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Abstract

Existing human motion Q&A methods rely on explicit pro-
gram execution, where the requirement for manually defined
functional modules may limit the scalability and adaptability.
To overcome this, we propose an implicit program-guided
motion reasoning (IMoRe) framework that unifies reason-
ing across multiple query types without manually designed
modules. Unlike existing implicit reasoning approaches that
infer reasoning operations from question words, our model
directly conditions on structured program functions, ensur-
ing a more precise execution of reasoning steps. Additionally,
we introduce a program-guided reading mechanism, which
dynamically selects multi-level motion representations from
a pretrained motion Vision Transformer (ViT), capturing
both high-level semantics and fine-grained motion cues. The
reasoning module iteratively refines memory representations,
leveraging structured program functions to extract relevant
information for different query types. Our model achieves
state-of-the-art performance on Babel-QA and generalizes
to a newly constructed motion Q&A dataset based on HuM-
Man, demonstrating its adaptability across different motion
reasoning datasets.

1. Introduction
Understanding human motion has been a crucial challenge in
computer vision, with wide applications in human-computer
interaction and embodied AI. Significant progress has been
made in human motion understanding, especially in action
recognition and motion forecasting, while fine-grained hu-
man motion understanding and reasoning over subtle mo-
tions have been overlooked. Identifying body parts or the
direction of movement involved in an action remains chal-
lenging due to the lack of high-quality annotated datasets,
occlusions, motion ambiguities, variability in human poses,
and the difficulty of modeling spatiotemporal dependencies
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Figure 1. Illustration of the Program-Guided Reasoning Process
for Human Motion Q&A. Given a motion sequence and a natural
language question, our model executes a structured reasoning pro-
cess using a program-guided reasoning module.

at a fine-grained level. Recently, the human motion Q&A
task has been introduced in [11] to address complex and
fine-grained human motion understanding. Given a motion
sequence and a corresponding question in natural language,
this task requires multistep reasoning to predict various at-
tributes of the motion sequence.

Existing approaches [11] to human motion question-
answering (Q&A) rely on predefined functional modules
that explicitly perform reasoning steps such as filtering, re-
lational inference, and querying. The advantage of explicit
program-based reasoning compared to previous end-to-end
approaches [33] lies in its interpretability, as it provides ac-
cess to all intermediate execution results, and in its data
efficiency, since each functional module is designed with
a small set of parameters. Despite the advantages, these
explicit program execution-based methods suffer from lim-
itations in scalability and adaptability due to their reliance
on manually defined functional modules. To overcome these
constraints, we propose a novel implicit program-guided
motion reasoning (IMoRe) framework that uses a unified
reasoning module across multiple types of queries. Instead
of leveraging separate handcrafted functional modules, our
model dynamically adapts its reasoning process based on



structured program functions, ensuring flexibility and gener-
alization across diverse queries.

The specific design of our reasoning module is inspired
by the Memory, Attention and Composition (MAC) [16],
which conducts iterative reasoning by composing control,
read, and write units. The control unit identifies a series of
operations from the given text, the read unit extracts relevant
information from the visual input to execute each opera-
tion, and the write unit iteratively integrates the extracted
information into the cell’s memory state, generating interme-
diate reasoning results. Although the MAC module infers
reasoning operations through soft attention over question
words, this approach can introduce ambiguity in operation
generation, potentially affecting the accuracy of visual in-
formation retrieval. To solve this, our model is designed to
condition directly on program functions, ensuring a more
precise representation of reasoning operations. Furthermore,
our approach enhances interpretability by explicitly defining
operations, making the reasoning process more transparent.

To further enhance reasoning capacity, we introduce a
program-guided reading mechanism. The motion under-
standing and reasoning task necessitates extracting different
attributes from motion sequences. Furthermore, queries
about action types require high-level motion sequence un-
derstanding, whereas queries about body parts require fine-
grained information on localized motion. To address these
challenges, we extract multi-level features from a pre-trained
motion Vision Transformer (ViT) [38] and allow the reason-
ing module to select the most appropriate feature level based
on the program function. This design allows the model to
access the most relevant information dynamically for each
reasoning step.

We evaluate our approach on the Babel-QA benchmark,
where our model significantly outperforms existing meth-
ods. To further test its generalization capability, we intro-
duce a new motion Q&A dataset based on the HuMMan
dataset. Additionally, we assess the robustness of our model
by using predicted programs, and simulating scenarios where
ground truth programs are unavailable. The experimental re-
sults demonstrate the effectiveness of our proposed approach
across different datasets, highlighting its adaptability and
robustness in motion Q&A tasks. Our contributions can be
summarized as follows:

• We propose a novel implicit program-guided reasoning
framework that unifies reasoning across multiple operation
types without relying on predefined functional modules.

• We introduce a program-guided reading mechanism that
enables the model to dynamically choose the most suitable
features for each step of reasoning.

• We achieve state-of-the-art performance on the Babel-QA
benchmark and introduce a new motion Q&A dataset
based on HuMMan to evaluate generalization capability.

2. Related Work

Human Motion Understanding Human motion under-
standing has been widely studied, particularly in action
recognition [2–4, 7, 8, 23]. ST-GCN [34] introduced graph
convolutional networks (GCNs) to model spatial-temporal
relationships between body joints, establishing a dominant
paradigm in skeleton-based action recognition. Subsequent
works have improved GCN architectures to enhance accu-
racy. Beyond GCNs, PoseConv3D [10] proposed a 3D
heatmap volume representation, enabling 3D-CNN mod-
els to achieve superior performance. For untrimmed motion
sequences, temporal convolutional networks (TCN) [12, 35]
and transformer-based models [32] estimate per-frame action
probabilities to facilitate action localization. Further, motion-
language research has gained attention in linking natural
language with 3D human motion. Notable efforts include
various motion-language datasets such as KIT [30], Hu-
manML3D [13], HuMMan [39]. Existing motion-language
models primarily focus on contrastive learning to align mo-
tion and text representations [33, 38]. While these models
provide valuable insights into motion sequences, they lack
the ability to perform multi-step reasoning that combines
action-level understanding with fine-grained motion analysis,
such as identifying body parts involved in specific frames or
detecting sudden changes in movement. To address this lim-
itation, the recent work NSPose [11] introduced the human
motion question-answering (QA) task, which evaluates fine-
grained human behavior understanding by pairing motion
sequences with natural language questions and categorical
answers. Building on this foundation, our study also ad-
dresses the human motion QA problem, aiming to enhance
human motion reasoning by developing a more adaptive and
scalable reasoning framework.

Reasoning Approaches for Question Answering Ques-
tion Answering (QA) in Artificial Intelligence is a funda-
mental research area focused on developing systems capable
of understanding and responding to user queries across vari-
ous modalities, including text, images, video, motion, and
multimodal inputs. Early QA systems were mainly built on
rule-based or statistical methods [20]. However, with the
advent of deep learning, neural reasoning has become a dom-
inant approach. Recent advancements in neural reasoning
for QA span multiple modalities, including text-based QA
[28, 36], image-text QA [21, 22, 25, 26], and video-text QA
[19, 40]. Most of these models are built upon Recurrent
Neural Networks (RNNs) and Transformer architectures.
Meanwhile, neuro-symbolic reasoning has demonstrated
significant success in visual reasoning tasks [17, 27, 37].
Neuro-symbolic VQA [37] integrates symbolic program exe-
cution with visual recognition to improve question answering
performance, achieving strong performance on the CLEVR



Figure 2. Overall pipeline of our Program-Guided Motion Reasoning Framework. Motion and text features are extracted using a ViT-based
motion encoder and RoBERTa. These features are processed through a structured reasoning module, where intermediate memory states are
iteratively refined using program guidance. A multi-branch classifier is adopted to predict the final answer.

benchmark [18]. NS-CL [15] further improved this paradigm
by eliminating the need for dense supervision, enabling the
model to learn reasoning patterns by observing images and
reading natural language questions and answers. MMN
[5] improves over Neural Module Network [1] by taking in
function recipes and morph into diverse instance modules dy-
namically. More recently, neuro-symbolic frameworks have
been extended to temporal reasoning [6], knowledge-based
reasoning [29] and 3D reasoning [14, 15] as well. In human-
motion reasoning, NSPose employs a neuro-symbolic rea-
soning model that explicitly defines functional modules to
process motion data. While this approach offers advantages
such as interpretability and data efficiency, its reliance on
manually defined functional modules poses challenges in
terms of scalability and adaptability, particularly when han-
dling diverse and complex motion scenarios. Overcoming
the above limitations, we propose a neural-based implicit
program-guided reasoning approach for human motion Q&A.
Unlike explicit neuro-symbolic methods, our approach learns
to reason implicitly without predefined functional operations,
allowing for greater flexibility, scalability, and adaptability
in complex motion reasoning tasks.

3. Method
3.1. Overview
We propose a novel memory mechanism-based reasoning
framework for the human motion Q&A task. This frame-
work is designed to utilize structured program functions
to guide the reasoning process, eliminating the need for
manually defined functional modules. This approach en-
ables interpretable and flexible reasoning over human motion
sequences. The overall framework is illustrated in Fig. 2.
Given a human motion sequence represented by 3D joint
locations as M ∈ RT×J×3, where T is the number of

frames and J denotes the number of joints per frame, and a
natural language question Q, the objective is to predict an
accurate answer by reasoning over the provided motion se-
quence. The motion sequence is first processed by a motion
encoder, which extracts feature embeddings representing
spatial-temporal dynamics. Additionally, we assume the
availability of a structured program P , which can either be
a ground-truth program or a predicted program from an ex-
isting program predictor [9]. Rather than executing directly
over the feature representation in a rule-based manner as
done in [11], we have developed a unified reasoning module
inspired by the MAC architecture [16]. The original MAC
model generates operations by computing soft attention over
question words, which introduces potential ambiguity due
to language variability and contextual dependencies. To
mitigate these limitations, we introduce a program-guided
reasoning module. The program guidance ensures that each
reasoning step follows an explicitly defined program func-
tion, hence eliminating inconsistencies introduced by soft-
attention-based reasoning. This reasoning process is further
elaborated in Section 3.3. Additionally, different types of
questions require reasoning over different motion attributes.
For instance, queries about action types demand a high-level
semantic understanding of motion sequences, while queries
about body parts necessitate fine-grained spatial attention to
localized movements. To effectively connect these hierarchi-
cal representations, we introduce a program-guided reading
mechanism that dynamically selects the most informative
motion features for each reasoning step. The details of this
mechanism are described in Section 3.4. The whole iterative
reasoning and optimization are described in Section 3.5 and
Section 3.6, respectively.



3.2. Preliminaries on MAC Network
The Memory-Attention-Control (MAC) network is a neural
reasoning architecture designed for compositional reasoning
in question-answering tasks. The MAC network operates
iteratively, decomposing complex reasoning into multiple
stepwise operations, where each step refines an intermediate
memory state to arrive at the final answer. A MAC network
consists of three key components: 1) Control Unit which
determines the reasoning operation at each step by attending
to relevant parts of the question using a soft attention mech-
anism; 2) Read Unit which extracts pertinent information
from the visual input based on the control signal, allowing it-
erative refinement of retrieved evidence; 3) Write Unit which
integrates the extracted information into a recurrent mem-
ory state, progressively enhancing the representation of the
answer.

The iterative reasoning of the MAC network enables
multi-step inference, making it particularly suitable for tasks
requiring compositional logic, such as visual question an-
swering (VQA). However, despite its effectiveness in struc-
tured reasoning, MAC generates operations based on soft
attention over question words, which introduces ambiguity
and variability in operation at each reasoning step.

3.3. Implicit Program-Guided Reasoning Module
Given the motion sequence M and question Q, we first
use a motion encoder Em and a text encoder Et to extract
feature embeddings for the motion sequence and question
respectively. We adopted the pre-trained ViT model from
[38] as the motion encoder, which introduces a patch-based
representation for the skeleton structure. Instead of con-
sidering each joint, the patch-based representation divides
the skeleton joints into body parts, hence better encoding
skeleton structure information. The RoBERTa representa-
tion in [24] is used as our text encoder. The motion feature
fm = Em(M) and the text feature ft = Et(Q) are first fused
to obtain a text-aware motion feature:

hm = Attention(Q = fm,K = ft, V = ft). (1)

We use cross-attention with the query being the motion fea-
ture and the key and value being the text feature. In addition
to fusing with the text, the motion feature is further fused
with the question type information using the same attention
mechanism, with query being hm and key and value being
the question type. The question type is also encoded with
the RoBERTa before fusion. The final fused motion feature
is used for the iterative reasoning process.

We use the program as the guidance for reasoning. The
program is represented as P ∈ Rp×d, where p denotes the
length of the program and d the program embedding dimen-
sion. Note that the program can be ground truth as used
in [11] or predicted from an existing program predictor [9].

At each reasoning step, we gradually refine the intermedi-
ate memory states guided by the program. Specifically, at
the (i + 1)-th reasoning step with previous memory states
being {S1,S2...Si}, we first attend to the previous states
that are related to the current reasoning step by an attention
mechanism:

S ′
i = Attention(Q = Pi+1,K = S∥B∥, V = S∥B∥), (2)

where Pi+1 represents the program function for the (i+ 1)-
th reasoning step and S∥B∥ represents the previous mem-
ory states that are related to the current step. For ex-
ample, the question “What action does the person do be-
fore they move left?” and the corresponding program
“query action(relate(before, filter(left)))”, the program func-
tion relate() depends on the output of filter(). It is important
to encode this dependency information to provide context
information for each reasoning step. The dependency re-
lationship is provided by the structure information of the
program.

In addition to the previous context information, the model
also requires information to be extracted from the input mo-
tion sequence to conduct reasoning. This process is similar
to the reading stage of the MAC, where the key is to extract
the most relevant information for the current reasoning step.
We achieve this by directly taking the guidance from pro-
gram functions. For example, for the question “ What action
does the person do before they move left?”, the program
functions filter(move left) or relate(before) provides clear
information on which part to attend. This process is imple-
mented as an attention module with S ′

i being the query and
motion feature hm be the key and query:

Si+1 = Attention(Q = S ′
i,K = hm, V = hm). (3)

The intuition is that we refine the current memory states S ′
i

with the most relevant motion feature in hm. Compared to
operation generated by soft attention over question words
in the control unit of MAC, the direct program information
provides a more precise representation. As a consequence,
the proposed program-guided reasoning mitigates operation
ambiguities by directly conditioning each reasoning step on
explicit program functions.

3.4. Program-Guided Reading Mechanism
We introduce a program-guided reading mechanism to en-
hance the reasoning capacity of our model by enabling dy-
namic retrieval from a knowledge pool. Unlike the MAC
model, which extracts information from a single static fea-
ture representation, our model constructs a multi-level knowl-
edge pool by aggregating intermediate representations from
different stages of the Vision Transformer (ViT). This allows
the reasoning module to adaptively select the most relevant
feature representation at each step based on the program



function. We define the knowledge pool as a collection of
hierarchical feature embeddings extracted from layers of
the ViT model Fm = {hi}Mi=1, where hi represents the fea-
ture embeddings from the i-th intermediate layer of ViT.
Since feature representations from different layers encode
varying levels of abstraction, lower-layer features capture
fine-grained local motion details, while higher-layer features
encode global semantic information. Different levels of fea-
tures are important for different motion concepts. For exam-
ple, the question “What body part does the person use after
they jump” requires both high-level semantic understanding
for the concept ‘jump’ and low-level local information for
moving ‘body part’. We apply a projection layer to ensure
all feature embeddings reside in a shared latent space:

h′
i = W p

i hi, ∀i ∈ 1, ...,M, (4)

where W p
i is the projection layer for the i-th intermediate

output. The program-guided reading mechanism is imple-
mented by replacing the single motion feature hm with the
multi-level feature F = {hi}Mi=1, expressed as

Si+1 = Attention(Q = S ′
i,K = {h′

i}Mi=1, V = {h′
i}Mi=1).

(5)
By incorporating the most informative feature representation
at each step, our model can effectively capture dependen-
cies across hierarchical motion features, making it highly
adaptable to diverse motion concepts.

3.5. Iterative Reasoning
The reasoning module executes for p iterative steps, pro-
gressively refining the memory state until reaching the final
representation. Each intermediate state is stored in a memory
matrix, allowing the model to leverage dependency informa-
tion between reasoning steps, as formulated in Eqn (2). The
iterative refinement process is formulated as:

Si = f(Si−1,Pi, Fm), i = 1, 2, ..., p, (6)

where f represents the reasoning function integrating prior
memory Si−1, the program function Pi, and motion features
Fm. Once the final reasoning step is completed, the result-
ing representation is passed into a multi-branch classifier,
where each branch specializes in predicting answers corre-
sponding to a specific question type, including query action,
query direction, and query body part. For a given question,
only the corresponding branch depending on the question
type is activated. The question type information can be
directly obtained from the provided program.

3.6. Training and Optimization
The objective of our model is to predict the correct answer
based on the input motion sequence and question. We em-
ploy a classification-based answer prediction framework,

where the model predicts a probability distribution over the
candidate answers in the dataset. The predicted answer vec-
tor vans ∈ Ra represents the confidence scores for a possible
answers. The loss function of our model can be defined as:

L = − log p(vans|M,Q,P). (7)

We use the AdamW optimizer with weight-decay regulariza-
tion to prevent over-fitting, the weight-decay coefficient is
set to 0.0001.

4. Experiments
Training Details We used the pre-trained motion ViT en-
coder in [38] to extract the multilevel motion features re-
quired for the program-guided reading mechanism of our
IMoRe. This converts raw motion sequences into a unified
representation known as motion patches, which serve as the
input for the ViT-based motion encoder, with each patch
encapsulating joints relevant to specific body parts such as
the torso, right leg, and left arm. We used the RoBERTa
[24] text encoder to extract the required text embeddings.
The network was trained for 100 epochs using the AdamW
optimizer with a learning rate of 1e-6, dropout of 0.1, and
batch size 4 on a 48 GB NVIDIA RTX 6000 GPU. All ex-
periments were repeated three times, and the average results
were reported.

Implementation Details We implement our approach un-
der two settings as, (1) IMoRe I: In this setting, we provide
the entire human motion sequence as input. Since the motion
ViT encoder supports segments of 224 frames, we partition
the sequence accordingly and pass each segment separately
through the encoder covering the entire motion sequence.
(2) IMoRe II: In this setting, rather than processing the
complete sequence, we randomly sample 224 frames from
the whole sequence with a random starting index following
[38]. During validation and testing, we execute five runs
for the same sequence and select the run with the highest
logits scores. The intuition behind this setting is that the seg-
ment with the highest score should include the segment with
the query concept. We construct the composite knowledge
pool required for the program-guided reading mechanism
described in Section 3.4 by extracting features from M = 6
intermediate layers (i.e. i ∈ {0, 2, 4, 6, 8, 11}) of motion
ViT along with its final encoder output. Consequently, each
224-frame segment is processed through these six interme-
diate layers and the final encoder to form the composite
knowledge pool.

We further evaluate our approach under two scenarios:
one with ground truth programs provided and one with pre-
dicted programs. For the latter scenario, we adapt the coarse-
to-fine two-stage program generation network from [9] to
predict the required programs. This experiment is to show



the robustness of our method to noisy programs since the
ground truth program is not always available in practice.
Experimental results denoted with an asterisk mark (*) rep-
resenting the performance with predicted programs.

Datasets. We evaluate our model on two datasets Babel-
QA [11] and HuMMan-QA. (1) Babel-QA: consists of
1800 training questions, 384 validation questions, and 393
test questions categorized into action, direction, and body
part-related questions extracted from 771 motion sequences.
(2) HuMMan-QA: Given the small size of the Babel-QA
dataset and our goal to test the generalizability of our model
across diverse datasets, we developed the HuMMan-QA
dataset based on the HuMMan-MoGen dataset [39]. The
HuMMan-MoGen dataset comprises 6,264 SMPL motion
sequences from 160 actions, each annotated with 112,112
detailed temporal and spatial text descriptions. We utilized
the motion QA generation strategy in [11]. However, since
HuMMan-MoGen lacks segment-level labels for actions, di-
rections, and body parts, we employed the GPT-4o model
with in-context learning examples to generate these labels,
which were then meticulously refined and manually verified
against the actual motion sequences by the authors. The
HuMMan-QA dataset consists of 2066 training questions,
524 validation questions, and 533 test questions, with 158,
18, and 6 classes for action, body parts, and direction, re-
spectively, derived from 1,311 motion sequences. Accuracy
is used as the evaluation metric.

4.1. Results on Babel-QA Dataset
We report the results of our IMoRe on the Babel-QA dataset
in Table 1. We compare our approach with state-of-the-art
approaches, including NSPose [11], which is a neural sym-
bolic approach with pre-define functional modules, and CLIP,
2S-AGCN-MLP, 2S-AGCN-RNN, MotionCLIP-MLP, and
MotionCLIP-RNN [11], which directly fuses motion and
text features. The results reveal several key insights. Firstly,
the neural symbolic-based approaches (NSPose, IMoRe)
have better performance compared with direct feature fu-
sion based approaches (2S-AGCN-MLP, 2S-AGCN-RNN,
MotionCLIP-MLP, MotionCLIP-RNN). This shows the ef-
fectiveness of the neural symbolic based approach for the
motion reasoning task. Secondly, it can be seen that IMoRe
I and IMoRe II outperform the state-of-the-art NSPose [11]
by a significant margin for the ground truth and predicted
program setting. This demonstrates the effectiveness of our
implicit program-guided reasoning approach for human mo-
tion reasoning. Lastly, while our IMoRe experiences only a
modest performance drop (1-2%) in the predicted program
setting, NSPose exhibits a substantial decline in performance.
We attribute this to the fundamental differences between
explicit and implicit reasoning approaches. In explicit rea-
soning, functional programs are highly dependent on the

correct execution of each step: an error in any predicted step
can cascade into a significant performance drop. In contrast,
implicit reasoning provides greater adaptability, allowing
the model to recover from incorrect input signals and mit-
igate performance degradation. This resilience highlights
the robustness of our implicit approach in handling noisy or
imperfect program predictions, making it more suitable for
real-world scenarios where execution errors are inevitable.

4.2. Generalization to HuMMan-QA Dataset
We further evaluate the generalizability of our approach
on the HuMMan-QA dataset, with results presented in Ta-
ble 2. We can see that both IMoRe I and IMoRe II con-
sistently outperform existing models, including both neu-
ral symbolic-based approach NSPose and direct motion-
text feature fusion-based approach MotionCLIP-MLP and
MotionCLIP-RNN, achieving significant performance im-
provements of 4% and 5.6%, respectively. This demon-
strates the ability of our network to generalize effectively
across different datasets. Additionally, we observe that while
MotionCLIP-MLP does not perform as well on the Babel-
QA dataset, it achieves competitive results on HuMMan-QA.
This suggests that MotionCLIP-MLP might be particularly
suited for the characteristics of the HuMMan-QA dataset,
highlighting the importance of dataset-specific model adapt-
ability. These results highlight the effectiveness of our
program-guided implicit reasoning approach and its capacity
to generalize to different motion question-answering bench-
marks. It should be noted that performance across all models
in ‘Direction: BTW’ type questions is zero because no ques-
tion is generated for this type for the HuMMan-QA Dataset.

4.3. Ablation Study
We perform an ablation study on the Babel-QA dataset to
verify the effectiveness of each component. We evaluate
four models: A. ViT + explicit reasoning (NSPose); B. ViT
+ implicit reasoning (MAC); C. Implicit program-guided
reasoning; D. Implicit Program-guided reasoning + feature
selection (i.e., our full model). The first model replaces the
motion encoder used in NSPose with ViT to show that our
performance gain is not coming from a different motion en-
coder. The second model is to show the effectiveness of im-
plicit reasoning. We re-implemented the MAC [16] network
on the Babel-QA dataset. The third model demonstrates the
benefit of program guidance, while the fourth highlights the
advantage of program-guided feature selection.

The results are shown in Table 3, from which we can draw
several conclusions. First, the performance of NSPose drops
when replacing the encoder with the ViT encoder, which
shows that the better performance of our IMoRe comes from
a better reasoning module. Second, implicit reasoning yields
improved results compared to explicit reasoning. Despite the



Model Overall Query action Query direction Query body part
All Before After BTW All Before After BTW All Before After BTW

CLIP [31] 0.417 0.467 0.380 0.452 0.591 0.366 0.467 0.292 0.222 0.261 0.261 0.278 0.333
2S-AGCN-MLP [11] 0.355 0.384 0.353 0.411 0.273 0.352 0.378 0.250 0.278 0.228 0.261 0.130 0.333
2S-AGCN-RNN [11] 0.357 0.396 0.349 0.396 0.409 0.352 0.400 0.396 0.278 0.194 0.261 0.111 0.167
MOTIONCLIP-MLP [11] 0.430 0.485 0.411 0.470 0.545 0.361 0.400 0.271 0.333 0.272 0.304 0.222 0.333
MOTIONCLIP-RNN [11] 0.420 0.489 0.461 0.441 0.606 0.310 0.400 0.333 0.222 0.250 0.333 0.167 0.333
NSPOSE [11] 0.578 0.627 0.618 0.620 0.639 0.598 0.389 0.583 0.750 0.325 0.296 0.471 0.083
NSPOSE* [11] 0.472 0.519 0.570 0.493 0.500 0.488 0.375 0.238 0.375 0.189 0.250 0.176 0.167
IMoRe I 0.609 0.652 0.640 0.676 0.722 0.622 0.486 0.393 0.458 0.373 0.389 0.353 0.440
IMoRe I* 0.602 0.646 0.640 0.671 0.713 0.611 0.514 0.357 0.375 0.351 0.380 0.343 0.250
IMoRe II 0.640 0.695 0.677 0.707 0.750 0.679 0.458 0.560 0.792 0.358 0.407 0.441 0.083
IMoRe II* 0.615 0.656 0.610 0.700 0.667 0.624 0.528 0.429 0.583 0.391 0.389 0.441 0.333

Table 1. Evaluation of IMoRe and existing models on Babel-QA test set. The asterisk mark (*) refers to the setting where the model uses
the predicted programs as the input. BTW refers to ‘Between’. The bold and underline font shows the best and the second best result
respectively.

Model Overall Query action Query direction Query body part
All Before After BTW All Before After BTW All Before After BTW

MotionCLIP-MLP [11] 0.686 0.682 0.640 0.628 0.467 0.750 0.500 1.000 0.000 0.692 0.696 0.644 0.639
MotionCLIP-RNN [11] 0.623 0.601 0.559 0.541 0.583 0.750 1.000 0.500 0.000 0.667 0.638 0.616 0.694
NSPose [11] 0.691 0.700 0.686 0.610 0.729 0.822 0.425 0.833 0.000 0.677 0.620 0.639 0.833
IMoRe I 0.719 0.744 0.652 0.734 0.854 1.000 1.000 1.000 0.000 0.665 0.609 0.647 0.889
IMoRe II 0.730 0.746 0.648 0.739 0.813 1.000 1.000 1.000 0.000 0.717 0.636 0.703 0.861

Table 2. Evaluating the generalizability of our approach on HuMMan-QA dataset. The asterisk mark (*) refers to the setting where the
model uses the predicted programs as the input. BTW refers to ‘Between’. There is no question generated for ‘Between’ relation for query
direction in this dataset. The bold and underline font shows the best and the second best result respectively.

simplicity of MAC’s design, its implicit reasoning mecha-
nism surpasses NSPose’s explicit reasoning. This advantage
likely stems from the inherent adaptability of implicit rea-
soning, which allows the model to handle diverse reasoning
tasks more effectively without relying explicitly on prede-
fined function modules. Third, the better performance of
program-guided reasoning compared to MAC verifies the
effectiveness of the program guidance. Third, the incorpo-
ration of program-guided feature selection leads to notable
performance improvements of 5.5%. This highlights the ad-
vantage of extracting task-relevant motion features based on
the program information. For instance, action-type queries
benefit from high-level motion features, while body-part-
related queries require fine-grained motion representations.
By dynamically selecting relevant features, our implicit rea-
soning with program-guided feature selection effectively
tailors feature extraction to the specific reasoning task.

4.4. Qualitative Results
The qualitative examples in Fig. 3 illustrate the effectiveness
of our proposed IMoRe method in understanding motion
sequences with relational reasoning across different aspects:
action, direction, and body part. Compared to NSPose, our
model consistently provides more accurate reasoning results
across various relational queries. In the first example (top
left), when asked what action occurs before “taking/picking

something up”, IMoRe correctly predicts “squat,” whereas
NSPose incorrectly outputs “walk” which occurred earlier
in the sequence. This highlights IMoRe’s ability to capture
fine-grained, preparatory actions that are crucial for under-
standing human motion. In the example of query direction in
between two movements, while NS-Pose wrongly predicts
“left”, IMoRe correctly predicts “right” showcasing its ability
to model spatial transitions. In the query body part “before”
relation case, IMoRe correctly identifies that the “right hand”
is used before the “right foot”, while NS-Pose incorrectly
predicts the “right leg”. This indicates that IMoRe effectively
captures body part dependencies by dynamically attending
to relevant motion frames, whereas NS-Pose fails to focus on
the correct segment. Despite its strong performance, IMoRe
still encounters challenges in certain cases. One notable
failure occurs in queries involving body parts with the “in-
between” relation, where the model struggles to differentiate
between closely related actions. For example, when asked
about the body part used after one action and before an-
other, IMoRe struggles likely due to the confusion of similar
concepts. Another failure case appears in movement direc-
tion queries with the “after” relation, where both IMoRe
and NSPose incorrectly infer the forward direction instead
of recognizing the subtle directional change present in the
motion sequence.



Model Overall Query action Query direction Query body part
All Before After BTW All Before After BTW All Before After BTW

A. ViT + NSPose [11] 0.440 0.438 0.433 0.452 0.211 0.450 0.300 0.270 0.000 0.362 0.476 0.258 0.667
B. ViT + MAC [16] 0.582 0.649 0.597 0.633 0.712 0.526 0.356 0.458 0.500 0.356 0.406 0.315 0.083
C. Program-guided reasoning 0.607 0.676 0.632 0.697 0.704 0.571 0.403 0.321 0.500 0.340 0.352 0.441 0.083
D. Program-guided reasoning + feature selection 0.640 0.695 0.677 0.707 0.750 0.679 0.458 0.560 0.792 0.358 0.407 0.441 0.000

Table 3. Ablation study on Babel-QA dataset for explicit reasoning, implicit reasoning, implicit reasoning without program-guided feature
selection, and implicit reasoning with program-guided feature selection. BTW refers to ‘Between’. The bold and underline font shows the
best and the second best result, respectively.

Query Action (Relation: After)
Question: What action does the person do after they
stand up?

Motion Sequences:

NS-Pose
 Answer: walk
IMoRe (Ours)

 Answer: sit

Stand up WalkSit

Query Action (Relation: Before)
Question: What action does the person do before they
take/pick something up?
Motion Sequences:

NS-Pose
Answer: 
squat

IMoRe (Ours)
Answer: 
walk

squat take/pick
something upwalk transition place

something

Query Action (Relation: In Between)
Question: What action does the person do after they crouch
and before they place something?

Motion Sequences:

NS-Pose
Answer: 
take/pick something up

IMoRe (Ours)
Answer: 
place something

crouchtransition take/pick
something up

place
something transition

Query Action (Relation: After)
Question: What action does the person do after they stand
up?

Motion Sequences:

NS-Pose
Answer: 
walk

IMoRe (Ours)
Answer: 
sit

stand up walksit

Query Action (Relation: After)
Question: What action does the person do after they
stand up?

Motion Sequences:

NS-Pose
 Answer: walk
IMoRe (Ours)

 Answer: sit

Stand up WalkSit

Query Direction (Relation: Before)
Question: What direction does the person move before they
sit?
Motion Sequences:

NS-Pose
Answer: 
forward

IMoRe (Ours)
Answer: 
left

sit walktransition

Query Direction (Relation: In Between)
Question: What direction does the person move before they
walk and after they kick?

Motion Sequences:

NS-Pose
Answer: 
right

IMoRe (Ours)
Answer: 
left

kick transition right walk

Query Direction (Relation: After)
Question: What direction does the person move after they
use their left hand?

Motion Sequences:

NS-Pose IMoRe (Ours)
Answer: 
forward

right walk forwardleft handwalk forward transition
place 

something

Answer: 
forward

Query Action (Relation: After)
Question: What action does the person do after they
stand up?

Motion Sequences:

NS-Pose
 Answer: walk
IMoRe (Ours)

 Answer: sit

Stand up WalkSit

Query Body Part (Relation: Before)
Question: What body part does the person use before they
use their right foot?
Motion Sequences:

NS-Pose
Answer: 
right hand

IMoRe (Ours)
Answer: 
right leg

kick with 
right foot transitiontransition

Query Body Part (Relation: In Between)
Question: What body part does the person use after they
use their right hand and before they move right?

Motion Sequences:

NS-Pose IMoRe (Ours)
Answer: 
right leg

Query Body Part (Relation: After)
Question: What body part does the person use after they
move left?

Motion Sequences:

NS-Pose IMoRe (Ours)
Answer: 
left hand

left armpunch with
right hand

leftright kick with 
right foot transitiontransitionpunch with

right hand right

Answer: 
right leg

Answer: 
left arm

Figure 3. Qualitative comparison between our method (IMoRe) and NSPose on motion sequence reasoning tasks with different query types:
action, direction, and body part with different temporal relations including before, in between, and after.)

5. Conclusion

We presented an implicit program-guided reasoning frame-
work for human motion Q&A, addressing the limitations of
explicit program execution. Our method dynamically adapts
reasoning based on structured program functions to improve
scalability and adaptability. The program-guided reading
mechanism enables the dynamic selection of multi-level mo-
tion features from a pre-trained ViT model, allowing the
model to reason over both high-level semantics and fine-
grained motion cues. Our model achieves state-of-the-art

performance on the Babel-QA dataset and generalizes to
the newly constructed HuMMan-QA dataset. Analysis with
predicted programs confirms the robustness and effective-
ness of our approach in addressing diverse motion-related
queries in real-world scenarios. Acknowledgments This
research/project is supported by the National Research Foun-
dation, Singapore, under its NRF Fellowship (Award# NRF-
NRFF14-2022-0001) and by funding allocation to Basura
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