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Abstract

Causal video question answering (QA) has garnered increasing interest, yet existing
datasets often lack depth in causal reasoning. To address this gap, we capitalize on
the unique properties of cartoons and construct CausalChaos!, a novel, challenging
causal Why-QA dataset built upon the iconic “Tom and Jerry" cartoon series.
Cartoons use the principles of animation that allow animators to create expressive,
unambiguous causal relationships between events to form a coherent storyline.
Utilizing these properties, along with thought-provoking questions and multi-
level answers (answer and detailed causal explanation), our questions involve
causal chains that interconnect multiple dynamic interactions between characters
and visual scenes. These factors demand models to solve more challenging, yet
well-defined causal relationships. We also introduce hard incorrect answer mining,
including a causally confusing version that is even more challenging. While models
perform well, there is much room for improvement, especially, on open-ended
answers. We identify more advanced/explicit causal relationship modeling & joint
modeling of vision and language as the immediate areas for future efforts to focus
upon. Along with the other complementary datasets, our new challenging dataset
will pave the way for these developments in the field.

1 Introduction

Understanding the intricate motivations behind human actions is paramount in developing sophis-
ticated systems capable of nuanced behavior analysis. In real-world scenarios, actions are shaped
by a multitude of factors, including personal experiences, emotions, social contexts, and cultural
backgrounds. This complexity necessitates a comprehensive approach to unraveling the “why" behind
actions, fostering empathy, effective communication, and robust decision-making. Causal video ques-
tion answering aims to decipher the answers behind characters’ actions. Despite the growing interest
in causal video QA, existing datasets often fall short, requiring only: 1) surface-level understanding;
or 2) involve more of simple word substitution in the QA pairs, rather than causal reasoning (e.g.,
“Q. Why are the cars on the street not moving? A. Parked."). Recognizing this gap, we embark on
the development of a rigorous and challenging causal Video-QA dataset. Our goal is to provide a
high-quality resource that rigorously evaluates and advances causal video QA models.

Drawing on the established benefits of cartoons with cognitive processes among children [40, 41, 31,
55, 42], we leverage the renowned series to create a novel and demanding causal Why-QA
dataset called CausalChaos!. The key characteristics of CausalChaos! are as follows:
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Figure 1: (Left) Examples of causal questions about characters’ actions from our CausalChaos! dataset—
based on Tom & Jerry cartoon series. Q: question; A: answer; E: explanation. Please view in Adobe Reader
to play the embedded videos for better explanation. (Middle) Illustration of causal chain, scene changes.
Linking multiple clues/cues embedded in different scenes to solve causal relationships pose a challenge for
VideoQA models. (Right) Animators leverage Principles of Animation to stylize the visuals & motions to
disentangle/highlight key content of the scene to create well-defined/unambiguous and effectively communicated
cause-and-effect relationships. The interplay of these factors allow models to focus on solving complex, yet,
well-defined, unambiguous causal relationships. We have provided enlarged figures in Appendix.

• As demonstrated in Figure 1, 2, we formulate thought-provoking questions (Q), where the answer
(A) and its detailed explanation (E) aim to enhance the model’s understanding of the causal chains
of visual events in a given video clip. A causal chain is a sequence of events/actions in which each
step influences or leads to the next, creating a cause-and-effect relationship. It illustrates how one
event/action produces a subsequent event/outcome. Compared to existing datasets, CausalChaos!
presents longer causal chains, as highlighted in Figure 2 and discussed in section 2.

• Video clips in our dataset feature frequent scene and shot changes. Here, a scene change or shot
change refers to the transition from one visual setting or perspective to another. It typically involves
shifting focus to a new location, action, or character within the storyline. The links and causes of
the causal chains are often dispersed across various scenes. Consequently, models are challenged
to exert greater cognitive effort in connecting multiple events (scenes) and identifying intermediate
causes to comprehend the “why" questions related to the clips.

• Despite the complexity and length of the causal chains, they are distinctly delineated, unambiguous,
and effectively communicated using principles of animation [44] like staging and exaggeration.
This deliberate design allows models to focus on deciphering causal relationships.

• CausalChaos! introduces an added layer of complexity by necessitating the modeling of actions
at various levels of granularity—ranging from sweeping, large-scale movements to nuanced,
finegrained actions, such as interpreting emotional cues through facial expressions.

• Our dataset demands a diverse range of reasoning skills, encompassing deductive, spatial, emo-
tional reasoning, and more, as outlined in Figure 2 and discussed in section 3.

• We introduce challenging incorrect options, including the CausalConfusion set, to prevent models
from relying on shortcuts, such as object-noun or action-verb matching in vision-language spaces,
and instead require them to understand causal relationships.

Upon evaluating various state-of-the-art VideoQA models including the recent multimodal instruction
tuning models, we found that our dataset remains one of the most challenging causal QA dataset.
Particularly, we observed that models often: 1) jumped to conclusions based on partial evidence,
rather than considering the full set of evidence; 2) failed to engage in true causal reasoning, opting
instead for shortcuts like object/action-noun/verb matching to select answers. Based on this, we
identified more advanced/explicit causal relationship modeling and jointly modeling vision and
language as the immediate areas for future efforts to focus upon. Further, we show that similar to
how cartoons help children better connect cause and effects, they can help VideoQA models as well.
We incorporated our dataset with the NextQA [49], a real-world dataset and found that it brings
some improvements in why questions. What is more, incorporating our dataset brings improvement
on non-Why questions as well.
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Figure 2: (a) Types of reasoning demanded by our CausalChaos! dataset. Reasoning types: DR-deductive
reasoning; IR-inductive; SR-spatial; CR-causal; CT-critical thinking; ER-emotional; AR-abductive; TR-
temporal; None-no reasoning required as per the human subjects. None is undesirable, and tend to indicate
that questions are less challenging. (b) Comparison among CausalChaos! and existing causal videoQA
datasets. MA-multilevel answers; CCL-causal chain length; NOS-no. of scenes; RS-reasoning spectrum;
MGA-multigranular actions. (c) Qualitative comparison between CausalChaos! and NextQA (Why-QA)
datasets. CausalChaos! Answers and Explanations give detailed information regarding the actual cause-and-
effect relationships, motivations, emotions covering wide range of reasoning types. Note that, we have temporally
cropped videos to retain only the relevant parts from NextQA dataset videos; otherwise, raw videos are longer
resulting in unintended problem of temporal localization for models.

Overall, we believe our CausalChaos! dataset presents challenges spanning the entire VideoQA
pipeline, from deciphering intricate videos to processing complex questions and discerning nuanced
answers, stimulating research in video processing, causal reasoning, language modeling, and joint
modeling. Along with the other complementary datasets, such as [49, 17, 19, 21, 48], our new
challenging dataset will pave the way for these developments in the field.

2 Related Work

To drive the progress in VideoQA, researchers have developed various datasets [27, 50, 10, 60, 58, 63,
13, 14, 56, 57, 9, 48] with distinct focuses and contributions—see the survey [61]. In the following,
we mainly compare our work with prior art focusing on causal QA literature. We provide a detailed
discussion on various VideoQA datasets and models in the Appendix. Our work is inspired from
a few datasets: CLEVRER [54, 29], NextQA [49], CausalVidQA [17], IntentQA [19] that cover causal
reasoning. However, they have limitations that our dataset aims to fill:

• Limitation in scope: e.g., [54, 29] only consider collision events of simple inanimate objects such
as cuboids; as a result, lack: actors, their characteristics such as emotions, intentions. Our dataset
has actors whose actions are shaped by emotions, intentions, context, etc.

• Lack of precise temporal annotations (e.g., [49, 17]) inadvertently involves temporal localization
& may create a false sense of difficulty, while the questions may not be challenging. We alleviate
this problem by providing precise temporal annotations and focusing on designing truly complex
and challenging QA.

• Lack of complexity in questions (e.g.[49, 17, 19]). Based on human studies, we found that a majority
of causal QA in these datasets were flagged as not requiring any notable reasoning (Figure 2(a)).
We also attempted to quantify the complexity in reasoning by computing the lengths of causal
chains involved in their QAs vs. ours using GPT-4o [34]. Causal chains in [49, 17, 19] are shorter
(Figure 2(b). In comparison, our dataset has longer causal chains—average length 1.9—posing
a challenge for models in connecting multiple events or cues. Our dataset also demands wide
spectrum of types of reasoning (Figure 2a).

• Scenes in [54, 29, 49, 17, 19] are less dynamic, mostly involving a single scene. In comparison,
our dataset averages about four scenes. Rapid scene changes & dynamic interactions challenge
VideoQA models to link context & cues across different scenes, modeling cause-and-effect rela-
tionships over longer causal chains (more details in subsection 3.2). While similar challenges have
been acknowledged in other computer vision problems [36], they remain unexplored in VideoQA.
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• Lack of hard negatives. Current datasets may not emphasize on including hard incorrect options.
Due to this, models may not be required to do causal reasoning, but rather they can exploit shortcuts
like object/action-noun/verb matching in vision-language spaces to select correct answer. To
address this limitation, we develop hard negative selection strategies.

• No hierarchical answers with different level of explanation. These datasets contain a single-level
answer to ‘Why’-questions. On the other hand, we richly annotate our dataset to provide two-level
answers to ‘Why’-questions—1) direct/immediate cause; 2) deeper explanation. Quality of answers
is further enhanced, and are more informative as a consequence of the more complex questions.

3 CausalChaos! Dataset

This section details the construction of our VideoQA dataset designed to challenge causal reasoning,
covering its video source, annotation process, & quality checks to ensure high-quality annotations.
We then discuss the unique attributes that make our dataset valuable for causal VideoQA tasks.

3.1 Dataset Construction

Video source. To focus on visual reasoning, we selected the timeless silent cartoon series, “Tom
& Jerry" (1940)1, spanning over 6 seasons and 161 episodes. Silent cartoons, which lack other
modalities like dialogue, foster visual reasoning in children. Similarly, we hypothesize that using
silent cartoons for VideoQA will enhance visual reasoning. The Tom & Jerry series is ideal for a
causal reasoning dataset, offering abundant segments with diverse cause-and-effect relationships.
Concurrent work [22] on causal image generation also leverages Tom & Jerry.

Annotations. Each dataset sample includes the following annotations: {Question, Answer, Expla-
nation, start frame, end frame}. Details in the following.
• Questions are crafted to capture the why or reasoning behind the actions of characters in Tom &
Jerry cartoons. To cultivate comprehensive & deeper video understanding capabilities in models, we
formulated thought-provoking causal questions where cause & effect are connected by longer causal
chains. Questions also extend beyond explicit visual cues, encompassing gestures & expressions,
to delve into the characters’ underlying intentions & goals. Annotators generated questions while
watching the video for the first time to mimic how models assess unseen clips. They then rewatched
the videos multiple times to create more critical thinking questions. To focus on visual reasoning,
annotators watched the videos without audio, ensuring no audio cues were included in the dataset.
• Multi-level Answers. The first-level or the Primary answer, represents a literal or direct cause or
form of response. It is accompanied by a deeper form of Explanation, which considers the broader
context of the scene, the thoughts, feelings, intentions of characters, & their actions. This deeper
explanation also takes into account potential consequences & provides further reasoning to support
the primary answer. It includes reasons & additional details to comprehensively address the ques-
tion. Examples shown in Figure 1 & Appendix. Guiding principle for consistency: our dataset’s
multi-level answer structure is designed to explore causality from direct causes (Primary answers) to
deeper, contextual reasoning (Explanations). To ensure consistency, each Explanation must extend
the causal chain from the Primary answer with at least one additional causal link, providing the
next logical step in causal chain without unnecessary detail. For instance, if the Primary answer
addresses an immediate reaction, the Explanation would delve into underlying motivations, intentions,
or consequences, systematically adding depth. Commonsense knowledge: understanding causal
relationships in complex scenes, such as those in Tom & Jerry episodes, often requires more than just
visual cues—it requires the integration of commonsense knowledge. When commonsense knowledge
is needed to connect cause-and-effect, annotators articulate this understanding within the Explanation.
• Temporal annotations. For each QAE set, the Start and End frame numbers are recorded to cover
the entire scene, including contextual frames that support the reasons behind the actions.

Quality Check. To ensure dataset quality and reliability, we implemented a two-stage quality check
process. First, quality checkers assessed episodes they did not annotate. Then, they reviewed episodes
they did not check in the first stage. Multiple quality checkers carefully reviewed and verified curated
question and answer sets for logical fallacies, timestamp inconsistencies, grammatical errors, and

1We only provide the annotations; Videos can be obtained from: https://www.warnerbros.com/tv/tom-and-
jerry-1965-volume-1.

4



Q. Why was Jerry laughing?

[S03E17] A. Jerry found it funny that 

the seal stole the fish from Tom.

[S05E13] A. Jerry was laughing at Tom who 

fell down the stairs and into the fountain.

Ours A. Lion wanted 

to hush Jerry

Q. Why did Lion catch Jerry?

Typical reason: 

to kill and eat

Q. Why did Tom 

shake his head?
A. Tom put on a radish 

instead of his nose
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Figure 3: Grounded in diverse visual information.
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(takes place within a single scene) modeling/understanding of 
smooth, gradual changes
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Dynamic Scene Linking
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Figure 4: Traditional temporal modeling vs Dynamic scene linking. Notice the abrupt scene change, which
causes disruption in visual flow, resulting in large amplitude and widespread optical flow.

spelling mistakes. They also excluded annotations containing audio or text aspects that the model
cannot comprehend. To prevent direct overwriting, edits were flagged in a different font color for
further discussion. Flagged inconsistencies or errors were resolved through discussions and consensus
among checkers and annotators. The team referred to episode synopses from Tom and Jerry Wiki
[45], an online encyclopedia, as a third-party opinion and for fact-checking.

Dataset Statistics. Annotators reviewed all 161 episodes across 6 seasons, generating 4,945 detailed
Question-Answer-Explanation sets. This comprehensive dataset covers various scenes, characters,
and events, providing a solid foundation for understanding and answering questions about the series.
Additional statistics and word clouds for answers and explanations are available in the Appendix.

3.2 Unique Characteristics of our CausalChaos! Dataset

In the following, we delve into the untapped unique properties of our dataset, which both complement
existing video understanding datasets and present novel challenges to VideoQA, particularly from a
causal reasoning perspective.

1. Multi-level answers offer a richer and more nuanced perspective, which leads to deeper in-
sights—considering not only the immediate circumstances but also underlying psychological, social,
and personal factors that contributed to characters’ decisions. By employing multi-level answers
alongside thought-provoking questions, we can cultivate deeper reasoning and analysis of characters’
actions, enabling the training and evaluation of models on complex question-answer pairs that de-
mand a comprehensive understanding of longer causal chains. Further elaborated discussion on the
importance of multi-level answers to ‘Why’-questions included in Appendix.

2. Grounded in diverse Visual & Motion information. The Tom & Jerry cartoon series is visually
rich and dynamic, with intricate scenes, actions, and character interactions varying across episodes.
We had annotators craft questions where the answer is grounded in the video. This grounding
compels the model to analyze the video for a broader range of details and clues to provide meaningful
answers. For example, consider Figure 3(a), same question appears in different episodes, but their
answers/context are completely different. This demonstrates that it is crucial for VideoQA models to
understand visual information to answer correctly on our dataset. Multimodal nature of VideoQA
task is enhanced by the presence of unusual situations in cartoons—typically not found in real-world
datasets as shown in Figure 3(b,c). Since the answers are embedded in videos, models cannot rely on
correlations/biases in their training data; they must thoroughly process and understand the content to
answer correctly. This is crucial even with large language models (LLMs) and embeddings, which
are also susceptible to frequency-based biases and hallucinations [20, 25, 62]. For example, Lion is
often associated with killing in LLM embeddings. In a qualitative analysis, we found that models
might choose an answer involving ’killing’ Jerry as the motive for the Lion-character’s action, while
the Lion-character was actually trying to quiet Jerry Figure 3(b-left). Revealing such biases has been
considered in other computer vision problems [4, 12], but is yet to be introduced in VideoQA. Our
dataset offers a valuable opportunity to address this challenge. Additionally, understanding Tom
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Q: Why did Jerry open the door?

A: Jerry wanted Tom to fall & crash into the basement so 

that Tom would be hurt.

Spatial Reasoning is incorporated by understanding the 

layout of the door & basement to explain Jerry's actions.

Q: Why did Jerry fall into the pudding?

A: Tuffy ate the candle stick, causing the candle 

stick to bend & fall on Jerry.

Causal Reasoning: Cause: Tuffy eating the candle 

stick, Effect: Jerry falling into the pudding.

(a)

Q: Why did Jerry pull the white line after hitting the ball?

A: Jerry wanted the ball to land within the court after he 

hit the ball.

Temporal Reasoning is used to explain why Jerry did 

action A after action B due to the sequence of events.

(b)

(d)(c)

Q: Why did Tom’s face turn red?

A: Tom was angry that the 3 cats were 

making fun of him.

Emotional Reasoning is used to deduce Tom's 

feelings from his expression.

Figure 5: Examples of various types of reasoning required by our dataset. Please zoom in & view in
AdobeReader to play the embedded videos. Further types of reasoning visualized in Appendix.

& Jerry cartoons requires modeling of details and actions at varying levels of granularity—from
sweeping movements to subtle emotional cues via facial expressions.

3. Focus on causal reasoning in visually dynamic scenes. Our dataset focuses on causal reasoning
in Tom and Jerry cartoons, characterized by dynamic and rapidly changing scenes. Characters and
objects may appear, disappear, and reappear, limiting the model’s access to partial observations. Video
understanding models struggle to track and understand context. To answer causal questions, these
models must link events to form a causal chain despite rapid scene changes and dynamic interactions.
We term this Dynamic Scene Linking (DSL), distinct from traditional temporal modeling, which
typically focuses on the gradual transitions within a scene as shown in Figure 7 (more details in
Appendix). Related challenges are noted in other computer vision problems [36, 47] but not yet in
VideoQA. We hypothesize that humans understand cartoons by forming a mental “world model" of
the scene, which helps bridge gaps between discontinuous scenes and provides a coherent overall
context. Current VideoQA datasets often lack coverage of such complex scenarios, unlike our dataset.

4. More challenging and requiring cognitive effort. We used GPT-4o [33] to compute the lengths
of causal chains of 100 randomly chosen QAE pairs from our dataset and existing causal(-Why)
VideoQA datasets [49, 17, 19]. Results are presented in Figure 2. We observed that the QAE pairs
in our dataset have longer causal chains than existing QA datasets, potentially suggesting our QAs
are more complex. Identifying and solving longer causal chains in the process of answering causal
(why) questions involve linking together multiple cues/clues, which requires significant cognitive
efforts on the part of VideoQA models, especially, when the clues/cues are embedded in different
scenes (described above), as in our dataset.

5. Leveraging principles of animation [44] (shown in Figure 1) such as timing, squash and
stretch, anticipation, staging, and exaggeration aid in: 1) “highlighting" key movements, emotions,
& storytelling; 2) Consequently, greatly aid in establishing clear cause-and-effect relationships and
effectively communicating them. These principles can be thought of as spatiotemporal counterparts of
caricatures, which exaggerate and manipulate facial and bodily features, and these have been shown
to improve facial recognition rates [39, 11, 30]. In other domains of computer vision, some works
[43, 52, 51, 5] acknowledge the advantages and devise methods to disentangle the area of interest,
enabling more targeted processing and comprehension of image contents. Similarly, we hypothesize
that the principles of animation can provide “hints/guidance", but the models still need to be able
to leverage this guidance to solve causal relationships. Overall, causal relationships in our dataset
are complex, longer, but at the same time they are unambiguous/well-defined using principles of
animation, allowing models to focus on deciphering causal relationships.

6. Wide spectrum of types of reasoning required. Our dataset demands various types of reasoning
like 1) Deductive; 2) Inductive; 3) Spatial; 4) Causal; 5) Critical thinking; 6) Emotion; 7) Abductive;
and 8) Temporal. We have visualized examples demonstrating these reasoning types in Figure 9. It is
also possible that a question may involve more than one type of reasoning. We conducted human
studies to determine the types of reasoning required by our dataset and NextQA and observed that our
dataset demands a wider range of reasoning than NextQA (results in Figure 2a). More information
and definitions of types of reasoning and human studies are provided in Appendix.

3.3 Benchmark Design

Question-types/Tasks. Our dataset comprises two types of questions. The first is Multiple Choice
Question Answering (MCQA). VideoQA models are provided with the question, the associated video
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footage, 1 correct answer, and 4 incorrect answers; the task for the models is to pick the correct
answer. The same format is followed for Answers and Explanations. The second is Open-ended
Answer Generation (OEAG). The models are provided only with the question and the video footage,
and the models have to generate the Answers and Explanations in natural language.

Incorrect Answer/Option Mining. In designing MCQA sets, answer options should be distinct
from the correct answer & each other but semantically similar enough to challenge reasoning beyond
commonsense. This prevents models from taking shortcuts like simple object/action matching in
vision-language spaces. Using randomly chosen answers as incorrect options is unproductive and
makes the correct answer too obvious, so we avoid this strategy. Instead, we introduce these strategies:
1. Vanilla Hard Negative mining. A pre-trained Sentence-Bert measures semantic similarity. For
each question, we sample the top-10 other questions based on cosine similarity of Sentence-Bert
embeddings. From these, we sample associated answers and again apply cosine similarity between
the correct and candidate answers. Using the equation αcossim(Qi, Qn) · βcossim(Ai, An), with
adjustable weights α and β, we select the top 4 answer candidates. To avoid overly similar answers,
we penalize high similarity scores by setting β to 0.001, reducing the candidate’s overall score.
2. Causal-Confusion Negative generation. Causal relationship modeling is crucial for causal
VideoQA, but maybe given less emphasis in existing datasets/benchmarks. We hypothesize that,
relationships might not be adequately modeled by existing models, instead models may be selecting
answers based on basic object/actor matching in vision-language spaces. To test our hypothesis
& underscore the relationship modeling, we introduce hard negatives in which the objects/actors
remain unchanged, but the relationships between them are altered or alternate, but plausible scenarios
are created. For instance, the effect is inverted (e.g.“Tom was hitting Jerry"→“Tom was not hitting
Jerry") or the causal agents are swapped (e.g.“Tom was hitting Jerry"→“Jerry was hitting Tom"). We
leverage LLMs to generate causally-incorrect options. Examples can be found in the Appendix.

Design of Train-Val-Test splits. We typically partition the dataset into 70% for training, and 15%
each for validation and testing. Additionally, we employ specific strategies for training and testing.
1. Uniformly Distributed Seen-episode testing (UD). Dataset samples are randomly divided
into train-val-test splits without constraints on which episodes or parts are included in each split.
Consequently, uniformly distributed chunks of all episodes from all seasons are likely seen during
training, potentially giving VideoQA models sparse storylines.
2. Consecutive Partially Seen-episode testing (PS). The train set is drawn from the first 70% of
each episode, the val set from the middle 70-85%, & the test set from the last 15%. This setup allows
the model to have partially "seen" episodes during training & make "educated guesses" during testing.
3. Unseen-episode testing (UN). In this case, a certain 70% of the episodes are reserved for train
set; 15% of the remaining episodes are reserved for val set; and the remaining 15% of the episodes
are used to prepare the test set. So, testing is done on entirely novel, unseen episodes and storylines.

4 Experiments

We benchmark SOTA VideoQA methods on our new causal action QA dataset for two tasks: 1)
MCQA and 2) OEAG. Then, we explore if our dataset aids real-world QA.

4.1 Benchmarking on MCQA

Baselines. Following prior work [49], we benchmark the performance of these models on our
causal action QA dataset: BlindQA [2], EVQA [2], CoMem [8], HME [6], HCRN [16], and HGA
[15]. We also evaluate recent vision-language models like MIST [7], BLIP-2 [18], and multimodal
instruction tuning models Video-LLaMA [59] and VideoChat2 [21], GPT-4o [33], VILA [24] which
excel on vision-language tasks. Further details on each model are provided in Appendix.

Evaluation Protocols. Models are evaluated under these protocols, with Accuracy as the metric:
• Protocol 1. Models’ ability to select the correct Answer (A) is only evaluated. Their ability to
select the correct explanation is not taken into consideration. The chance accuracy in this protocol is
1/5. Results from this protocol are presented under columns marked as A in Table 1.
• Protocol 2. Models’ ability to select the correct Answer (A) as well as the correct Explanation
(E) is evaluated. If the model can select the correct answer, but not the correct explanation, then the
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model is considered to have failed. In this protocol, the chance accuracy becomes 1/5× 1/5 = 1/25.
Results from this protocol are presented under columns marked as A+E in Table 1.

UD PS UN
Model A A+E A A+E A A+E

Chance 20.00 04.00 20.00 04.00 20.00 04.00
Finetuned

BlindQA 29.38 13.07 26.51 11.54 25.13 11.02
EVQA 29.38 13.48 31.32 13.32 27.82 14.65
CoMem 32.08 13.88 26.10 09.89 23.12 09.27
HME 32.35 14.02 29.53 12.36 25.13 10.22
HCRN 32.48 16.98 32.01 14.97 25.67 12.23
HGA 31.40 15.36 29.40 13.19 28.23 13.84
MIST 62.22 44.88 62.22 42.86 55.91 37.90
MIST-CC† 63.34 46.80 62.50 43.54 56.18 39.25
VILA 77.22 62.80 - - - -

Zero-shot

BLIP-2 43.67 23.32 45.88 24.18 46.64 26.48
Video-LLaMA 35.00 11.73 35.16 9.34 29.62 9.68
VideoChat2 38.14 15.36 38.91 15.93 40.83 15.99
GPT-4o 63.64 48.17 63.84 49.79 64.82 52.23

Humans 94.80 93.40 - - - -

Table 1: MCQA Results on our dataset.†We de-
sign multitask version of MIST that learns to gen-
erate causal chains as an auxiliary task.

Quantitative results. The performances of the
baseline models for both protocols are presented in
Table 1. In general, we observe that the performances
of most of the baseline approaches are low. Most of
the models gain only around 11-12% improvement
over the chance accuracy for both protocols. MIST
seems to be doing exceptionally well compared to
other models. We hypothesize that this could be be-
cause MIST being geared for long-form video under-
standing, is better able to handle long video contexts,
which are frequent in our dataset. Analysis: we ob-
served the following failure modes for models: 1)
Limited Evidence Consideration: Models often fo-
cus on a small subset of evidence, neglecting other
relevant cues distributed throughout the sequence,
which is problematic for datasets with long causal
chains like ours. 2) Models failed because they tried
to exploit shortcuts like object-noun or action-verb
matching in video-language spaces instead of focus-
ing on causal relationship modeling—such shortcuts can lead to wrong predictions on our dataset
due to our hard negative mining, correct & incorrect answers would likely contain these nouns/verbs.
The most effective way to discriminate on our dataset is by inferring the causal relationship. We have
discussed further shortcomings & Qualitative Results in Appendix. To mitigate these shortcomings,
we design a MIST-based multitask model, MIST-CC, which, in addition to doing VideoQA, also
learns to generate the causal chain from Video-Question features (groundtruth causal chains are
generated by GPT-4 from QAE pairs). We found that this simple modification mildly boosts the
performance. We have provided further details on MIST-CC in Appendix. Moving to VLM/MLLMs,
we observe that they perform better than traditional models ([2, 15, 16]), except MIST. However,
GPT-4o released only in late May 2024, outperformed all the models. Although, it is closed source
model, we hypothesize its vision and language capabilities maybe significantly better than other
VLMs. It was able to incorporate small details like facial expressions. To glean insights into it, we
also asked it to give us its reasoning, and found that it analyzes each option individually and then
selects the most likely answer. This is close to (or at least mimicking) how humans would approach
this task. We believe this, at least on surface, seems to be going beyond just correlation-based answer
picking as in non-VLM/MLLMs. In comparison, we found that humans performed significantly
better than all the models. We established the human baseline on our dataset (MCQA) using five
human subjects who are fluent in English and have at least an undergraduate level of education. This
baseline was based on a subset of our dataset, consisting of 100 randomly chosen samples. We also
provide results for the recent VLM, VILA [24] (CVPR 2024), fine-tuned and evaluated on our dataset.
These results were obtained following our initial paper submission.

Comparing the two protocols, we find that Protocol 2, where the model has to select both the correct
answer and the correct explanation is significantly more difficult than selecting just the correct answer
for all the models. Comparing splits, We observe that UD is the easiest split across all models,
followed by PS, with UN being the most difficult. This intuitive order suggests that understanding
past events or storylines may aid in reasoning about current events or actions.

Negative type MIST MIST-CC GPT-4o

Vanilla Hard 62.22 63.34 63.64
Causal-Confusion 55.80 58.76 54.95

Table 2: Impact of causal-confusion.

We further conducted an experiment where we tested the
best performing models, MIST, MIST-CC, & GPT-4o, on our
Causal-Confusion set, where incorrect answer choices have
the same objects and actors as the correct answer option, but
cause-and-effect relationships are reversed or altered. We ob-
served a significant drop in performance of all models as shown
in Table 2. This could potentially be due to causal relationships being not modeled adequately even
by such advanced VideoQA models. Performance of MIST-CC dropped relatively less, potentially
because the auxiliary task of generating causal chains may have enhanced the understanding of causal
relationships. Interestingly, we also found the S-BERT similarity score to be above 90% for an action

8



(e.g., Tom is running after Jerry) and its Causal-Confusion version (e.g., Tom is not running after
Jerry); while these sentences would be opposite/different in terms of human perception. We believe
that Causality might be more overlooked than we think in various fields, not just in computer vision.

4.2 Benchmarking on Open-ended Answer Generation (OEAG)

CapsMIX Performance metric. We measure the performance of OEAG in terms of BLEU-
1,2,3 [35], METEOR [3], ROUGE [23], SPICE [1], CIDEr [46] & Sentence-BERT [38] scores by
comparing with the ground truth answers as done by captioning & QA literature. The wide range of
metrics complicates model comparison, so we introduce Caps-MIX (Captioning Metrics Integration
eXpert), which normalizes and integrates all scores into a single metric, simplifying comparisons and
combining the unique strengths of individual metrics.

Model CapsMIX

Finetuned

BlindQA 2.7646
UATT 3.3928
HME 3.0975
HGA 3.7872
BlindGPT-2 6.6006
VisionGPT-2 6.7582
VILA 8.0320

Zero-shot

BLIP-2 1.8931
Video-LLaMA 2.4464
VideoChat2 3.9524
GPT-4o 2.9851

Table 3: OEAG re-
sults on our dataset
(UD split).

Baselines. Following prior work [49], we benchmarked the performance of
EVQA [2]; UATT [53]; HME [6]; HGA [15], VILA [24] on OEAG task. We
also report the zeroshot performance of recent multimodal video understanding
models BLIP-2 [18], Video-LLaMA [59], VideoChat2 [21], GPT-4o [33].

We evaluated the baselines for generating answers and explanations. The
performances of various models are summarized in Table 3. Here we have
presented unnormalized performances. For full results, and normalized version,
see Appendix. Overall, we observe that models struggle significantly with
open-ended generation, including some recent VLMs and MLLMs. Despite
GPT-4o’s strong performance on MCQA, it also falters on OEAG. These
models likely perform better on MCQA by eliminating incorrect choices, but
they fail to genuinely understand videos and perform causal reasoning for
standalone answer generation. VideoChat2 seem to be doing well, perhaps,
because it was specifically trained on various video understanding tasks and
datasets, including causal reasoning task. Comparing split-type wise, we found
that as in the case of MCQA, UD was the easiest split.

Inspired by the success of LLMs, we experimented with leveraging GPT-2 [37], a publicly available
LLM, as our natural language answer generator. We found that a pre-trained version out of the box
did not work well—it generated mostly random, unrelated words. However, upon simple training on
the train set, it performed significantly better than the baselines we considered as shown in Table 3
(BlindGPT-2). However, it is unclear if these LLMs have “seen" Tom and Jerry scripts during their
pretraining stage. If so, then pretraining on relevant scripts followed by finetuning on our dataset
could potentially be a reason for GPT-2’s good performance. Although this is less likely. What
is more likely to be the reason behind this good performance is the language modeling/generating
capability of GPT-2/LLMs.

In the next step, we integrated visual information into LLM. Taking inspiration from [32], we learn a
projector network to align the visual features with GPT-2 representations (VisualGPT-2 in Table 3.
We observed an improvement in the performance. However, we believe that this might not be a
very efficient way to integrate visual information with LLMs. We expect the performance to boost
considerably through better and more sophisticated joint modeling vision and language. Overall,
we believe shallower networks might not have the capacity to do inference over longer, complex
causal chains, and as such it might not be the best option to invest future efforts into; LLMs have
the potential to excel at causal reasoning; this view is also supported in a concurrent survey [26].
We have also provided results of VILA [24] finetuned on our dataset. These results were obtained
following our initial paper submission. Note that none of the models discussed are performing well.
This becomes clearer when we compare their performances with the upper bound (see the normalized
version in Table 6). This shows that there is a significant room for improvement on OEAG task.

4.3 Does our dataset help with real-world cases?

To evaluate the direct impact of our dataset, we combine our training set with NextQA’s [49] training
set and measure model performance on the NextQA [49] test set. For comparison, we also measure
model performance without incorporating our dataset. Despite being a synthetic/cartoon dataset, and
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much smaller in size, our dataset boosted the performance on a real-world dataset on both MCQA
and OEAG (Table 4).

Train
Data

MCQA OEAG

BlindQA HGA MIST VILA HGA VILA

NextQA 32.73 41.23 55.44 67.23 1.44 2.66
+ Ours 32.91 41.44 55.96 68.46 1.48 2.86

Table 4: Our dataset improves performance
on existing real-world dataset.

We observed improvement in identifying the correct
causes by breaking the reliance on shortcuts & focus
on causal effects; a more comprehensive analysis of the
situation/interaction, rather than jumping to a conclu-
sion. Qualitative results provided in Appendix. What is
more, improvements were not limited to ‘causal-why’
questions but also extended across other question types.
We hypothesize that this can attributed to the wider
range of reasoning involved in our dataset. To the best of our knowledge, this is the first time a
synthetic VideoQA dataset has shown immediate improvement on a real-world dataset.

Although modest, the improvements are meaningful because: 1) improvements held across models
showing broad applicability; 2) improvements beyond why-questions suggest that the models’
enhanced causal reasoning skills and learnt representations generalize beyond the specific questions
seen during training, potentially improving overall video comprehension; 3) Cross-domain learning
often carries a high risk of negative transfer, where irrelevant or misleading patterns from one domain
can harm performance in another. The fact that the cartoon dataset did not degrade performance
across multiple models is a good indication that it introduces valuable, complementary information.

However, we noticed a slight drop in the performance on location-type questions. Thus, we believe
that it might be better to: 1) transfer reasoning skills acquired from challenging synthetic datasets
like ours; 2) leverage our synthetic dataset to inform the model designing process, as it better
reflects the challenges VideoQA models may face in the real world, such as longer causal chains and
frequent scene changes in visual streams. Nonetheless, we do not suggest naively deploying whole
models/weights trained on our dataset to real-world scenarios or applications.

5 Conclusion

We introduced CausalChaos!, a challenging dataset for causal action question-answering tasks based
on the classic Tom and Jerry cartoon, richly annotated with critical thinking questions requiring
extensive reasoning from Video QA models. Questions come with multi-level answers and expla-
nations covering the entire video context. We also provide the novel CausalConfusion test set to
challenge causal relationship modeling in Video QA models. Our experiments show that while
existing models perform well on causal action QA tasks, there is significant room for improvement
in causal relationship modeling and generating detailed open-ended answers. LLMs show promise,
but integrating visual information with LLMs or joint modeling of vision and language is crucial.
We hope our dataset fosters such developments and will release it and the codes to support future
efforts. Lastly, we demonstrated improvements in real-world datasets. Our dataset, derived from
cartoons, should inform model design, reflecting real-world challenges like longer causal chains and
frequent scene changes. However, we do not suggest deploying models trained solely on our dataset
in real-world scenarios.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have provided a summary of our dataset, its main characteristics, contrasted
with existing datasets, performance summary of models on it.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We present a synthetic dataset in this work, and have mentioned how it should
and should not be used.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work relates to introducing a novel causal video question answering
dataset, and does not contain theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Our paper presents a new dataset, including splits and benchmarks the perfor-
mance of various existing VideoQA models on it. Best performance on val set is used to
determine the best version of each baseline. This will be supplemented by our dataset, splits,
and code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We present a video question answering dataset derived from Tom and Jerry
cartoon series. We provide all the annotations; however, Tom and Jerry cartoon videos are
to be purchased by users (link provided in the paper).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We benchmark various existing models on our dataset, for which we use the
settings used by respective papers and publicly available implementations. We provided any
additional specifications used by us.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We did not run multiple trials. Instead, we followed the standard practice in
literature, and have used a fixed random seed to reduce the result variation and provide the
code for others to reproduce the work and compare the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the details in supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All the annotators were fairly remunerated. While the country in which this
work was done does not have minimum wage, it does have standards defined for hiring. We
tightly followed the standard procedure. For the human subjects who participated in the
human studies were not paid, but this condition was clearly discussed with them before
conducting the studies; and we proceeded only after they agreed. We have discussed the
negative impacts of our work in the supplementary.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impact in paper and supplementary.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our dataset is derived from Tom and Jerry cartoons to study causal video
question answering. Tom and Jerry cartoons are children safe as per their rating, and do not
contain unsafe images/visuals. Furthermore, we do not provide any videos, we only provide
annotations. All the rights to Tom and Jerry are reserved by their owners.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our dataset is derived from Tom and Jerry cartoon series. We do not claim
any rights over the cartoon series, all rights reserved by their owners. We only provide the
annotations, and specify that the cartoon video have to be bought from Warner Bros. We
credit the papers of the models we benchmark on our dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our dataset is synthetic in nature, and as such, does not involve any personal
assets. Furthermore, usage terms are specified.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not crowdsource, but rather hired staff full-time for seven months.
We had conducted human user studies, for which we have provided the screenshots in
supplementary.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We conduct human studies regarding the types of reasoning required by video
question answering datasets. To the best of our knowledge these datasets do not contain any
harmful content and as such does not pose risks to human subjects. Further, no harm was
reported by any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Appendix / supplemental material

We have provided the Appendix (a PDF file + PowerPoint presentation).

Contents

1. Extended related work subsection A.1
2. Implementation details subsection A.2
3. Details regarding MIST-CC subsection A.3
4. Annotators’ background subsection A.4
5. Dynamic scene linking subsection A.5
6. Full-size Tables and Figures subsection A.6
7. Dataset Stats and Examples subsection A.7
8. Wordclouds subsection A.8
9. Value in Multi-level answers to Why-questions subsection A.9

10. Causal chain details and examples subsection A.10
11. Further details on causal chain length comparison experiment subsection A.11
12. Details on Types of Reasoning subsection A.12
13. Extended analysis of models’ performance subsection A.13
14. Discussion on cartoon physics subsection A.14
15. CausalConfusion Negative Generation subsection A.15
16. CapsMIX extended details subsection A.16
17. Negative societal impact subsection A.17
18. Compute details subsection A.18
19. Link to dataset subsection A.19
20. Adopting image only VLMs for VideoQA

A.1 Extended Related Work

A.1.1 Datasets/Benchmarks

To drive the progress in Video QA, researchers have developed various datasets with distinct focuses
and contributions. In the following, we will delve into the landscape of Video QA datasets, examining
their characteristics, limitations, and the specific areas they address.

Early Video QA Datasets. During the early stages of Video QA research, several datasets relied
on video captions or descriptions to automatically generate questions and corresponding answers.
Examples of these datasets include MovieFIB [27], MSVD-QA [50], MSRVTT-QA [50], YouTube2Text
[10], open-ended QA, Zeng et al., and Video Context-QA[63]. These datasets played a crucial role in
the initial exploration of Video QA but were primarily limited to object and action recognition. They
lacked the ability to go beyond these basic visual cues, which posed limitations in understanding
complex interactions and causal relationships within videos.

TGIF-QA [13, 14] focuses on short videos and relies on captions to generate questions and answers,
but it is limited in its coverage of object interactions and causal reasoning. On the other hand,
ActivityNet-QA [56] annotates longer web videos, offering a broader range of content, but it also
lacks in capturing complex reasoning. Both datasets fall short in capturing the depth and complexity
required for comprehensive video question answering; they did not fully explore questions and
answers involving object interactions and causal relationships.

The Social-IQ [57] dataset is designed to address questions related to human social behavior in videos,
relying on multimodal cues for answering. This dataset emphasizes the importance of understanding
social interactions and dynamics within video content. By focusing on human behavior, Social-IQ
offers a unique perspective in video question answering. However, it should be noted that this dataset
primarily relies on multimodal cues, meaning that the answers to the questions heavily depend on
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the combination of visual and other sensory information, and as such cannot be used as a visual
reasoning dataset. While it provides valuable insights into social aspects of video content, the dataset
may not fully capture the broader context and reasoning required for comprehensive video question
answering.

CLEVRER [54] dataset covers temporal and causal relationships using collision events between
various objects. Being limited to simple, inanimate objects and collision events, it does not cover
reasoning involving emotions and intentions; objects do not have any characteristics; actions do
not have motivation or rationale; limited set of events; scene does not have an actually involved
background; character-object interaction is lacking. Moreover, the reasoning is over a shorter
temporal horizon than ours. Since it is a synthetic dataset with programmatically generated QA pairs,
there is also a lack of diversity in natural language descriptions of the events and human judgments.
CLEVRER-Humans [29] bridges this language gap, but, other shortcomings still persist.

AGQA [9] focuses on spatio-temporal scene understanding. For example, Did they <action1> or
<action2>for longer? What did the person do after <action>? What were they <action> first/last?
STAR, a situation reasoning dataset, additionally, covers prediction and feasibility questions. However,
they do not cover explanatory “why” questions like ours.

We have discussed and compared with NextQA [49], CausalVidQA [17], IntentQA [19] in detail in
the main paper. Here we provide some additional details on them. NextQA [49] contains descriptive
(related to location, counting, yes/no), temporal (related to temporal ordering previous, next), and
causal questions. CausalVidQA [17] contains descriptive, causal, predictive, and counterfactual.
While they provide a rationale for predictive and counterfactual, they do not explore and provide multi-
level answers and explanations for Why-questions, while our dataset does provide them. IntentQA
[19], a concurrent dataset explores understanding motivations based on context. Their dataset is
derived from NextQA causal and temporal questions, but they construct their dataset in a contrastive
manner such that the same actions under different contexts lead to different underlying intents.

A.1.2 Models

In the following, we have discussed the state-of-the-art VideoQA models that we have benchmarked
on VisCAQA dataset in the main paper. We have discussed their central concepts and unique design
characteristics.

• BlindQA [2]. In this approach, no visual information is leveraged. Answers are chosen
directly based on the questions. In a nutshell, this model learns a mapping from question to
answer. Higher performance by method would suggest that the dataset contains questions
that are not visually-grounded.

• EVQA [2]. This method extends BlindQA baseline by incorporating the visual stream
modeled by an LSTM.

• Spatio-Temporal Reasoning in Visual Question Answering (STVQA) [13]. This work intro-
duces three novel video QA tasks that demand spatio-temporal reasoning skills to answer
questions accurately. In addition, a new TGIF-QA dataset has been created to facilitate
research in this field. To address this issue, a dual-LSTM-based approach with both spatial
and temporal attention mechanisms has been proposed as a baseline model.

• Motion-Appearance Co-Memory Networks (CoMem) [8]. A novel Video QA framework,
combining Dynamic Memory Network (DMN) principles with motion and appearance
features. This innovative approach leverages a co-memory attention mechanism to incor-
porate both motion and appearance cues. It employs a temporal conv-deconv network to
create multi-level contextual information and utilizes a dynamic fact ensemble method for
constructing dynamic temporal representations tailored to specific questions.

• Heterogeneous Memory Enhanced Multimodal Attention Model (HME) [6].This innovative
end-to-end trainable Video QA framework begins by generating global context-aware visual
and textual features. It achieves this by interacting the current inputs with memory contents.
Subsequently, it integrates these multimodal features through attentional fusion to make
accurate inferences for answering questions.

• HCRN [16]. This is a hierarchical framework with conditional relation networks as building
blocks models input video at multiple scales (clip-, full video-level) in a cascaded manner.
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Figure 6: MIST-CC framework.

Visual features at each level are conditioned on the question features. The joint representation
is fed into the classifier for answer prediction.

• HGA [15]. Leverages heterogeneous graph reasoning module and a co-attention unit to
capture the local and global correlations between video clips, linguistic concepts and their
cross-modal correspondences.

• Multimodal Iterative Spatial-temporal Transformer (MIST) [7]. MIST, designed for long-
form Video Question Answering (VideoQA), revolutionizes conventional dense spatial-
temporal self-attention. It accomplishes this by utilizing two critical modules: segment and
region selection, which adaptively pick out frames and image regions tied to the questions.
Following this, it processes diverse visual concepts effectively with an attention mechanism.
This process occurs iteratively across multiple layers, empowering the model with multi-
event reasoning capabilities.

A.2 Implementation details

We use the publicly available github code repository: https://github.com/doc-doc/NExT-QA
for BlindQA, EVQA, CoMem, HME, HCRN, and HGA.

A.3 Details regarding MIST-CC

We design MIST-CC, a multitask version of MIST that learns to generate causal chains as an
auxiliary task. With MIST-CC, our goal is not to generate perfect causal chains during testing, per
se; but to focus on providing guiding signal to the model to improve the performance on question-
answering task. Framework for MIST-CC is shown in Figure 6. We build upon the publicly available
implementation of MIST. We implement the Causal Chain Generator in our MIST-CC framework
using a single-layer gated recurrent unit (GRU) with a 1024-dimensional hidden state; and dropout
rate of 0.2. The overall multitask (MTL) objective function to be minimized is the summation of: 1)
multichoice question answering loss (LMCQA); 2) causal chain generation loss (LCCG) (Equation 1).
We set α to 1. To obtain vanilla MIST, we set β to 0; while to obtain MIST-CC, we set β to 0.1. We
use ADAM optimizer with an initial learning rate of 1e-4. We do not use learning rate schedulers.
All the models are trained for 30 epochs, and the best version of a model is selected based on the
performance on the validation set.

LMTL = αLMCQA + βLCCG (1)

A.4 Annotators’ Background

Five undergraduate students from computer science and electrical engineering disciplines were
recruited as annotators. All the annotators listed at least Fluency as the English language skills level.
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Figure 7: Challenge of dynamic scene linking. Here we have shown temporal modeling or understanding in a
traditional sense; and compared it with dynamic scene linking. Our full causal chain for this particular example
consisted of three scenes. In traditional temporal modeling, typically the dependencies are modeled over gradual
transitions—typically, within a single scene. Notice the optical flow from traditional temporal modeling where
Jerry is going into a pool table hole. On the other hand, notice the abrupt scene change, which causes disruption
in visual flow, resulting in large amplitude and widespread optical flow. We have used optical flow as one way to
illustrate the magnitude of change (but other measures may also be used).

A.5 Dynamic Scene Linking

Our CausalChaos dataset involves more abrupt/frequent scene (event) changes than existing causal
video QA datasets. Causal links or clues needed to solve causal relationships in QA pairs in our
dataset are embedded in different scenes/events. Thus, video QA models must link these scenes/events
together to understand the story. We term this problem Dynamic Scene Linking. In the following, we
briefly discuss a related problem of temporal modelling and differentiate Dynamic Scene Linking
from it. Although humans can seamlessly link such scenes, dynamic scene linking introduces a novel
challenge for video understanding models in addition to temporal modelling.

Temporal modelling or understanding in video understanding generally refers to the process of
analyzing and interpreting the temporal dynamics or changes within a sequence of frames in a
video—typically within a single scene (refer to Figure 7). This involves capturing and understanding
the patterns of motion, action, and context over time. Temporal modeling techniques aim to extract
meaningful information from the temporal dimension of video data.

In the traditional sense, temporal modelling involves techniques that capture the gradual changes
and transitions occurring within a video sequence. This includes methods like optical flow and 3D
convolutional neural networks. These techniques are designed to capture the temporal dependencies
and patterns of continuity or gradual evolution in videos.

On the other hand, abrupt scenes or shot changes, such as those found in cartoons like Tom and Jerry,
represent sudden and significant shifts in the content or context of a video, however, these changes
are causally linked. These changes can include shifts in location, characters, actions, or camera
perspectives. Unlike gradual temporal changes, abrupt changes occur rapidly and may disrupt the
continuity of the narrative or visual flow. While temporal understanding typically involves linking
very nearby dependencies, dynamic scene linking involves linking across abrupt scene changes. For
example, in Figure 7, in Scene-2, some of the things the model needs to be able to understand are:
1) the thing that Jerry is carrying is Tom’s tail from its partial observation; 2) white furry hand is
of Tom. Implicit causal reasoning plays a crucial role in establishing continuity between scenes,
even when objects are seen partially or there are view changes. By relying on their understanding of
cause-and-effect relationships within the narrative, humans can seamlessly integrate partial views
and view changes into their mental model of the story. Similarly, models are required to do implicit
causal reasoning for dynamic scene linking, and can benefit from incorporating capabilities such as
forming a mental ’world model’ of the story.

Temporal modeling techniques in the context of abrupt scene changes need to be able to detect and
handle these sudden transitions effectively. While some traditional temporal modeling methods may
capture gradual changes well, they might struggle to handle abrupt changes efficiently. Specialized
algorithms or models may be required to identify and adapt to such abrupt scene changes.

A.6 Full-size Tables and Figures

Examples from CausalChaos! dataset. For easier viewing, we have provided dataset video
examples from Figure 1 from the main paper in the accompanying PowerPoint presentation.
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(a) (b)

Figure 8: Wordclouds corresponding to (a) Answers; (b) Explanations.

CausalChaos! vs NextQA dataset. For easier viewing, we have provided dataset video examples
from Figure 2(c) from the main paper in the accompanying PowerPoint presentation.

A.7 Further Dataset Stats and Examples

Dataset Stats:

• Average clip length : 357.95 frames
• Longest of clips : 2315.0 frames
• Average length of question : 6.54 words
• Longest length question : 17 words
• Longest question : Why did Jerry and Tuffy put the wire into the water and turn on the

freeze mode?
• Average length of Answer : 7.76 words
• Longest length Answer : 26 words
• Longest Answer : Tom saw his tail and hind legs at the top of the pipe while Tom’s head

and front legs were at the bottom of the pipe.
• Average length of Explanation: 13.88 words
• Longest length Explanation: 30 words
• Longest Explanation: Tom thought Jerry would walk into the hole and into Tom’s mouth

but Jerry let the toy mouse go first and Tom ate the toy mouse thinking it was Jerry.

Dataset examples. For easier viewing of the videos, we have provided them in the accompanying
PowerPoint presentation.

A.8 Wordclouds

Wordclouds are illustrated in Figure 8.

A.9 Value in Multi-level Answers to Why-Questions

We richly annotate our dataset with multi-level answers to "Why"-questions behind the actions of
characters in the Tom and Jerry cartoon. In this section, we discuss why and how a significant value
lies in providing multi-level answers to "why" questions (or exploring various layers of causality or
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explanation) regarding characters’ actions (or, in general life, people’s actions). "Why" questions do
not always have simple, straightforward answers—they often involve multiple layers of explanation
and understanding. In our dataset, we consider cartoon characters and their actions, but here for
more generality, we take human behavior as a case for discussion. Human behavior is typically
multifaceted, influenced by a variety of factors including personal experiences, emotions, social
context, cultural background, cognitive processes, etc.

There can be multiple layers of rationale behind any action or decision. For example, someone might
choose to volunteer at a homeless shelter. On the surface, the reason may seem obvious – to help
those in need. But delving deeper, you might find additional motivations such as personal fulfillment,
a desire to contribute to the community, religious beliefs, or even social pressure from peers.

Recognizing the complexity of human behavior and understanding that there can be multiple, inter-
twined reasons for why people act the way they do is essential for empathy, effective communication,
and building strong interpersonal relationships. Some of the ways multi-level answers to ’Why’-
questions help are as follows:

• Understanding Motivations: At the surface level, a person’s actions may seem straight-
forward, but delving deeper can reveal the underlying motivations and intentions driving
those actions. Multi-level answers can help uncover these motivations, providing a more
comprehensive understanding of human behavior.

• Contextual Understanding: Human behavior is complex and influenced by a variety of fac-
tors, including personal experiences, societal norms, cultural background, and psychological
factors. Providing multi-level answers allows for a more nuanced understanding of the
context in which the behavior occurs, shedding light on the various influences at play.

• Predictive Insights: By understanding the multiple layers behind people’s actions, it becomes
easier to predict future behavior. Recognizing patterns in motivations and behaviors can help
anticipate how individuals might act in different situations, enabling better decision-making
and planning.

• Empathy and Compassion: Exploring the deeper reasons behind someone’s actions fosters
empathy and compassion. It allows us to see beyond the surface behavior and understand the
person’s perspective, experiences, and struggles, leading to more meaningful interactions
and relationships. While this might be more of a human experience-related factor and might
be limited to very specialized machines like empathetic robots, but still shows potentially
how multi-level answers help.

• Problem Solving and Conflict Resolution: In situations where conflicts arise or problems
need to be addressed, understanding the multi-level reasons behind people’s actions can
facilitate more effective problem-solving and conflict-resolution strategies. It enables
individuals to address underlying issues rather than just surface-level symptoms.

Overall, providing multi-level answers to “why" questions behind people’s actions enhances our
understanding of human behavior, promotes empathy and compassion, and facilitates better decision-
making and problem-solving.

A.10 CausalChain Details and Examples

In the following, we have provided some examples from our dataset to illustrate causal chains of
different lengths. Note that, answer and explanation were combined when computing the length of
causal chains.

Question: Why did Jerry slide?
Answer+Explanation: Jerry slid down the clock because he saw Spike trying to catch Tom and was
confident that Spike’s attention was on Tom and not Jerry.

Length of causal chain: 2. In the given event involving Jerry, Spike, Tom, and a clock, we can identify
several causal relationships that form a chain of events. Let’s break it down:

1. Event A: Jerry sees Spike trying to catch Tom.
2. Event B: Jerry is confident that Spike’s attention is on Tom.
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3. Event C: Jerry slides down the clock.

Now, let’s consider the causal relationships:

• Event A causes Jerry’s perception of Spike’s actions.
• Event B is influenced by Jerry’s perception of Spike’s actions.
• Event B causes Jerry’s confidence in Spike’s attention being on Tom.
• Event C is influenced by Jerry’s confidence in Spike’s attention.

So, we can identify at least two causal links or events in this scenario. Each event contributes to the
next in a causal chain, leading to the final action of Jerry sliding down the clock.

Question: Why did Jerry go below chicken?
Answer+Explanation: Jerry went below the chicken sitting on her nest to hide and get protection from
Tom.

Breakdown of the events and causal links in this case is:

• Event A: Tom poses a threat to Jerry.
• Event B: Jerry seeks protection and safety.
• Event C: Jerry goes below the chicken sitting on her nest as a protective measure.

Here, we can identify that there are two causal links in the causal chain of the event.

A.11 Further details on Causal Chain Length Comparison Experiment

We leveraged GPT-4o [33] to compute the lengths of causal chains involved in the QA pairs from our
and existing causal video QA datasets [49, 17, 19]. We randomly sampled 100 causal-Why QA pairs
from all the datasets. Then, we used the following prompt: “What is the causal chain in the following
question-answer pair? Please return the causal chain in the form of event_A->event_B->event_C...If
no cause-and-effect relationship is addressed, then output 0...Question: [question added here] Answer:
[answer added here]." to ask GPT-4o to obtain the causal chain in each QA pair. We define the length
of a causal chain as the number of links in that chain. For example, “event_A->event_B" has a length
of 1, while “event_A->event_B->event_C" has a length of 2. Since our dataset contains multi-level
answers, we combined answers and explanations using GPT-4 to get an overall answer to reflect the
true length of the full causal chain involved. We use these overall answers when computing the causal
chains for our dataset. Extracted causal chains from all datasets were manually verified. Human
verifiers agreed 89% of the times with the causal chains. Once the lengths of causal chains for all
the samples are computed, we average them to get the average causal chain length for a dataset. We
repeat the process for all datasets and then compare them.

A.12 Details on Types of Reasoning

A.12.1 Definitions of Types of Reasoning

In the following, we have provided the definitions of various types of reasoning.

1. Deductive Reasoning involves drawing specific conclusions based on general principles or
premises. Questions from our dataset can require video understanding models to answer
based on established patterns or cause-and-effect relationships between characters’ actions
(e.g., Figure 9(a)).

2. Inductive Reasoning involves making generalizations or forming hypotheses based on
specific observations. Tom and Jerry episodes contain such episode-specific actions or
features or nuances, e.g., as in Figure 9(b). Answering causal questions related to such
actions involves inductive reasoning.

3. Spatial Reasoning involves predicting and understanding spatial relationships or configura-
tions. Our dataset requires Video-QA models to have an understanding of the physical space
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Figure 9: Examples of various types of reasoning required by our dataset. Please zoom in & view in
AdobeReader to play the embedded videos.

and how the characters navigate it, interactions with the environment, including concepts
such as distance, direction, and obstacles (crashing in or avoiding it). For example, as shown
in Figure 9(c).

4. Causal Reasoning involves understanding cause-and-effect relationships between actions
and their consequences. In the process of answering questions in our dataset, Video QA
models will be required to engage in causal reasoning by linking the characters’ actions or
sub-events within an episode to the resulting consequences and understanding the cause-
and-effect chains in the cartoon as depicted in Figure 9(d).

5. Critical Thinking in our setting encompasses a range of cognitive processes, including
analysis, and evaluation by analyzing the visual cues, and interpreting the characters’ actions.
A way to judge the complexity of critical thinking questions is by measuring the lengths
of causal chains. To get the full picture, it is also important how difficult each link in this
causal chain is to be inferred from the video (refer to Figure 9(e))

6. Emotion Reasoning involves recognition and understanding of emotions and how they can
affect behavior and decision-making. Our dataset requires models to perform emotion/facial
expression recognition and link them to characters’ actions/behaviors. For example, as
shown in Figure 9(f).

7. Abductive reasoning involves making an inference or hypothesis based on limited or
incomplete information, in order to explain or interpret a situation or phenomenon. Our
dataset contains questions that involve making inferences from partial information, e.g., it is
to be inferred that Tom was scared because there is a fight going on from the visual cues of
furniture being thrown around, without seeing the actual fight as shown in Figure 9(f).

8. Temporal Reasoning refers to understanding and reasoning about the sequence/ordering of
events over time—understanding the relationships between different actions, and identifying
causal relationships amongst them (Why A is done before/after B) as in Figure 9(g).

A.12.2 Human Study Details

Human subjects in human studies had a background in the disciplines of computer science and
electrical engineering; from undergraduate student level to postdoctoral level. Five human subjects
participated in the study. For determining reasoning types, the subjects were first explained reasoning
types and given brief training on identifying those. A screenshot is shown in Figure 10. Subjects were
then shown the question-answer pairs (unseen during the briefing) and asked to choose the reasoning
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Figure 10: Screenshot of a guide used as a part to explain types of reasoning to human subjects.

Figure 11: Screenshot of user interface used for collecting responses from human subjects for CausalChaos!
dataset.

Figure 12: Screenshot of user interface used for collecting responses from human subjects for NextQA
dataset.

types. Screenshots are shown in Figure 11, Figure 12. In the interface, all the reasoning types were
listed out, and the subjects had the freedom to select multiple reasoning types if they thought an
instance contained more than one type of reasoning. Additionally, a “No Reasoning Type" option
was available to subjects in case they deemed that no reasoning was involved.

A.13 Extended analysis of models’ performance

In the main paper, we discussed two of the major limitations of VideoQA models. Other limitations
include: 1) some models like MIST do not leverage explicit motion information using, e.g., spatiotem-
poral convolutional neural networks. Due to this, they might inaccurately infer the scene based on a
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Model BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE SPICE CIDEr S-BERT CapsMIX
A E A E A E A E A E A E A E A E

Finetuned

BlindQA [2] 0.2412 0.1912 0.1039 0.0618 0.0415 0.0221 0.1243 0.0891 0.2732 0.1885 0.2956 0.0703 0.1034 0.0403 0.4987 0.4195 2.7646
UATT [53] 0.2661 0.2203 0.1257 0.0805 0.0575 0.0330 0.1409 0.1046 0.3171 0.2293 0.3547 0.2775 0.1197 0.0397 0.5495 0.4767 3.3928
HME [6] 0.2650 0.2072 0.1301 0.0713 0.0554 0.0219 0.1504 0.0914 0.3125 0.2273 0.3184 0.0826 0.0936 0.0639 0.5328 0.4737 3.0975
HGA [15] 0.2891 0.2263 0.1588 0.0897 0.0789 0.0323 0.1856 0.1130 0.3388 0.2399 0.3980 0.2426 0.2782 0.0573 0.6026 0.4561 3.7872
BlindGPT-2 0.3770 0.3165 0.2530 0.1749 0.1632 0.1091 0.2452 0.1761 0.3858 0.2966 0.4305 0.3529 1.2482 0.7690 0.6755 0.6271 6.6006
VisionGPT-2 0.3878 0.3095 0.2605 0.1727 0.1738 0.1091 0.2560 0.1756 0.3934 0.2941 0.4498 0.3385 1.3725 0.7539 0.6760 0.6350 6.7582
VILA (FT) [24] 0.3941 0.3333 0.2907 0.2111 0.2088 0.1391 0.2972 0.2221 0.4417 0.3532 0.4930 0.4342 1.7110 1.0427 0.7331 0.7264 8.0320

Zeroshot

BLIP-2 [18] 0.1381 0.0815 0.0451 0.0256 0.0167 0.0059 0.0664 0.0480 0.1618 0.1312 0.0530 0.0422 0.2279 0.1046 0.3837 0.3614 1.8931
Video-LLaMA [59] 0.1241 0.1181 0.0419 0.0344 0.0115 0.0098 0.1477 0.1163 0.1719 0.1435 0.2055 0.1383 0.0836 0.0430 0.5734 0.4834 2.4464
VideoChat2 [21] 0.2353 0.2116 0.0823 0.0776 0.0250 0.0253 0.1769 0.1295 0.2667 0.2168 0.3264 0.2547 0.3980 0.2910 0.6445 0.5908 3.9524
GPT-4o [33] 0.1449 0.0814 0.0522 0.0253 0.0171 0.0060 0.1975 0.1530 0.1670 0.1064 0.3169 0.1808 0.2601 0.0029 0.6697 0.6039 2.9851

(a)

Model BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE SPICE CIDEr S-BERT CapsMIX
A E A E A E A E A E A E A E A E

Finetuned

BlindQA [2] 0.2193 0.1795 0.0772 0.0468 0.0326 0.0149 0.1122 0.0813 0.2501 0.1767 0.2960 0.1147 0.1099 0.0434 0.5129 0.4260 2.6935
UATT [53] 0.2693 0.1947 0.1257 0.0581 0.0440 0.0146 0.1466 0.0847 0.3226 0.2107 0.3255 0.2012 0.1444 0.0646 0.5364 0.4829 3.2260
HME [6] 0.2475 0.1830 0.1031 0.0549 0.0363 0.0154 0.1417 0.0845 0.2820 0.2173 0.2933 0.2549 0.0831 0.0655 0.5165 0.4929 3.0719
HGA [15] 0.2586 0.1842 0.1085 0.0517 0.0365 0.0148 0.1433 0.0932 0.2909 0.1806 0.2908 0.2128 0.0877 0.0266 0.5231 0.4078 2.9111

(b)

Model BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE SPICE CIDEr S-BERT CapsMIX
A E A E A E A E A E A E A E A E

Finetuned

BlindQA [2] 0.2312 0.1847 0.0869 0.0550 0.0319 0.0198 0.1263 0.0930 0.2519 0.1806 0.2758 0.2447 0.0667 0.0265 0.4844 0.4153 2.7747
UATT [53] 0.2659 0.1936 0.1180 0.0645 0.0548 0.0223 0.1423 0.0868 0.3025 0.2200 0.3449 0.2595 0.0940 0.0713 0.5447 0.4750 3.2601
HME [6] 0.2640 0.1930 0.1238 0.0644 0.0556 0.0239 0.1457 0.0868 0.2998 0.2155 0.3115 0.1623 0.0944 0.0698 0.5341 0.4761 3.1207
HGA [15] 0.2674 0.2293 0.1337 0.0823 0.0620 0.0308 0.1703 0.1123 0.3186 0.2363 0.3734 0.2558 0.1972 0.0477 0.5765 0.4692 3.5628

(c)
Table 5: OEAG Results on our dataset. (a) UD split; (b) PS split; (c) UN split.

single static frame, instead of motion containing video clips. We believe these models can further
improve their performance by incorporating explicit motion information. 2) Our CausalChaos dataset
introduces the challenge of reasoning by linking scenes/shots. This is different from traditional
temporal modeling, which is done within a scene. Scenes/shots involve an abrupt change in the scene.
Traditional temporal modeling typically is geared toward smoother transitions; abrupt changes violate
this condition. So while traditional temporal modeling does aid on our dataset, abrupt scene changes
in our dataset poses a further challenge for VideoQA models which is not adequately addressed by
traditional temporal models like 3DCNN feature extractors. We evaluated BLIP-2, VideoLLaMA and
VideoChat2 on MCQA and Open-Ended Answer Generation (OEAG) task. We noticed that BLIP-2
model performed better on MCQA, while VideoChat2 and VideoLLaMA performed better on OEAG
task. Notably, OEAG requires better language modeling than that required in MCQA task.

Qualitative results. We have provided the qualitative analysis of models’ failure cases in the
accompanying PowerPoint presentation for the following tasks/cases:

1. Multi-Choice Question Answering (MCQA)
2. Open-Ended Answer Generation (OEAG)
3. Incorporating our data into real-world Video QA

Full results on OEAG are presented in Table 5.

Normalized performances on OEAG are presented in Table 6. We normalize using upperbound
of the individual metric, and then average across all the metrics. Upperbound of CapsMIX in this
case would be 1.

A.14 Discussion on cartoon physics

Cartoon physics often operates within its own set of rules and logic, which may differ from real-world
physics but still maintain consistency within the cartoon’s universe. These rules might include
exaggerated movements, gravity-defying actions, and other fantastical elements that wouldn’t occur
in reality but are accepted within the context of the cartoon world. Despite the departure from
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Model CapsMIX

Finetuned

BlindQA 0.1648
UATT 0.2032
HME 0.1848
HGA 0.2180
BlindGPT-2 0.2993
VisionGPT-2 0.3031
VILA 0.3475

Zero-shot

BLIP-2 0.0997
Video-LLaMA 0.1458
VideoChat2 0.2084
GPT-4o 0.1719

Table 6: Normalized OEAG results on our dataset (UD split).

real-world physics, there is often an internal consistency to how these cartoon physics operate within
their respective universes.

Despite the departure from real-world physics, humans/video understanding models can apply causal
reasoning within the context of cartoon physics to predict the consequences of characters’ actions.
For example, if a character steps off a cliff, humans expect them to fall downwards due to gravity,
even if the fall is exaggerated or prolonged for comedic effect. This consistency can allow video-
understanding models to anticipate and understand the outcomes of actions within the cartoon world,
facilitating their ability to follow the storyline and engage with the humor and narrative.

Furthermore, the consistency of cartoon physics enables humans to make logical connections be-
tween different events and understand the progression of the story. By recognizing patterns and
understanding how actions lead to specific outcomes, video understanding models can engage in
causal reasoning to predict future events and comprehend the logic of the cartoon universe.

A.15 CausalConfusion incorrect/negative answer generation

Samples from the dataset created using Vanilla Hard Negative mining:

Q: Why did Tom dip his fingers in the ink?
Correct A: To draw a mouse hole on the wall.
Incorrect A(1): Tom wanted Jerry to mistake Tom’s finger for a sausage.
Incorrect A(2): Tom was preparing to eat.
Incorrect A(3): Tom wanted to see if there was ink in the pen.
Incorrect A(4): Tom’s hand was in pain.
Correct E: Tom was trying to trick Jerry by drawing a fake mouse hole on the wall.
Incorrect E(1): Tom’s hand was in pain from hitting Jerry with the vase.
Incorrect E(2): Tom was excited to eat Jerry who was on Tom’s plate.
Incorrect E(3): Tom thought there was no ink in the pen as the ink did not come out when Jerry pulled the
pen.
Incorrect E(4): Tom wanted to trick Jerry to mistake Tom’s finger for a sausage so that Tom could catch
Jerry when Jerry tried to steal Tom’s finger.

Q: Why did Tom climb onto the gate?
Correct A: The bull was charging towards Tom.
Incorrect A(1): Tom was trying to get away from Spike.
Incorrect A(2): Tom wanted to get to a higher point on the tree.
Incorrect A(3): because Tom heard barking sounds and was scared.
Incorrect A(4): Tom was trying to get away from Spike and Tyke.
Correct E: The bull was charging towards Tom so Tom climbed onto the gate to avoid getting hurt by the
bull.
Incorrect E(1): because Jerry imitated Spike to bark at Tom to scare Tom into climbing up the tree.
Incorrect E(2): Tom was scared of Spike who was chasing Tom and climbed up the tree to get away from
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Spike.
Incorrect E(3): Tom was dressed as a bird and wanted to climb higher on a tree to take off.
Incorrect E(4): Tom saw Spike and saw Tyke barking and wanted to get away from them.

Examples of Vanilla Hard Negatives vs. CausalConfusion Negatives:

Q: Why did Tom dip his fingers in the ink?
Correct A: To draw a mouse hole on the wall.
Vanilla Hard Negatives
Incorrect A(1): Tom wanted Jerry to mistake Tom’s finger for a sausage.
Incorrect A(2): Tom was preparing to eat.
Incorrect A(3): Tom wanted to see if there was ink in the pen.
Incorrect A(4): Tom’s hand was in pain.
CausalConfusion version
Incorrect A(1): To not draw a mouse hole on the wall.
Incorrect A(2): Tom was preparing to eat.
Incorrect A(3): Tom wanted to see if there was ink in the pen.
Incorrect A(4): Tom’s hand was in pain.

Q: Why did Tom climb onto the gate?
Correct A: The bull was charging towards Tom.
Vanilla Hard Negatives
Incorrect A(1): Tom was trying to get away from Spike.
Incorrect A(2): Tom wanted to get to a higher point on the tree.
Incorrect A(3): because Tom heard barking sounds and was scared.
Incorrect A(4): Tom was trying to get away from Spike and Tyke.
CausalConfusion version
Incorrect A(1): The bull was not charging towards Tom.
Incorrect A(2): Tom was charging towards the bull.
Incorrect A(3): because Tom heard barking sounds and was scared.
Incorrect A(4): Tom was trying to get away from Spike and Tyke.

A.16 CapsMIX extended details

However, we note that with such a wide range of metrics, it is difficult to get a comprehensive
insight into models’ performances & compare them. To address that, we introduce a comprehensive
metric, termed Caps-MIX (Captioning Metrics Integration eXpert), which integrates all the previously
mentioned scores after normalizing them to their theoretical best values. This 1) makes it easier to
compare models using a single number and 2) combines the characteristics of individual metrics,
each measuring performance from a unique perspective. We avoid using the WUPS score [28], as it
is designed for single-word answers and is not suitable for our dataset’s detailed responses.

A.17 Negative societal impact

While our dataset has a positive attribute of being synthetic in nature. And as such, we do not suggest
deploying models trained on our dataset in real-world applications. Causal reasoning models trained
on real-world data can potentially be used to find out or estimate why people carried out actions.
This, in-turn, can be used to deduce further actionable insights into people’s behavior. This might
justifiably be seen as an intrusion of privacy, especially, without consent. Thus, such systems shall not
be deployed/used without the consent of all the parties involved. We suggest that this space should
be regularized by governing bodies, and consent from the end-users, and parties being monitored is
inevitable.

A.18 Compute details

We used machine with following specifications: Intel(R) Xeon(R) W-2245 CPU@3.90GHz; 64GB
RAM; 2x Nvidia A5000 24GB.
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A.19 Link to Dataset

We have included the following dataset files in the supplementary.

1. File containing all the annotations
2. Vanilla hard negative sets
3. CausalConfusion set

The dataset files are also publicly available at: https://github.com/LUNAProject22/
CausalChaos.

A.20 Adopting Image only VLMs for VideoQA

We adopt natively image-VLMs for VideoQA in the following ways. Adoption is dependent on
the model. For example, for BLIP-2, we average the frame-level vision features to serve as our
video-level feature. In Particular, we follow the standard practice and uniformly sample 16 frames
from the video. For GPT4o, we use the following strategy: whilst they have yet to publicly release
the video model it has been shown that it is able to summarize and understand videos by providing a
sequence of images. As such, we pass in a sequence of 16 frames sampled uniformly from the video
as the visual inputs.
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