] [33] helped highlight a need for
research on energy-efficient computing. This need is partially
fulfilled by research directly focused on ICT efficiency, in-
cluding but not limited to scheduling algorithms [34] [35] and
low-power servers [36] for data centers, GPU power manage-
ment [37] to increase computational hardware efficiency, and
reducing redundant data transmission for internet of things
[38].

Artificial intelligence is an additional category of computa-
tion with rising sustainability concerns. While discussion on
the unsustainable nature of AI has become more common [39]
[40], rarely does research directly focus on reducing AI energy
consumption, instead focusing more on accuracy [41][42].
Training models with large parameters can incur substantial
financial and environmental costs due to energy requirements
[41][42]. While the energy cost per inference is relatively
small, global consumption escalates as more devices make
use of AI models [10]. In turn, there is a growing pressure
for more sustainable AI technology and research.

Cost-reductive Computer Vision research has partially re-
lieved the pressure. YOLO [43][44], EfficientNet [45][46],
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ShuffleNet [47], and MobileNet[48] focus on efficient archi-
tecture to reduce inference time. For example, YOLO archi-
tectures reduce cost through single-pass architecture, grid-
based processing, and sharing of convolution layers. All of
the aforementioned models network width and depth variants,
which further reduces costs. While focused on inference time
reduction, energy consumption is also reduced due to lower
operations, parameters, and training times.

Efficient computer vision systems also appear in research.
EVA2 uses previous frames to predict the contents of the
current frame and skip current frame processing if the content
similarity is high [49]. Frame skipping reduces energy con-
sumption and task completion time as later-stage models do
not process frames with repetitive information. The authors
in [50] alter image representation by feeding the frequency
domain directly into the network as opposed to the standard
CNN method of block-wise frequency decomposition to an
expanded pixel representation and later stage re-transformation
in-network processing. This avoids back-and-forth transfor-
mations during input processing and GPU/CPU switching,
reducing inference times and, in turn, energy consumption.
SICEC is closer related to [49] and [50] with a focus on an
efficient system as opposed to efficient model architectures.

Within the field of AI controllers, a focus on cost-reductive
research is present for AI control over non-AI systems.
Authors [20], [21], [51] present the idea that an AI con-
troller can learn to optimize the resource consumption of the
system. Deep reinforcement learning (DRL) was applied by
[51] for task scheduling in cloud computing platforms. The
best-performing method, DRL with long short-term memory
(LSTM), reduced CPU and RAM usage by up to 67% CPU
and 72% respectively. The LSTM component provided the
ability to store a set of previous states to better predict
the consumption of future steps, which the DRL component
utilized when creating an optimal scheduling policy. Our work
follows the theme of resource reduction but explores situations
where the AI controller interacts with a set of AI functions.

AI-on-AI control currently does not consider applications of
AI control for cost-reduction of AI systems. Available works
can be categorised as either system construction, where an
upper-level AI model builds a system for a task, or single
model selection, where the AI controller selects the best-
fit model to process a specific input. HuggingGPT (H-GPT)
[1] and Visual GPT (V-GPT) [2] are examples of system
construction where an upper-level AI model selects a set of
models, all of which are indiscriminately activated, for all
inputs. H-GPT utilizes a user request and leverages models
from HuggingFace, utilizing a model’s written description
as a basis for selection. V-GPT selects from a collection
of visual foundation models and primarily differs from H-
GPT by allowing multiple stages of user requests where the
models employed may change accordingly. V-GPTs multi-
stage approach to task completion means that irrelevant models
can be removed based on the later stage user requests. H-GPT
and V-GPT do not aim to understand the varying necessity
of model activation depending on a specific input in a set.
Our work seeks to create a controller that understands the
relationship between input features and a model’s function to

reduce wasted model activation.
Works found on model activation specific to input fea-

tures have aimed for single model selection. Such work pre-
processes an input and selects the single ”best” model for that
input from a set of models. For instance, in [3], a two-stage
approach for input-specific model activation was developed.
The first stage involved categorizing the perturbation type of
an input and forwarding it to a relevant counter-perturbation
network for second-stage processing. Similarly, [23] employed
a delegation pre-processing phase to direct inputs to a single
expert model. Both [3] and [23] use a pre-processor for an
increased cost/accuracy trade-off. Such works do not aim
to create a pre-processor capable of decision-making across
multiple later-stage models nor seek to reduce costs for larger-
scale AI systems.

In summary, we have highlighted:
• SICEC methodology is more closely related to cost-

reductive methods that do not impact a model’s archi-
tecture.

• While AI control over non-AI systems includes a cost-
reductive focus, this methodology is limited in application
to AI components.

• The methodological approach for H-GPT and V-GPT
inherently differs from our research goals. Models within
a constructed system uniformly process inputs during a
user-defined task. Further, GPT usage increases the cost
of task completion.

• Current works on AI systems with input-specific alloca-
tion only focus on single model allocation and how this
can increase the accuracy of a system.

III. PROPOSED SICEC SYSTEM

Fig. 2. SICEC overview.

Figure 2 displays the dynamics of a system that employs
SICEC. Functions are unique AI-based behaviours linked to an
AI model or models that the function controller can activate.
The Function Controller is a single-label image classification
model that pre-processes an input and activates relevant system
functions. Same Functional Models (SFM) refer to a set of
models that differ in architecture but share the same function.
Same Functional Controller (SFC) refers to a method that
decides which same functional model is most appropriate for
the input. In this work, the SFC uses the function controller’s
confidence to select a same functional model. The dotted lines
connected to the output represent that any function-related
model may contribute to the system’s output.
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In Figure 2, the function controller, which has learnt specific
features for each functions activation criteria during training,
takes an image as input and outputs which functions are
relevant to that image. The confidence of the function con-
troller’s decision is parsed to the SFC, which makes the same
functional decisions, selecting weather small, medium, or large
model is suitable for the function. Not all functions have a
set of same functional models. In this case, activation of the
function guarantees the use of a single associated model. The
selected model of each function takes the image as input and
outputs extracted information for further use. The following
gives a formal overview of how SICEC functions:

Each system has an associated set of functions

M = {m1,m2,m3, ...,mn}. (1)

Our system has four functions: Object Detection, Face
Detection, Pose Detection, and Segmentation.

Each function might have a set of sub-functions

S(mx){s1, s2, s3, ..., si}, (2)

where i is the number of sub-functions that can vary for
different functions within the system.

In our system, the object detection function has small (S),
medium (M), and large (L) sub-functions, and the segmenta-
tion function only has small and large sub-functions.

There is a controller model that selects which functions
mi are appropriate for a given input x and also produces
confidence score c

F (x) = ({mi}, c). (3)

Confidence score c is calculated by getting the maximum
value of the softmax class confidence output

c = argmax

(
ezi∑N
j=1 e

zj

)
, (4)

where zi is the raw score associated with class i and N is the
total number of classes.

If a function with associated sub-functions is selected, a
separate function selects a sub-function. Our system uses a
confidence score c produced by F

G(mi, c) = Sj ∈ S(mi), (5)

where Sj is the selected sub-function.
The output of SICEC is the set of all activated functions

without sub-functions, together with all the activated sub-
functions. The function controller prevents the processing
of inputs by irrelevant functions and the SFC reduces the
employment of unnecessarily large function-related models.
This, in turn, reduces the total inference time and energy
consumption of the SICEC associated system.

A. Input Relevance Task

We aimed to design a task that exemplified multi-vision-
model systems with cases of input-function irrelevance. Our
task involves identifying animate objects and conditionally
extracting information about humans within an input. Certain

functions have interdependencies, reducing the decision space
to six classes: (1) no activation, (2) object detection, (3) object
detection and segmentation, (4) object detection, segmentation,
and pose estimation, (5) object detection, segmentation, and
face detection, and (6) object detection, segmentation, face
detection, and pose estimation. The interdependency originates
from function activation conditions outlined in Table I. For
example, segmentation’s activation condition will always be
true if the activation conditions of face or pose detection are
satisfied.

B. Function Controller
The function controller aims to understand each function’s

activation condition. These features are learned during training
from a dataset that contains labels detailing modular relevance.
The function controller takes an image as input, detects its
features, and then outputs a set of functions relevant to the
input. This version of SICEC’s function controller uses Effi-
cientNet [45] for single-label classification of inputs, with the
objective of reducing inference time and energy consumption
while keeping the SICEC’s function controller cost relatively
low.

C. Same Functional Models
SICEC can reduce the activation costs of functions by

enabling the use of lower-cost models for less complex inputs.
For example, a smaller model may be appropriate for an input
with only a few easily distinguishable objects. In comparison,
a larger model may be necessary for an input with many
objects that are difficult to distinguish due to occlusion or
other factors. In this paper, we aim to demonstrate a method
for differentiation between functionally identical models as a
foundation for further optimization in future research.

In Figure 2, same functional models (SFM) are sub-modular
models that aim to produce identical outputs for the same input
but differ in architecture. A same functional controller (SFC)
is required to select an appropriate SFM. An SFC has the
following properties:

1) Given some set of sub-functions (SFMs), our SFC
should be able to choose a single sub-function most
appropriate to the input.

2) This is a separate unit from the function controller and
takes another step to decide between sub-functions.

3) Our SFC makes a decision between sub-functions using
some already available information and without repro-
cessing the input.

Our SFC method inputs the function controller’s output con-
fidence and outputs a selected SFM. Lower function controller
confidence leads to the selection of a more expensive model.
This method incurs minimal cost as it does not process the
image passed to SICEC. Instead, it has previously learned a
set of confidence ranges that declare the appropriate SFM.
The confidence ranges are based on a cost/benefit model
distribution found by the following:

We take the classification confidence of 2500 inputs to the
function controller, confidence calculated as shown in Equa-
tion 4. This is needed to compute a confidence distribution.
We start by calculating the cost/benefit values for each SFM.
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TABLE I
TASK SYSTEM MODELS.

Function / Sub-function Model
Activation
Condition

Inference
Time GFLOPS

Energy
(Joules)

Object Detection S (OD) YOLOv5s Animate object present 15.5ms 16.5 0.41
Object Detection M YOLOv5m Animate object present 21.3ms 49.0 1.22
Object Detection L YOLOv5l Animate object present 35.5ms 109.1 2.72

Segmentation S (SEG) SegFormer-B1 Person present 15.5ms 16.0 0.40
Segmentation L SegFormer-B3 Person present 34.8ms 79.0 1.97

Face Detection (FD) YOLOv5m-face Face present 29.2ms 48.3 1.21
Pose Estimation (PE) YOLOv5s-Pose 3+ people present 23.5ms 17.1 0.43

Function Controller (FC) EfficientNet-B2 Each input 24.8ms 1.1 0.03

Given a set of SFMs, (ASFM
j ,∀j = {1, · · ·n}), we obtain

the normalised accuracy score for i-th SFM (ASFM
i ) as follows:

ÂSFM
i =

ASFM
i∑n

j=1 A
SFM
j

, (6)

where SFMj is the reported accuracy in the original papers
of respective SFM.

Given a set of SFMs, (T SFM
j ,∀j = {1, · · ·n}), we obtain

the reverse normalised inference time (so lower inference time
is favoured) for i-th SFM (T SFM

i ) as follows:

T̂ SFM
i =

1

n− 1

(
1− T SFM

i∑n
j T

SFM
j

)
, (7)

where T SFM
j is the inference time achieved on the RTX 2060m

used for our experiments.
Following equation 7, we add the sets and re-normalise to

get ĈSFM

ĈSFM =
ÂSFM

i + w(T̂ SFM
i )∑n

j=1

(
ÂSFM

j + w(T̂ SFM
j )

) . (8)

where w is the weight for prioritization of T SFM
i and

∑
is

the summation of sets ÂSFM and w(T̂ SFM) together.
In Equation 8 T̂ SFM is multiplied by w, allowing for

prioritisation of cost over benefit, benefit being the reduction in
resource consumption. If w < 1, then benefit will be prioritised
over cost; w > 1 prioritises cost over benefit. In our system
design we prioritise cost and set the value of w to 2.

Initially segmentation and object detection consisted of S
and L SFM variants, an M variation is appended to object
detection to test the impact of increasing available SFMs.
Following Equation 8 the confidence dataset list is sorted high
to low. For object detection the normalised values gained in
Equation 8 are used to proportionally split the list into S, M,
and L confidence value sets (e.g., for an S value of 0.45 would
receive the first 45% of the list). For S, we assign the upper
range to 100 and the lower range to the lowest value in its
associated confidence set. We take the S set’s lowest value
and the L set’s highest value for the M range. Finally, the
L confidence assignment range is the highest value of the L
set to 0. When our function controller makes a decision, the
decision confidence is sent to the SFC and checked against
the confidence ranges for S, M, and L for the object detection
SFM’s or S and L for the segmentation SFM’s. Equation 9

shows SFM selection for object detection, with bigger models
being assigned images with less certainty.

Sj =


Small if 100 ≥ x ≥ min(sc)

Medium if min(sc) > x ≥ min(mc)

Large if min(mc) > x ≥ 0

(9)

where c is the same functional model associated confidence
range, Sj is the SFC decision 1 to j, x is the function
controller confidence.

IV. DATASET AND METRICS

In this section, we describe datasets created for the function
controller and then additional metrics for inference time and
accuracy performance. Following this, we outline the SFC
datasets and additional SFC metrics. Following, a sub-section
is dedicated to energy analysis, including energy metrics, and
finally, a sub-section on function controller implementation.

A. Function Controller Datasets

Auto-Annotation Refined: A time-practical approach of
auto-annotating a set of images was used. A set of models
would be run on each image and then checked for the
activation conditions for the input relevance task. Each image
would then be classified with the correct decision perceived by
auto-annotation. Figure 3 shows the auto-annotation process
for the input relevance task.

Fig. 3. Auto-Annotation process for the input relevance task dataset.

Figure 3 outlines the auto-annotation process for creating
the input relevance task dataset. Each image is parsed to the
auto-annotation in a multi-step process. First, the input is
parsed to an object detection; if no animates are detected, the
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input is assigned class 1. Depending on if people are present
in the input and the quantity of people, the input is assigned
class 2, 3, or 4. If the input has been assigned 3 or 4, it is
parsed to the face detection model, and if faces are detected,
the input is assigned a new classification accordingly.

The original output of auto-annotation is a 5958-piece sub-
set of COCO [52] used as the primary function controller
training dataset. The dataset is split into 85% training and
15% test images. Initial experiments showed that relying
on auto-annotation significantly decreased function controller
performance due to labeling errors. A script was produced
that allows human-assisted auto-annotation where a person
can remove incorrect annotations, creating a refined auto-
annotation. This reduced the dataset size to 4482.

Function Controller Validation: A refined auto-annotated
ImageNet (Deng et al., 2009) validation set was also created
with 1745 images. These were split equally across the six
classes. Due to the inconsistency of faces between classes
previously discovered, we removed heavily occluded faces
from the validation set.

B. Function Controller Metrics

Standard accuracy metrics such as mean average precision
(mAP) and recall were insufficient to measure SICEC’s per-
formance. Additional metrics are employed to measure the
performance (cost and accuracy) of the SICEC’s components
(function controller and SFC).

System Costs: An assumption is made that the non-SICEC
system uses all available models for each input as without a
function controller, this would likely be standard operation.
The same cost equations are used for total inference, GFLOP,
and energy cost. Also, if SFC is excluded from the calculation,
the highest cost SFM is assumed.

The total cost of the proposed SICEC system is given by

SICEC TC =
1

a

a∑
i=1

 n∑
j=0

MCij + FC +

m∑
k=0

SFM ik

 ,

(10)
where i is the i-th image in image set 1 to a, MCij is the

model cost for each non-SFC selected function 0 to n, SFM ik

is the model cost for each SFC selected model 0 to m, and
FC is the function controller cost.

Without SICEC, for each inference the cost for each func-
tion within the system is used

Standard TC =
1

m

m∑
i=1

 n∑
j=1

MCij

 , (11)

where i is the i-th image in image set 1 to m and j is the
maximum model cost for each function 1 to n.

Closeness: SICEC can be partially correct which is not
considered by standard Mean Average Precision (mAP). We
calculate closeness for each input through Jaccard’s similarity,
which better represents SICECs accuracy

Closeness =
1

n

n∑
i=1

|Ai ∩Bi|
|Ai ∪Bi|

, (12)

where i is the i-th image in the image set 1 to n, A is a set of
function controller selected functions for the i-th image, and
B is the correct function activations for the i-th image.

Note that Equation 12 tells us the closeness of SICEC,
including correct decisions. A closeness value higher than
validation accuracy implies the presence of partially correct
decisions. However, Equation 12 alone does not give a good
representation of incorrect cases. Independent closeness uses
the same equation as Equation 12 but ignores entirely correct
cases, isolating the closeness of erroneous decisions. A high
independent closeness indicates that some input-relevant func-
tions are still activated when SICEC fails to make a correct
decision.

Correct Model Activation: Similar to the closeness equa-
tion, however it only considers correct functions activated.
This means that given a set of functions the function controller
has activated, we only consider how many functions match the
true decision. Correct model activation better represents the
task accuracy compared to our closeness metrics.

Correct Model Activation =
1

n

n∑
i=1

|Ai ∩Bi|
|Bi|

. (13)

C. SFC Metrics

SFCs are challenging to define as correct/incorrect. Deter-
mining when one model of the same function prioritises over
another is an ambiguous concept. For results on SFC cost-
reduction, we can separate the SFC section of Equation 10
and make a comparison to a non-SFC SICEC.

However, this does not fully specify the SFC’s performance.
Assignment validation metrics can give more information on
this. We compared the mAP of SFC-assigned models to the
expected mAP or accuracy of that SML distribution. For
the object detection SFMs, we get the S, M, and L SFM
distribution on a 2500-piece COCO validation subset. Then,
we run each model across the subset to get their mAP, which
we can use to calculate the expected mAP.

Expected Accuracy =

 1

m

m∑
i=1

1

n

n∑
j=1

(IAM ij ∗ TMAij)

 ,

(14)
where i is the i-th SFM in SFM set 1 to m, j is the j-th image
in image set 1 to n, IAM is the SFC assigned model for the
j-th image, TMA is the original paper reported mAP of that
model.

We then run each model on its SFC-assigned images and get
the mAP for each model and the overall mAP for the subset

SFM Assigned =

{
1

A

A∑
i=1

IAMji | j ∈ [s,m, l]

}
, (15)

where i is the i-th image in image set 1 to A and IAM j is
the AP achieved on the i-th image by the j-th SFM

The same process is done for the segmentation SFMs except
on the 2000 piece ADE validation set and now only an S and
L model (∈ [s, l] opposed to ∈ [s,m, l]) is used. Also, Mean
Intersection Over Union (mIoU) is used over mAP. Classes not
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present in the S or L set are removed from accuracy calculation
as they would receive a score of 0, biasing the mIoU.

For both the object detection and segmentation SFMs, we
perform cross-testing. Once the SFMs have an associated im-
age set, we test each SFM on the other sets. The performance
of an SFM on the other image sets can support if the images
have been logically assigned. For example, if the S model
receives a lower mAP or mIoU on the M and L set, then
we have shown that the images in the M and L set are
more difficult for the S model to process, supporting logical
assignment. However, if the S model performed better on the
M or L set or roughly the same, this would imply images have
not been logically assigned to an SFM.

D. Measuring energy

Model energy usage is inconsistent across hardware plat-
forms. However, the FLOPS of a model is consistent, with
a significant reduction in operations implying less processing.
To calculate energy consumption we acquire the flops per watt
performance of the RTX 2060m:

Performance per Watt =
Max FLOPS/s
Max Wattage/s

(16)

Models employed for IRT and SICEC use FP32, at which
the theoretical limit of the RTX 2060m is 4.608 TFLOPS/s.
The maximum power consumption of the RTX 2060m is
115w/s, using Equation 16 our GPU performs approximately
40.7 GFLOPS per watt. We use this to get the energy usage,
in joules (J), for each function and SFM in the SICEC system:

J =
Model FLOPS

Performance per Watt
(17)

For calculating SICEC and standard system energy metrics,
we use Equation 10 replacing inference with energy. The
energy cost per inference includes each model activated, the
function controller, and SFC. Further, like inference cost
calculation, the SFC portion of Equation 10 is ignored for
non-SFC SICEC. Equation 11 is still used for the non-SICEC
system comparison and the highest cost models are assumed.

E. Function Controller Implementation

The function controller of SICEC uses EfficientNet (EN).
Three versions (EN B0, B2, and B4) of the function controller
are trained on the refined dataset to test the impact of reso-
lution, width, and depth on function controller classification.
Increasing resolution and image processing can help the func-
tion controller pick up more minor details but come at a higher
cost. EN was primarily chosen to keep the function controller
costs relatively low compared to the total cost of the models
used for the task.

The function controller was trained to produce a single label
encompassing multiple decisions. The total number of classes
is six. The animates for object detection function activation
are limited to cats, horses, sheep, birds, dogs, and people. The
training conditions included a batch size of 8, 20 epochs, a
learning rate of 0.00025, weight decay of 0.8 every 3 epochs,
and momentum of 0.9. The input size for B0 was 224, B2

was 260, and B5 was 456. The loss function used was cross-
entropy, and the optimizer employed was stochastic gradient
descent.

We use an RTX 2060m (6 GB) for hardware with an Intel
i7-9750H CPU for training and testing. Inference times and
energy use recordings are done for inputs without the use of
batching. We feed the images to the function controller and the
system functions/sub-functions individually. We would likely
see a lower cost per image if batching were used.

V. EXPERIMENTAL RESULTS

The results section is organised by first discussing func-
tional controller results and then SFC results without energy
consumption analysis. Following the analysis of the SFC,
we compare the energy performance of both the function
controller and SFC together. Finally, key limitations and
implications for our methods are discussed. EfficentNet-B2
achieved a correct model activation close to B4 and offered
a good middle-ground for inference cost (Table II). Given the
focus on SICEC’s impact on cost-reduction, our results section
mainly discusses an EfficientNet-B2 function controller.

A. Function Controller Accuracy, Closeness, and Correctness

Table II presents the accuracy, closeness, and correctness of
SICEC function controller variations. As expected, increasing
the width and depth of EfficientNet improves decision accu-
racy. Increased network processing at higher image resolution
enables the detection of finer class-specific differences. Test
accuracy is 73.57% for B0, 76.37% for B2, and 81.45% for
B4, suggesting that B4 is significantly more competent at
model activation compared to B0 and B2. ImageNet validation
repeats the trend; however, EfficientNet B0 (73.79%), B2
(78.15%), and B4 (82.34%) all show an increase in validation
accuracy. This increase is likely due to reduced facial ambi-
guity from removing heavily occluded faces due to conflicts
in class placement. Examples of correctly identified cases are
displayed in Figure 5.

The performance gap closes between B2 and B4 for our
introduced metrics. Closeness shows that the model activation
and performance of B2 (87.04%) and B4 (89.30%) are better
than test/validation accuracy suggests. Independent closeness
shows that given a misclassification B2 (45.52%) and B4
(45.56%) still activated a proportion of the correct models. For
correct model activation, the performance difference between
B2 and B4 is less drastic than test/validation accuracy sug-
gests, with B2 achieving 88.24% and B4 achieving 90.25%.
Despite misclassification, our function controller still partially
identifies model-relevant features. With a reduced performance
gap and significantly lower inference time, EN-B2 is used for
the function controller in the remaining results.

B. Function Controller Confusion Analysis

Figure 4 shows the confusion metrics for our function
controller. We see that the function controller particularly
struggles with class 4, often failing to activate the pose
function. Figure 5 visualises how the function controller has
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TABLE II
SICEC FUNCTION CONTROLLER RESULTS

Model
Test

Accuracy
Validation
Accuracy Closeness

Independent
Closeness

Correct
Model

Activation
Inference

Time
EN-B0 73.57% 73.79% 84.03% 42.98% 85.20% 18.8ms
EN-B2 76.37% 78.15% 87.04% 45.52% 88.24% 24.8ms
EN-B4 81.45% 82.34% 89.30% 45.56% 90.25% 34.2ms

difficulties activating the pose function where three to five
people are present or bodies overlap. Class 3 is also commonly
misclassified with class 1 or 2 which mostly occurs in cases
of high object occlusion, potentially caused by inadequate
representation due to small dataset size. The incorrect rows
of Figure 5 further highlight that the function controllers diffi-
culties with occlusion was a significant source of inaccuracy.

Fig. 4. EN-B2 confusion matrix for validation accuracy.

The correct identification of classes is shown in the first
two rows of Figure 5. In ”object detection”, we see correct
classification of the animate class and a case in ”none” where
a non-specified animate has received the correct classification.
The function controller can also pick up relatively small faces
in classes 5 and 6. While the activation of pose estimation
is unreliable for smaller groups of people, for larger groups,
the function controller is reasonably competent. For classes
1 and 2 Figure 4 shows that SICEC is unlikely to activate
functions 4, 5, and 6, reducing the inference and energy
penalty for misclassification. Misclassification of 3 and 4
also more commonly leads to under-selection oppose to over-
selection of functions. The closeness of function controller’s
classification generally increases with abundance of relevant
features. For example, in Figure 4 classes 4 and 6 are unlikely
to be misclassified as 1 or 2 as multiple people are present.
Figure 5 exemplifies this in the class 6 incorrect section.
Where pose has failed to be activated, an abundance of features
relevant to face detection (class 5) remain present.

A problem we observed originates from feature similarity
between classes and function controllers single label design.
Features of each class overlap, for example, class 6 shares

features with all previous classes and class 3 and 4’s relevant
features are very similar. We term this as feature confusion,
where high feature similarity between classes leads to mis-
classification. For example, The similarity of class 4 to 3
could contribute to the unreliable class 4 classification for
smaller groups. Potentially, where less people are present, the
confidence in class 4 lessens, while the confidence rises for
class 3 due to abundance of relevant features (Figure 5 class
4 incorrect). For class 5, the confidence could lessen due to
facial occlusion and the class 3 confidence overtakes (Figure
5 class 5 incorrect).

C. SFC Results

Table III shows that the SFC methodology is partially suc-
cessful. For our object detection SFMs, we see an appropriate
trend of S and M accuracy increasing with a decrease in
L accuracy. This suggests that complex images are being
assigned to the L model. The SFC maintains the average
accuracy across the three models, which is expected given
the decrease in L accuracy. The S accuracy increase and L
accuracy decrease are repeated for segmentation.

TABLE III
ASSIGNMENT VS DISTRIBUTION. STANDARD REFERS TO THE S, M, OR L

MODELS NORMAL PERFORMANCE ON THE VALIDATION SET BEFORE
BEING ASSIGNED A SET OF IMAGES.

Condition S M L AVG
Standard OD 0.384 0.468 0.505 0.452
Assigned OD 0.410 0.497 0.451 0.453
Standard SEG 0.529 N/A 0.580 0.555
Assigned SEG 0.548 N/A 0.554 0.551

Tables IV and V show the results of SFM cross-testing,
which refers to the testing of each SFM on other SFM-assigned
image sets. Table IV shows S and L cross-testing results
reinforce the claim of logical image assignment. On the L set,
YOLOv5s achieved an mAP of 33.8, 7.2 below the mAP on
its own set. On the S set YOLOv5l, achieved an mAP of 52.4,
7.3 greater than the L-assigned image set. The same trend is
seen for segmentation results in Table V.

TABLE IV
SFC CROSS-TESTING FOR OBJECT DETECTION. S, M, AND L SETS ARE
THE SFC-ASSIGNED IMAGE SETS THAT THE MODELS ARE CROSS-TESTED

ON.

Model S Set M Set L Set
S 0.410 0.415 0.338
M 0.489 0.497 0.417
L 0.524 0.535 0.451

While the S and L assignment has shown success, creating a
middle-ground for intermediate models has been unsuccessful.
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Fig. 5. SICEC EN-B2 correct and incorrect decision examples. Incorrect decisions are placed under their correct classes with a number tag that shows the
incorrect SICEC classification. The two ”animates” in [1] are not animates EN-B2 was trained to detect.

YOLOv5s achieves a 0.005 higher mAP on the M set than
the S set, and YOLOv5l achieves 1.1 higher mAP on the
M set than on the S set. This implies that many images
assigned to set M are better suited to set S or vice versa. Such
problems could arise from the function controller confidence
output only being loosely connected to the SFM models.
While image complexity (number of objects, small object size,
occlusion, and noise) will impact vision models’ performance,
the extent and cause of impact varies between models. In
extension, the EfficientNet model can have a high confidence
unrepresentative of complexity if a relevant object takes up
significant image space or multiple occurrences of an object
support a classification. Same functional methodology has
reduced the use of larger SFMs with evidence of some logical
image assignment. However, results suggest SFC methodology
and how image complexity is represented require additional
attention.

TABLE V
SFC CROSS TESTING FOR SEGMENTATION.

Model S Set L Set
S 0.548 0.508
L 0.554 0.608

D. Inference Cost Analysis

SICEC showed large reductions in our AI system costs. A
visual summary of our cost results can be seen in Table VI.
Without the use of SFCs, an inference time reduction of 35.0%

was found using EN-B2 (80ms vs 123ms) per inference. This
increased to 48.9% (62.8ms vs 123mms) with SFC. Without a
SFC, the function controller method accounts for 31% of the
inference time and 39.5% when the SFC is implemented.

TABLE VI
COST ANALYSIS OF SICEC WITH AND WITHOUT SFC IMPLEMENTATION.

THE STANDARD SYSTEM DOES NOT EMPLOY THE FUNCTION
CONTROLLER (FC) OR SFC.

Method
Method

Infer (ms)
AVG
(ms)

Standard 0 123.0
FC w/o SFC 24.8 80.0
FC w SFC 24.8 62.8

We can compare the performance of SICEC to a similar
system built by H-GPT for the input relevance task. Note
that H-GPT had no models available for face detection or
a suitable substitute model. H-GPT employed the following
models on an unknown GPU; brackets show the inference
times returned by H-GPT: detr-resnet-101 for visual detec-
tion (200ms), detr-resnet-50-panoptic for image segmentation
(500ms), and Openpose-control for pose estimation (200ms).

Figure 6 shows the results of SICEC using the H-GPT
selected models. SICEC achieves an average inference of
469.8ms, 47.8% lower than H-GPT’s 900ms. If we take
the average inference time of the H-GPT models, we can
employ an artificial face detection (A-FD) model with an
inference time of 300ms. In this scenario, SICEC achieves an
average inference time of 551.8ms, 54% lower than H-GPT’s
1200ms. The lower relative cost of the function controller
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(5.3% and 4.5% vs 31%) contributes to the increased inference
reduction. This highlights that SICEC methodology becomes
more beneficial when the relative cost of SICEC is smaller.

Fig. 6. Comparing H-GPT selected models with and without the implemen-
tation of non-SFC SICEC.

An additional comparison with V-GPT was not possible
as only 2/4 input relevance task functions were available in
V-GPTs visual foundations models. Further, when prompt-
ing V-GPT and H-GPT to attempt input-specific co-active
multi-model control across a set of images, both responded
that the function was not within their capabilities. SICEC
separates itself from these GPT models with the ability to
activate/deactivate models on a per-input basis. Further, GPT
systems do not contain SFMs; SICEC was designed to utilise
SFMs and only use larger models when necessary.

E. Energy Cost Analysis:

Assuming the relationship is consistent across hardware,
then SICEC’s reduced GFLOPs (Figure 7) infers a reduction
of energy for a SICEC system across different hardware
platforms. For our implementation, the reduction in GFLOPs
was 47.8% without SFC and 67.8% with SFC. Table VII shows
the reduction in energy usage was 43.7% (3.57 vs 6.34) and
66.4% (2.13 vs 6.34), respectively.

Table VII breaks down the average energy usage of the input
relevance task models, and Table VIII shows the SFC’s impact.
The contributions of the SFC are seen in YOLOv5, which
uses 0.83 joules per inference, a reduction of 54.1% compared
to SICEC without SFC (1.81). The SegFormer SFMs used
0.61 joules per inference, resulting in a reduction of 43.0%
compared to SICEC without SFC (1.07). It is implied that the
SFC reduces SICEC’s energy use by a further 1.44 joules per
inference; this amounts to 34.0% of the total energy (4.23)
saved by SICEC, 2.79 joules (66.0%) being saved by the
function controller.

The function controller row in Table VII shows the rela-
tionship between input-model relevance and energy reduction.
Models with lower general input relevance experience a greater
energy reduction during task run-time. For the object detector

Fig. 7. SICEC’s reduction of average GFLOPS per inference.

function (highest input-relevance), a 33.7% consumption de-
crease and a 72.1% decrease for the pose estimation function
(lowest input relevance) were found. This disparity shows the
function controller’s ability to reduce energy consumption is
greater for functions with lower input relevance.

Figure 8 shows the contribution of each function towards
each classes total energy consumption. Both object detection
(OD) and segmentation (SEG) use the average energy con-
sumption of the SFC selected model. The more functions
activated the more the potential energy consumption of a single
input varies, this generally depends on complexity and quantity
of function relevant features in an image. Large standard
deviations arising from activation of SFM related functions
result from different model sizes. A higher frequency of per-
ceived high complexity images would shift the consumption of
SFM related function towards the upper limit of the standard
deviation, increasing the SICEC system cost. The final bar in
Figure 8 represents the standard non-SICEC system. We see
an increment in segmentation and object detection energy cost,
however, the energy variation per input decreases due to the
removal of SFMs.

Fig. 8. Joules per function controller class.
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TABLE VII
FUNCTION ENERGY COST (J). ROWS (STANDARD, FC, AND FC WITH SFC) SHOW THE AVERAGE ENERGY CONSUMPTION PER IMAGE.

Method
Object

Detection Segmentation
Face

Detection
Pose

Detection
Function

Controller Total
Standard 2.73 1.97 1.21 0.43 N/A 6.34

FC 1.81 1.07 0.54 0.12 0.03 3.57
FC with SFC 0.83 0.61 0.54 0.12 0.03 2.13

TABLE VIII
EXTENDED SICEC COST-REDUCTION FROM SAME FUNCTIONAL CONTROL. ”REDUCTION”

IS COMPARED TO THE FUNCTIONAL CONTROLLER WITHOUT THE SFC.

Method S M L Total Reduction
Object Detection 0.15 0.14 0.54 0.83 54.14%

Segmentation 0.12 N/A 0.49 0.61 43.00%

With a total energy reduction of 66.4%, SICEC can sig-
nificantly reduce energy costs. Different SICEC systems will
contain different functions and associated models or could be
linked to alternative tasks that may increase or decrease energy
reduction. For the input relevance task, if we had used more
computationally expensive models (E.g., those employed by
H-GPT), it would have increased the energy saved. This would
also occur for greater computational differences between small
and large SFMs. A task with a lower activation frequency of
functions could increase cost-reduction; however, tasks with a
high activation frequency would decrease cost-reduction. This
relationship between task requirements and system function
costs is essential when deciding if implementing SICEC is
worthwhile.

F. Comparison to other works

Limited comparative evaluation is available for SICEC.
Previous work surrounding AI systems with multiple models
[1] [2] [3] do not focus on cost reduction and sustainability.
Therefore, performance indicators relevant to the goals of
SICEC do not exist. Available work relatable to cost reduction
and sustainability in AI focuses on single model applications.
Previously mentioned, such work focuses on architectural
changes to reduce model costs [45][48] or evading unnecessary
processing through external input evaluation or adjustment
[49][50]. The latter is technically comparable to SICEC;
however, our methods overhead cost is justified by the savings
from a set of models. In single model scenarios the function
controller cost of SICEC could restrict cost reduction (energy
consumption and inference time) of the application.

VI. LIMITATIONS

A. Function Controller

The discussion on Table II and Figure 4 highlights the key
drawback of SICEC, its dataset dependency, and the issue
of creating a clearly defined and task-representative dataset.
Features can easily become ambiguous, and feature confu-
sion occurs within training due to overlap between classes
or difficulties defining the class in the dataset. For testing,
it is challenging to create a test set that fairly represents
how SICEC has learnt to control its functions. This impacts
the ability for SICEC to correctly associate features with

a function and the ability to accurately evaluate SICECs
performance.

B. EfficientNet as a Function Controller

EfficientNet was selected due to being a lightweight clas-
sifier that would minimise the relative cost of the function
controller. As shown in Table VI and Figure 8 our function
controllers energy consumption was relatively low compared
to other models in the IRT system. However, an inference time
of 24.8ms contributed to 31.0% of the non-SFC SICEC and
39.5% of the SFC SICEC average inference time (Table VI). It
is important to keep the relative cost of the function controller
low to prevent unnecessary limitations on the system. In our
case, the inference time of EN-B2 might contribute to a higher
than necessary bottleneck on system response time.

C. Same Functional Controller

SFC and SFMs were novel topics to add an extra dimension
of cost-reductive AI-on-AI control in SICEC. Given a poor
object detection M performance, refinement of SFC method-
ology is needed to increase the logicality and reliability of
assignment. Our use of function controller confidence is lim-
ited in predicting the SFMs performance on an input. Methods
might improve if the definition of image complexity better
discriminates between SFMs and more accurately captures
model-input performance. Other SFC avenues exist which we
chose not to explore in this work, fractal complexity evaluation
[53] or tensor regression complexity classification being two
examples.

VII. IMPLICATIONS

SICEC’s impact on multi-AI systems will depend on various
factors. System model sixes, long system run times, mass-
distributed systems, real-time requirements, system financial
budgets, and input-model relevance ratio can increase the
appeal and justify the manual cost of implementing SICEC.
Systems that meet the criteria can benefit from lower-resource
computing. In application, this could reduce environmental
impact and create more sustainable AI systems.

Implementing SFMs and a suitable SFC can independently
impact the energy and inference costs of systems using AI
models. SFCs can allow for the application of larger AI
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models without sole reliance on those models. Our findings
showed that a significant proportion of SICECs cost-reductions
resulted from SFCs and the availability of SFMs. SFCs can
also reduce the burden of expertise and heavy cost-benefit
analysis when making system-model selections.

With further development, SICEC can be versatile in its
application to the AI industry. In application, SICEC also
has incentives beyond sustainable AI. Cloud computing could
benefit by having an intermediate SICEC processor that directs
an input to relevant computer vision cloud services, reducing
financial costs. For available GPT systems that assign models
to a user-specified task, SICEC methodology could reduce
computational waste for model-irrelevant inputs. This could
make the cost of using GPT systems for AI tasks more viable.
In robotics, we may see the implementation of multiple models
to achieve some interaction with the visual environment. How-
ever, SICEC can advise these models and remove irrelevant
model-processing leading to quicker task performance.

VIII. CONCLUSION

We have shown that SICEC can significantly reduce system
costs while maintaining a high percentage of correct model
activation. We have also displayed a working demonstration
of logical SFM selection using a zero-cost SFC technique.
With significant reductions in energy and inference costs, we
showed the potential of SICEC to manage multi-vision-model
AI systems and increase system efficiency. Our work has
contributed to sustainable and low-resource AI through the
novel application of image classification and input-complexity
analysis for function activation and function-model selection.
In turn, we have also provided foundation for further research
on AI-on-AI control for resource-efficient AI systems.

Future work should focus on two limitations of our function
controller. The first is feature confusion caused by ambiguity
between classes in the dataset. The second is the manual
efforts required for creating SICEC’s dataset and difficulties
for creators in handling class-feature overlap. Both limitations
can be overcome through refinement of the dataset creation
process and improving the distinctness of classes for the
function controller. Future SFC methodology should explore
comprehensive identification of image complexity and its
relationship with model performance. This could increase both
the logicality of SFM assignment and the appeal of SFC
implementation in cost-reductive AI systems.
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