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Abstract
Vision-Language Pretraining (VLP) models have shown significant promise in scene understanding and repre-
sentation learning. However, their application in fine-grained tasks like Cloth-Changing Person Re-Identification
(CC-ReID) is challenging due to their reliance on unstable discriminative features such as clothing. Conversely,
expert CC-ReID models possess exceptional fine-grained comprehension skills but struggle to obtain reliable
cloth-agnostic representations, hindered by the time-consuming and labor-intensive process of obtaining precise
annotations and the spurious data associations brought by the co-occurrence phenomenon of identity and clothing.
This paper introduces the Causality-based Purification (CaPu) model. The CaPu constructs a clothing indication
pipeline that leverages the unique strengths of multiple VLP models to efficiently capture clothing semantics. Utiliz-
ing these semantics, CaPu employs causality analysis to purify the relationship between learned visual features and
intrinsic identity representation from two causal aspects: the Consistency Treatment Effect (CTE) and the Distinc-
tiveness Treatment Effect (DTE). The CTE enhances feature consistency within each identity by simulating clothing
changes. Meanwhile, the DTE enhances the model’s ability to perceive intrinsic identity representation. Extensive
experiments on three standard CC-ReID datasets demonstrate that CaPu achieves state-of-the-art performance.

Keywords: Cloth-changing person re-identification, Vision-language pretraining, Causal inference, Causal intervention.

1 Introduction
The imperative task of identifying individuals across
diverse cameras amidst clothing variability presents

a formidable challenge in real-world surveillance
systems. This highlights the importance of the
Cloth-Changing Person Re-IDentification (CC-ReID)
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task (Barbosa et al, 2012). The challenge of CC-
ReID lies in the notable changes of the target person’s
clothing over time, compounding the traditional com-
plexities encountered in ReID, such as alterations in
viewpoint (Wu et al, 2022, 2023a), instances of occlu-
sion (Somers et al, 2023; He et al, 2023), variations in
illumination (Zhang et al, 2022; Lu et al, 2024), and
more. Addressing these obstacles requires dedicated re-
search focused on capturing a dependable, fine-grained
intrinsic person identity representation, impervious to
the variances introduced by clothing.

In the quest for intrinsic person identity represen-
tation, existing CC-ReID methods can be categorized
into two primary groups: direct and indirect methods.
The direct methods explore human body semantics as
prior knowledge, e.g., mask (Hong et al, 2021; Li et al,
2023c; Yu et al, 2020; Gao et al, 2022), gait (Jin et al,
2022; Li et al, 2023e), shape (Shi et al, 2022; Chen
et al, 2022a; Cui et al, 2023; Qian et al, 2020), and
3D model (Bansal et al, 2022; Chen et al, 2021; Yu
et al, 2022a). The direct methods aim to sidestep the in-
fluence of clothing on identity representation learning.
The representation learning pipeline is defined as:

F = E(X,K(X)), (1)

where the identity representation F is obtained by
encoding the person X and integrating prior knowl-
edge parsing methods K, where E denotes the encoder.
However, actuating and integrating prior knowledge
requires substantial computational costs. Moreover,
by emphasizing certain clothing-irrelevant knowledge,
like shape or gait, the direct methods lack a compre-
hensive understanding of the influence of clothing on
identity recognition.

The second category reinforces identity representa-
tion through indirect learning-based methods to utilize
prior knowledge, e.g., clustering (Liu et al, 2023a),
adversarial learning (Yang et al, 2023b), metric learn-
ing (Shu et al, 2021b), and contrastive learning (Liu
et al, 2023d). Indirect methods concentrate on the
mining relationships between features without ex-
plicit guidance of body semantics knowledge. The
representation learning pipeline is defined as:

F = L(E(x1), E(x2), . . . , E(xn)), (2)

where the identity representation F is obtained by
conducting learning-based methods L on the images
{x1, x2, . . . , xn} ∈ X after the encoder E. Neverthe-
less, the absence of explicit prior knowledge guidance
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Head/Facial Info
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Same Valuable?

(c) × (d) × (e) × (f)✓

Figure 1 Illustration of the retrieval result by BLIP2 (Li et al, 2023a)
and spurious data associations brought by the co-occurrence phe-
nomenon of identity and clothing. The green box denotes the correct
retrieval. The red box denotes the incorrect retrieval.

makes them susceptible to potential data association
or biases. In summary, both direct and indirect meth-
ods encounter challenges in effectively acquiring and
utilizing prior knowledge.

To accurately acquire prior knowledge, a model
with robust scene understanding and generalization
ability is imperative. In recent years, Vision-Language
Pretraining (VLP) models, e.g., SAM (Kirillov et al,
2023), GroundingDINO (Liu et al, 2023c), and
BLIP2 (Li et al, 2023a) have garnered significant atten-
tion. Their remarkable ability of scene understanding
and multi-modal comprehension has sparked great ex-
citement in industry and academia. This enthusiasm
has led to a rapid surge of groundbreaking appli-
cations based on VLP models, which span various
domains, including detection (Ming et al, 2022; Du
et al, 2022), retrieval (Li et al, 2023d; Chen et al, 2023a;
Xie et al, 2023; Siddiqui et al, 2024), and medical
diagnoses (Bannur et al, 2023; Zhang et al, 2024), etc.

A straightforward insight is to leverage the capa-
bility of VLP models to obtain discriminative identity
representation. However, as illustrated in Figure 1,
even when employing the encoder of BLIP2 (Li et al,
2023a) as a foundational model for CC-ReID, the out-
comes still fall prey to clothing interference. The results
reveal that general pretraining models have limited pro-
ficiency in acquiring discriminative knowledge (Yan
et al, 2023; Shao et al, 2023; Wang et al, 2024b), es-
pecially in fine-grained tasks like CC-ReID, where
individuals frequently change appearance. Precise iden-
tity recognition in cloth-changing scenarios requires
fine-grained perceptual abilities beyond the capabili-
ties of directly using VLP models. A well-balanced
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Figure 2 Causal graph for CC-ReID and the illustration of the intervention and causality purification based on this causal graph. The graph
denotes the person image X is sent to expert models for visual feature perception Z to recognize identity Y , where the unobserved clothing
interference C will affect both X (spurious associations) and Z (confusion attention). x0 and x1 are the interventions on the input by modifying
clothing and clothing only, where it breaks the connection between C and X .

strategy is needed to leverage VLP’s generalization ca-
pability while addressing deficiencies in fine-grained
perception.

Reevaluating the effectiveness of VLP models
within the scope of CC-ReID reveals their limitations
in fine-grained perception, but they still have advan-
tages in coarse-grained attribute discovery, such as
appearance, shape, and sketch VLP models’ general
perceptual proficiencies can help alleviate complex-
ities in acquiring prior knowledge. Therefore, the
judicious utilization of VLP models provides a straight-
forward and efficient means to address challenges in
the acquisition of prior knowledge, formulated as:

Kvlp = VLPs(X). (3)

Acquiring knowledge is a foundational step in
research, but effectively leveraging it is vital. Our obser-
vations led us to an intriguing phenomenon, prompting
our investigation into how prior knowledge influences
identity discrimination. Theoretically, samples with
the same identity but different clothing labels should
have distinct outfits. However, the bottom of Figure 1
shows a person retaining some items (e.g., pants, shoes,
and the inner shirt) while changing a significant portion
of their upper clothing. CC-ReID methods commonly
define features that remain unchanged before and af-
ter a disguise as “intrinsic identity features”. However,
the co-occurrence of identity and clothing can intro-
duce spurious associations, confounding the ReID
model and leading to inaccurate perceptions of intrin-
sic identity features. Therefore, breaking spurious data
associations is a primary challenge in this paper for
utilizing prior knowledge.

Despite the valuable information clothing seman-
tics contribute to human recognition in conventional
ReID scenarios, the spurious association between
clothing and identity poses a significant challenge in
CC-ReID. This association is vulnerable to confusion
among inter-class samples with similar appearances,

making it difficult to discern the respective contribu-
tions of clothing and identity in recognizing target
identity. Breaking these spurious associations can be
viewed as exploring the causal relationship between
learned visual and identity features. Causal inference,
a theory that aims to unveil and quantify the causal
relation between events or factors, has emerged as a
crucial area of research in statistics, epidemiology, and
data science. It is widely applied in computer vision
tasks such as Visual Question Answering (VQA) (Xue
et al, 2023; Li et al, 2023b; Zang et al, 2023; Niu et al,
2021), visual categorization (Rao et al, 2021; Mao et al,
2022; Liu et al, 2022), scene graph generation (Sun
et al, 2023; Wu et al, 2023b; Tang et al, 2020), and
segmentation (Miao et al, 2023; Ouyang et al, 2022).

In the context of CC-ReID, causal inference pro-
vides a powerful methodology to mitigate the spurious
associations brought by prior knowledge and uncover
the true causal effects underpinning identity recog-
nition. By analyzing data and considering scenarios
where a person’s clothing changes while their identity
remains constant, causal inference gives us an oppor-
tunity to purify the visual representation and identify
which features are genuinely indicative of identity, a
process we term causality purification. This approach
enables the development of models that are more robust
to changes in clothing and can accurately recognize
individuals based on their intrinsic identity features,
ultimately improving the performance of CC-ReID
systems, which can be defined as:

F = E (Causal (X,K (X))) , (4)

F = Causal(E(x1), E(x2), . . . , E(xn)), (5)
for direct and indirect methods, respectively.

In this paper, to overcome the obstacles in acquiring
and utilizing prior knowledge, we introduce Causality-
based Purification (CaPu) model, which builds upon
the successes of VLP and causal inference, defined as:
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F = E (Causal (X,Kvlp (X))) , (6)

where CaPu integrates a clothing indicator based on
VLP models to harness their semantic perceptual ca-
pabilities for acquiring prior knowledge and adopting
causal analysis on the factors within the image.

Specifically, the clothing indicator in CaPu con-
sists of multiple VLP models, each functioning as
a distinct visual comprehension component respon-
sible for attribute discovery, detection, segmentation,
and feature extraction, collectively enabling precise
clothing indications. Then, to perform causal infer-
ence by purifying identity features, we first construct
a causal graph, as shown in Figure 2(a), to determine
the causal relationships within CC-ReID. Through
conducting intervention (Pearl, 2013) on the input,
CaPu evaluates the spurious associations between
identity and clothing information through two causal
perspectives: Consistency Treatment Effects (CTE)
and Distinctiveness Treatment Effects (DTE).

As shown in Figure 2(b), the CTE represents the in-
put samples of gradual clothing change, and the effect
is how the model perceives the feature. Determining
the CTE assesses the model’s responsiveness to cloth-
ing alterations. From a causality standpoint, substantial
feature variations due to clothing modifications suggest
flawed identity interpretation, while minimal changes
likely link to intrinsic identity. Therefore, CaPu selec-
tively applies segmentation masks to clothing items,
creating wardrobe groups to break spurious associa-
tions between identity and clothing information, which
is the first-level causality purification. Furthermore,
DTE quantifies the change in identity recognition prob-
ability when intervening on the samples, particularly
when the intervention relates to clothing. Similar iden-
tity perception for learned visual and clothing features
suggests the model erroneously considers clothing
semantics as intrinsic identity. Quantifying and ampli-
fying the distinctiveness between learned visual and
clothing features emphasizes the causality between vi-
sual representation and intrinsic identity, serving as the
second-level causality purification.

In summary, CaPu provides an effective and
resource-efficient strategy for handling obstacles in di-
rect and indirect CC-ReID methods, purifying learned
identity features for precise CC-ReID, the specific
contributions are three-fold:

• We introduce a Causality-based Purification (CaPu)
model to provide clothing semantics indications and

purify the causality between the learned visual rep-
resentation and the intrinsic identity representation.

• We establish a Vision-Language Pretraining (VLP)
pipeline, which offers a paradigm for integrating
VLP models that consider their unique strengths for
efficient prior knowledge acquisition.

• We redefine the challenge of breaking spurious asso-
ciations between identity and clothing information as
a causal inference problem. The treatment effects of
consistency and distinctiveness are proposed to em-
phasize intrinsic identity representation for effective
knowledge utilization.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the related work
presented in recent years; Section 3 delves into the
proposed method with detailed flowcharts and expla-
nations; Section 4 provides a comprehensive analysis
of experiments, including qualitative and quantita-
tive results as well as validation of each module’s
effectiveness; and finally, we conclude the paper in
Section 5.

2 Related Work

2.1 Cloth-changing Person
Re-identification

The distinction between traditional person ReID and
CC-ReID is that the latter involves individuals disguis-
ing their appearances, making clothing information a
potential impediment to identity discrimination. This
highlights the importance of CC-ReID methods in min-
ing fine-grained clothing-agnostic representation and
excavating intrinsic identity information from deep
visual semantics. Based on the difference in obtain-
ing clothing-agnostic representation, existing CC-ReID
methods can be broadly divided into two categories:
direct and indirect.

The direct methods involve exploring human body
semantics or heavier patterns, e.g., mask (Hong et al,
2021; Li et al, 2023c; Yu et al, 2020; Gao et al,
2022; Peng et al, 2024), gait (Jin et al, 2022; Li
et al, 2023e), shape (Li et al, 2021; Shi et al, 2022;
Chen et al, 2022a; Cui et al, 2023; Qian et al, 2020),
and 3D model (Bansal et al, 2022; Chen et al, 2021;
Yu et al, 2022a), to bypass the interference of cloth-
ing in identity representation learning. Specifically,
Liu et al. (Liu et al, 2023b) leverage masks to sep-
arate human parts and assign weights adaptively to
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identify challenging regions for comprehensive train-
ing. Zhang et al. (Zhang et al, 2023a) introduce
multi-biological learning, including head, neck, and
shoulders, by estimating masks and keypoint to resist
cloth-changing. Cui et al. (Cui et al, 2023) disentangle
clothing-relevant and -agnostic features by reconstruct-
ing body contours. Shi et al. (Shi et al, 2022) leverage
human parsing estimation to enhance the attention
of human head part. Jin et al. (Jin et al, 2022) and
Li et al. (Li et al, 2023e) consider gaits as biological
features and leverage gait recognition to pursue cloth-
agnostic representation. Yu et al. (Yu et al, 2022a) and
Bansal et al. (Bansal et al, 2022) introduce 3D human
mesh to obtain multi-modal geometry representations.
Ci et al. (Ci et al, 2023) and Tang et al. (Tang et al,
2023) incorporate multiple tasks and datasets to per-
form human-centric perception. While incorporating
prior knowledge can aid identity recognition, it can also
be computationally expensive and not fully account for
the influence of clothing. Consequently, the accuracy
of prior knowledge and the image quality become a
limiting factor in their performance.

The indirect methods reinforce identity represen-
tation through data associations and leverage cluster-
ing (Han et al, 2023; Li et al, 2022b), adversarial
learning (Gu et al, 2022; Yang et al, 2023a), metric
learning (Shu et al, 2021b), and contrastive learn-
ing (Yang et al, 2022a,b), attention mining (Yang et al,
2023b) to obtain cloth-agnostic representation. Specifi-
cally, Liu et al. (Li et al, 2022b) propose cloth-aware
center cluster loss to gather the intra-class center un-
der different clothing. Gu et al. (Gu et al, 2022) adopt
adversarial learning by penalizing the model’s predic-
tive power on clothing. Shu et al. (Shu et al, 2021b)
aggregate multiple metrics learning methods to opti-
mize the mAP value during training. Yang et al. (Yang
et al, 2022a,b) leverage generative adversarial learning
by feature cross-wise integration to sample inde-
pendent feature representation. Additionally, several
researchers focus on data augmentation (Kweon and
Cho, 2023; Jia et al, 2022) to emphasize cloth-agnostic
information. Nevertheless, the absence of explicit
prior knowledge guidance in indirect methods leads
to an overemphasis on data correlations, making them
vulnerable to noisy and inaccurate information.

The common challenge shared between direct and
indirect methods centers around the acquisition and
utilization of prior knowledge, which constitutes the
pivotal challenge within the CC-ReID task.

2.2 Vision-Language Pretraining Model
Recently, numerous Vision-Language Pretraining
(VLP) methods exhibit vital ability in scene under-
standing and representation learning. Their impressive
generalizability has led to substantial improvements
to various downstream tasks, such as detection (Ming
et al, 2022; Du et al, 2022; Song et al, 2022; Dou et al,
2022), retrieval (Li et al, 2023d; He et al, 2023; Chen
et al, 2023a; Bai et al, 2023; Xie et al, 2023), and med-
ical diagnoses (Bannur et al, 2023; Zhang et al, 2024;
Chen et al, 2022b; Yan and Pei, 2022).

Specifically, CLIP (Radford et al, 2021) extracts
the features of vision and language separately and
aligns them by contrastive learning. BLIP (Li et al,
2022a) introduces multimodal mixture of encoder-
decoder to align multimodal information. BLIP2 (Li
et al, 2023a) further combines pertaining models of
vision and language to bootstrap multimodal under-
standing ability. GroudingDINO (Liu et al, 2023c)
introduces language to close-set detection to enhance
the generalization ability for open-set detection. Seg-
ment Anything (SAM) (Kirillov et al, 2023) is built on
a promptable segmentation task and supports flexible
prompts to facilitate zero-shot performance on numer-
ous tasks. The VLP models’ strong multi-modal com-
prehension and scene understanding capabilities make
them excellent foundation models that significantly
extend the limits of deep learning.

Several recent efforts have integrated VLP into
retrieval tasks, CLIP-ReID (Li et al, 2023d) exploits
the cross-modal description ability in CLIP through
learnable text tokens for each identity to fine-tune
CLIP encoder for ReID. RGANet (He et al, 2023)
enhances occluded person ReID by generating hu-
man part regions with CLIP and selecting informative
regions. UNIReID (Chen et al, 2023a) employs task-
specific modality learning to extract and integrate
visual and textual information from multiple modalities.
RaSa (Bai et al, 2023) leverages VLP models as the
backbone to perform unimodal representation learning
for text-based person search. MLVR (Xie et al, 2023)
combines CLIP to enhance vehicle attribute matching
for text-vehicle retrieval.

2.3 Causal Inference in Computer Vision
Causal inference (Kuang et al, 2020; Guo et al, 2020;
Pearl, 2013) is concerned with identifying the factual
relation between events beyond data association (Pearl,
2010). Causality mining is a popular research area in
computer vision that aims to provide insightful and
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Figure 3 The overall illustration of CaPu. The clothing indicator handles the clothing knowledge accusation by combining the strength of VLP
models with frozen parameters. The wardrobe group is constructed based on clothing indications, which tends to break the association between
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feature branch (red) are aligned. Then, the bias enhancer learned to emphasize the biased representation of clothing. Finally, the Distinctiveness
Treatment Effect is considered based on the reaction of the identity classifier when facing different inputs for further feature purification.

explainable methods. The concept of intervention and
counterfactual (Pearl, 2013; Kuang et al, 2020) is cen-
tral to causality mining, where the “what if” scenarios
play a central role in determining causality. Researchers
ask questions like “What would have happened if a
different course of action were taken?” and use such
insights to assess causality.

The causality mining has been successfully used
in several areas, including debiasing (Dash et al,
2022; Liu et al, 2022; Tang et al, 2020), stable
learning (Zhang et al, 2021; Liu et al, 2021), and dis-
entanglement learning (Yang et al, 2021a; Yu et al,
2022b). Several methods are proposed within ReID that
involve causality mining between the model and data.
Yang et al. (Yang et al, 2023a) introduce causality into
CC-ReID and propose an elaborately designed clothing
representation learning branch to distill clothing inter-
ference. Similarly, Li et al. (Li et al, 2023f) leverage
causal intervention to alleviate the strong cloth-identity
spurious correlation. Yang et al. (Yang and Tian, 2023)
and Zhang et al. (Zhang et al, 2023b) leverage causal in-
ference to disentangle the correlation between domain
and class in Domain Generalization Person Identifi-
cation (DG-ReID). Liu et al. (Li et al, 2022c) use
counterfactual inference to construct graph topology
structure in visible-infrared ReID.

Beyond the integration of causality with reID, an
increasing number of studies are exploring the appli-
cation of causal methodologies across a wider range

of computer vision tasks. VideoQA (Zang et al, 2023)
and CF-VQA (Niu et al, 2021) attempt to discover
the real association by explicitly capturing visual fea-
tures that are causally related to the question semantics
and weakening the impact of local language seman-
tics on question answering. Chen et al. (Chen et al,
2023b), Lv et al. (Lv et al, 2022) and MatchDG (Ma-
hajan et al, 2021) infer the causes of domain shift to
facilitate domain generalization ability in DG-ReID.
CAL (Rao et al, 2021) employs random attention to
formulate counterfactual causality for visual catego-
rization. The emergence of causal inference enables
considering assumptions about reality that were previ-
ously unattainable. This provides us with theoretical
support to break spurious data associations and purify
the learned visual representation.

3 Method
The main structure of the proposed Causality-based Pu-
rification (CaPu) model is illustrated in Figure 3. CaPu
comprises a clothing indicator and a causality-based
feature purification module. We begin by formulating
the knowledge-acquiring process within the clothing
indicator in Section 3.2 followed by a detailed descrip-
tion of causality-based purification by computing the
intervention probability P (Y |do(X)) in Section 3.3.
The specific prompt design for each step in the clothing
indicator is shown in Section 3.4.
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3.1 Problem Formulation
For a given image of person xi with identity label yi,
the image is first fed into the clothing indicator to ob-
tain masks of clothing item M i = {mi

1,m
i
2, . . . ,m

i
k},

where k stands for the number of clothing items, all
clothing masks are denoted as mi

A =
∑

mi. Based on
person image xi and clothing masks M i, we can sys-
tematically generate a set of images to build a wardrobe
group for each person. The wardrobe group W i =
{wi

1, w
i
2, . . . , w

i
k, w

i
A}, depicts the gradual change in

clothing items of a given person, wi
A stands for all the

clothing items are masked. Simultaneously, pure cloth-
ing masks mi

A are sent to VLP encoder EV to obtain
clothing representation F i

C . The person image xi is
sent to expert model Eexp to obtain person represen-
tation F i. At the training stage, the expert model is
trainable but the parameters within the clothing indi-
cator are fixed. Only the purified expert model with
feature F is used at the testing stage.

3.2 Clothing Indicator
As illustrated in the blue region in Figure 3, the clothing
indicator consists of several Vision-Language Pretrain-
ing (VLP) models to capture clothing prior knowledge.
The clothing indicator is built on strong cross-modal
comprehension and coarse-grain representation capa-
bilities of VLP models, including Visual Question
Answering (VQA), Grounding, and Segmentation mod-
els. These models work together to generate masks
for clothing items and extract meaningful clothing rep-
resentations Each visual comprehension component
within the Clothing Indicator has distinct responsi-
bilities, including attribute discovery, detection, and
segmentation. This collaborative effort ensures accu-
rate and detailed clothing indications. The Clothing
Indicator utilizes natural language question prompts
Q = {q1, q2, . . . } to control precise understanding of
VLP models to visual entities, which consists of several
steps to obtain clothing representation. Each step of the
prior knowledge acquisition process is formulated as:

A = {a1, a2, . . . } = VQA(q1, q2, . . . ), (7)

where question prompts q are sent to VQA models,
resulting in answer set A with clothing attributes. Sub-
sequently, these answers are selected and reconstructed
based on the clothing states, forming the target prompt
set T . Then T is sent to grounding model GT for

generating bonding box B of each target, defined as:

T = {t1, t2, . . . } = Select(A), (8)

B = {b1, b2, . . . } = GT(T ), (9)
then, these bounding boxes with attributes are then fed
into the Segmentation model Seg to generate clothing
masks accordingly, defined as:

M = {m1,m2, . . . } = Seg(B), (10)

finally, the masks for individual clothing items are com-
bined, representing the clothing, and are sent to a VLP
encoder to generate the overall clothing representation,
defined as:

FC = EV (
∑
m∈M

m). (11)

Through the synergy of various VLP models, we
forge a comprehensive automated knowledge acquisi-
tion pipeline. This pipeline streamlines the accurate
localization of clothing regions and enables precise ex-
traction of clothing representations. The rich clothing-
related prior knowledge gathered through this pipeline
lays a solid foundation for the ensuing process of
identity feature purification by the CaPu model. For
further insights into the specific prompt designs for
each component, please refer to Section 3.4.

3.3 Causality Purification
Through harnessing clothing semantics and feature-
based prior knowledge, CaPu then transforms the
challenge of mitigating the impact of spurious associ-
ations between intrinsic identity and noisy data into
a problem of causal inference. Specifically, by dig-
ging into the relation between clothing and identity,
CaPu assesses spurious associations between identity
and clothing information from two causal perspectives:
Consistency Treatment Effects and Distinctiveness
Treatment Effects.

3.3.1 Consistent Treatment Effects

Determining the Consistent Treatment Effects (CTE)
relies on assessing the model’s responsiveness to al-
terations in clothing. From a causality standpoint, if
modifications in clothing lead to substantial variations
in features, it suggests a flawed model interpretation of
identity. Conversely, features demonstrating minimal
changes amid clothing alterations are more likely to be
linked with intrinsic identity. Therefore, CaPu seeks
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Figure 4 The detailed structure of the Identity Projector and Bias Enhancer. Specifically, (a) the Identity Projector utilizes an encoder-decoder
structure to project learned identity features, while preserving as much information from the original features as possible and reducing information
loss during projection. (b) the Bias Enhancer amplifies the impact of clothing on identity recognition by combining frozen clothing features with
trainable identity features. This interaction allows for the dynamic acquisition of clothing information that affects identity recognition.

to discern causal relations by examining how alter-
ations in one variable (e.g., clothing) influence another
(e.g., identity feature). Such intervention on clothing
representation is formulated as:

P (Y |do(X)) =
∑
w

P (Y |X,W = w)P (W = w), (12)

where do(X) is do-calculate (Fenton et al, 2020), X
and Y are separately denote the model input and output,
w is the sample in wardrobe group W .

To put this intervention into practice, CaPu ini-
tially obtains the visual feature from the expert model
upon receiving the image of a person. Concurrently,
to preserve the model’s comprehension of identity
and reduce the additional data noise contributed by
the background, we duplicated and then froze the
current parameter of the encoder as E

′

exp to obtain
features corresponding to the different clothing states
of the individual within the wardrobe group W . Fol-
lowing Eq.(12), we can obtain the identity features
group Fg = {Fg1 ,Fg2 , . . . ,Fgk ,FgA}. Subsequently,
the consistent treatment effect can be determined by
measuring the difference of identity features F with
group identity features Fg. And the model’s consis-
tency can be achieved by minimizing the P (Y |do(X)).
To maximize the model’s consistency and minimize in-
terference from similar backgrounds between samples,
we introduce LCTE followed by triplet loss to minimize
the dissimilarity between F and Fg, formulated as:

LCTE =

k+1∑
z=1

max(d−z − d+z + α, 0), (13)

d+z = min(d(F ,F+
gz )), d−z = max(d(F ,F−

gz )),
(14)

where d+z stands for the distance of the hardest posi-
tive pair between visual feature F and the z-th group
feature F+

gz with same identity, and d−z denotes the

distance of the hardest negative pair between visual
feature F and the z-th group feature F−

gz with differ-
ent identities. k + 1 denotes the number of samples in
the wardrobe group for each identity. α is a marginal
hyperparameter. Building upon reinforcing CTE, the
LCTE aims to emphasize features invariant to clothing
variations, and it encourages the model to learn feature
representations that exhibit greater consistency under
changing clothing conditions. Additionally, measuring
the distance between samples with different identities
allows the mitigation of common interferences such
as background noise. Therefore, CTE helps improve
the model’s ability to recognize identities regardless of
clothing changes and background variations, which is
the first-level feature purification.

While the concept of the wardrobe group may
appear intuitive, its design is grounded in a causal
framework that guides the structured separation of
identity- and clothing-specific features. By leverag-
ing pedestrian attributes and carefully designed partial
masking, this structure helps preserve body part se-
mantics critical to disentangling confounding factors.
Unlike previous methods such as body jigsaw (Zhou
et al, 2022) or direct cloth-changing approaches (Shu
et al, 2021a; Shi et al, 2022), which often rely on
explicit masking or generation-based manipulation,
our method reduces sensitivity to image quality and
clothing state. This robustness is achieved through
a powerful VLP pipeline that enables more reliable
segmentation, and a CTE module that focuses on intrin-
sic identity information even when facial or clothing
features are absent or altered.

The CTE encapsulates the core idea of using causal
reasoning to address feature entanglement, emphasiz-
ing the principles behind feature purification rather
than being tied to a specific implementation. The
focus on causal relationships between identity and
clothing features provides a structured foundation that
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enables learning in a more interpretable and theoreti-
cally robust manner. This perspective extends beyond
individual technical solutions, offering a guiding prin-
ciple for future advancements in the disentanglement
of identity-related and clothing-related information.

3.3.2 Distinctiveness Treatment Effects

Relying solely on CTE can only constrain the feature
at the surface level, which does not consider the pro-
found interference of clothing to identity. To mitigate
the diverse impact of spurious associations, clothing
representations are employed to further regulate deep-
level representations. To diminish the expert model’s
identity recognition based on clothing, CaPu evaluates
the response of identity classifier to different features
to measure Distinctiveness Treatment Effects (DTE).
To achieve this, two obstacles are unavoidable in CaPu:
feature alignment and bias determination.

Identity Projector. After obtaining the features
for clothing and the person separately, a challenge
arises due to the inherent misalignment between the
feature spaces generated by the VLP encoder and the
expert model. This misalignment can be attributed to
structural disparities; the VLP encoder predominantly
employs a Transformer architecture, in contrast to
the Convolutional Neural Network (CNN) commonly
applied in the expert models. The former prioritizes
global relations and lacks translation invariance, while
the latter focuses on local information with more flex-
ible adaptability to change. Therefore, we focus on
the identity features of the expert model for alignment
to minimize information loss from VLP features. To
achieve this, we propose an Identity Projector that
aligns the features from the expert model with those
from the VLP encoder.

As shown in Figure 4(a), to achieve feature align-
ment while retaining as much original information as
possible, CaPu incorporates an encoder-decoder frame-
work. The visual feature obtained by expert model F ∈
RB×Q undergoes downgrading by passing through
the encoder Ef , producing Fproj ∈ RB×P , where B
stands for batchsize, Q is the final feature dimension
of the identity feature, P is the final feature dimension
of the clothing feature. Then, Fproj is reconstructed
through the decoder Df to obtain F̆ ∈ RB×Q, which
is the same dimension of F . Concurrently, an informa-
tion maintaining constraint Lkeep is enforced to ensure
that the features pre- and post-encoding-decoding con-
verge toward consistency. The identity projector aligns
the features of different branches while preserving

information before and after projection, formulated as:

Fproj = Ef (F ) F̆ = Df (Fproj), (15)

Lkeep = ||F − F̆ ||2, (16)
where Fproj has the same dimension as clothing feature
FC .

Bias Enhancer. Considering the parameters of the
clothing indicator to be frozen, the extracted clothing
features remain fixed. To leverage these fixed clothing
representations to guide the learnable identity features
and to explicitly delineate the impact of clothing on
identity features, CaPu introduces a bias enhancer. As
shown in Figure 4(b), this bias enhancer explicitly iden-
tifies the portions of the identity features influenced
by clothing. Specifically, cross-attention mechanisms
is employed to dynamically capture the interactions
between clothing and identity features, formulated as:

H(Fproj,FC) = softmax(
FprojF

T
C√

dC
), (17)

F̀C = H(F,FC)FC , (18)
where H is a weight matrix, the softmax function
is applied to compute the attention scores for each
feature pair. dC is a scaling factor with the same
dimension as FC . Additionally, a clothing discrimi-
nator is introduced to regulate the feature attention
to clothing, ensuring that clothing-related information
is retained in the fused representations, which is con-
strained by a cross-entropy loss LC among the clothing
discriminator outputs, formulated as:

LC = −
N∑
i=1

log
e(δC(F̀ i

C)/τ)

NC∑
j=1

e(δC(F̀ j
C)/τ)

, (19)

where N is the number of samples. NC is the number
of suits, calculated as the total number of indepen-
dent suits associated with each identity. δC denotes
the clothing discriminator. The temperature parame-
ter τ ∈ R+ is a hyper-parameter to control the output
scale of classifier, thereby controlling the distribution
of class decisions.

So far, we gathered all the elements required to
analyze DTE, where the treatment refers to inputs of
clothing and identity features, while the effect is the
probability of the model recognizing identities. The
DTE seeks to quantify the change in the probability dis-
tribution of identity recognition when the feature space
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is intervened upon, specifically, when the intervention
is related to clothing features.

PID = P (Y |do(X = Fproj)), (20)

PC = P (Y |do(X = F̀C)), (21)
LDTE = argmax(∆(PID, PC)), (22)

where X denotes the learned identity features, and Y
stands for the identity recognition results, which have
slightly different meanings within Eq. (12). Formally,
the DTE is expressed as the maximal distribution dis-
tance ∆ between two probability distributions: PID, the
identity perception distribution when conducting inter-
vention from the learned visual representation, and PC ,
the identity perception distribution when conducting
intervention from clothing representation.

To implement DTE, CaPu frames it as a distance
departure problem in latent space, involving both ori-
entation and distance for vectors. Considering direct
manipulation of features may compromise the integrity
of the feature space, CaPu employs an identity clas-
sifier constrained by a commonly used identification
loss on Fproj to analyze distributions of identity and
clothing-influenced features. Specifically, Eq. (20) and
Eq. (21) can be implement as:

PID = δID(Fproj), PC = δ̂ID(F̀C), (23)

where δID is the identity classifier and δ̂ID denotes the
identity classifier shared weights with δID, and PID and
PC are distribution matrices that represent the identity
predictions.

Then, the distinction in orientation among two dis-
tributions can be quantified by cosine similarity S for
each sample in the batch, formulated as:

S =
PIDPT

C

||PID|| ||PC ||
. (24)

To quantify the spatial distance between distribu-
tions in the latent space and accentuate dissimilarities
within the same identity context, CaPu introduces a
Positive-Reinforced Distance, where samples with the
same identity in a batch are served as positive, and
the distributions of PID and PC within positive sam-
ples are encouraged to be departure. This mechanism
penalizes the classifier for being too lenient in dis-
tinguishing between different instances of the same
identity, prompting it to refine its understanding of what

constitutes identity-specific features. The distance can
be expressed as:

D = ||PID − PC ||2, (25)

D′ =

√
β
(∑

D ⊙ V −
∑

D ⊙ (1− V )
)
, (26)

where V denotes the one-hot matrix where each row is
a one-hot vector with the index of label yi correspond-
ing to 1 and others are 0, and ⊙ is the element-wise
multiplication and the sum is over all samples in the
batch, β serves as a scaling factor to regulate the
sensitivity to the distance between positive samples.

Finally, the DTE in Eq. (22) is implemented as:

LDTE = (1 + S)︸ ︷︷ ︸
Orientation

+max(m−D
′
, 0)︸ ︷︷ ︸

Distance

, (27)

where, to be noted, although S and D
′

are vectors, they
are computed across the batch, with each element repre-
senting the cosine similarity and the positive-reinforced
distance for each sample between the identity and cloth-
ing features. The first term constrains the orientation
between two distributions, encouraging an increase in
their dissimilarity, with the value being 0 when the
dissimilarity between the two distributions is at its max-
imum. The second term constrains the spatial distance
in feature space and does not increase their similarity
beyond a certain margin m to prevent the model from
diverging.

Maximizing the distance in Eq. (22) can be trans-
ferred to minimize LDTE, which contributes to the
purification of identity features. The collaboration of
both terms ensures that the distance of two distribu-
tions remains bounded, contributing to the second-level
feature purification, allowing CaPu to focus on the in-
trinsic identity representation while minimizing the
impact of clothing-related information on identity
recognition.

Through a dual-level purification based on causal-
ity analysis, CaPu disentangles spurious associations
between identity and clothing information, ultimately
achieving identity feature purification.

3.4 Prompts Design
In this section, the specific prompt design of each step
in the clothing indicator is elaborated upon in detail.
Step1: Clothing Attribute Discovery We devise
question-based prompts to fully leverage the advan-
tages of VLP models and meticulously guide their
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attention toward clothing items. To achieve this, we
employ BLIP2 (Li et al, 2023a) as a basis for Visual
Question Answering (VQA) to elucidate and refine
clothing components and attributes. This clothing at-
tribute discovery aims to provide a solid foundation
for the VLP models to better comprehend clothing and
obtain accurate clothing representations. To avoid the
potential bias and illusion problems within current VLP
models, instead of using prompts to get the general at-
tributes within one round, we delicately developed 8
distinct questions that are tailored to cover a wide range
of scenarios related to various clothing states of individ-
uals, as shown below. These comprehensive prompts
are intended to ensure that the VLP models can effi-
ciently capture the appearance of the target clothing
under different conditions.

Question Prompts:
INPUT:
1. What color of clothing is the person wearing on the upper body?
2. What type of clothing is the person wearing on the upper body?
3. What color of clothing is the person wearing on the lower body?
4. What type of clothing is the person wearing on the lower body?
5. Is the person in the image wearing something on the feet?
6. What color of shoes is the person wearing on the feet if any?
7. What type of shoes is the person wearing on the feet if any?
8. Is the person wearing a dress?
OUTPUT:
Answers based on the given image.

Among the above prompts, questions 1-4 serve as
foundational prompts, collectively encompassing most
of the regular scenarios. Questions 5-7 are supplemen-
tary prompts designed to address instances of missing
information about footwear due to suboptimal image
quality or angles. Question 8 is an assist prompt to
cover the common clothing type found in females. No-
tably, since there is an overlap in clothing attributes
between questions 1-4 and 8, if the answer to question
8 is yes, the results of questions 2 and 4 are discarded.

To be noticed, the inclusion of fine-grained at-
tributes such as color and type in the VLP pipeline
was initially motivated by the goal of enhancing flexi-
bility and reusability beyond the immediate scope of
this work. While our framework primarily focuses on
accurate clothing segmentation, these attributes were
intended to support broader annotation needs, such as
fine-grained retrieval and attribute-based recognition.
However, we acknowledge that not all prompts are es-
sential for the current task. In particular, color-related
prompts are not directly used in the downstream seg-
mentation or learning process. As such, the prompt
design in our pipeline is modular and can be adapted
based on practical requirements. In our tests, remov-
ing the color-related questions (reducing the total from

8 to 5) results in approximately a 40% reduction in
the GPU usage for the VQA step, offering a meaning-
ful improvement in efficiency without compromising
segmentation performance.
Step2: Clothing Region Determine Open-set detec-
tion (Liu et al, 2023c) and segmentation (Kirillov et al,
2023) have inspired interesting applications and demon-
strated remarkable ability. We show that combining
such comprehension ability aids in accurately localiz-
ing clothing regions. Specifically, given the attribute
prompts, we apply Grounding DINO (Liu et al, 2023c),
which is an open-set detection model, to detect the
corresponding clothing for each person.

Broadly, each suit of clothing encompasses three
fundamental components: the upper body, lower body,
and footwear. Besides, an alternative situation exists
where the clothing comprises only dress and footwear.
In response to these different scenarios and guided
by the response from Question 8 in Step 1, the target
prompt supplied to the DINO model is dynamically
adjusted. Furthermore, to address the potential limi-
tations in the VLP model’s sensitivity to fine-grained
attributes, we additionally introduced an overarching
target prompt, “clothing”.

Target Prompts:
INPUT:
Example 1: [clothing, shirt, shorts, shoe, (specific type of shoe) ]
Example 2: [clothing, dress, shoe, (specific type of shoe) ]
OUTPUT:
Visual regions of clothing items.

Step3: Clothing Mask Generation Given the clothing
region prompt in the former step, we leverage the open-
set segmentation model SAM (Kirillov et al, 2023) to
extract precise masks for each identified clothing item.

Mask Prompts:
INPUT: Visual region prompts from Step 2
OUTPUT: Masks of clothing items.

Using these clothing masks, we generate a set
of modified images for each individual, composing
a wardrobe group where clothing items are progres-
sively masked (i.e., replaced with black regions) while
preserving the rest of the visual content. This black-
masking strategy, inspired by prior occlusion-based
regularization methods (Singh and Lee, 2017; Huang
et al, 2018; Song et al, 2018) provides a neutral suppres-
sion of clothing regions, ensuring the model does not
associate specific clothing cues. This progressive mask-
ing strategy is crucial for disentangling clothing-related
features from intrinsic identity cues, as it ensures that
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the identity-relevant regions, such as body shape and
facial features, remain intact for feature extraction.
Step4: Clothing Representation Extraction Upon
obtaining clothing masks, we also aim to capital-
ize on the expressive potential of VLP models. To
achieve this, we extract clothing representations using
the encoder of the VLP model with fixed parameters.
This strategy capitalizes on the VLP model’s inherent
general comprehension capabilities to interpret the su-
perficial semantics of clothing. Notably, this method
offers a more expedient alternative in contrast to extant
supervised feature extraction techniques.

Visual Prompts:
INPUT: Masks of all clothing from Step 3
OUTPUT: Clothing representation.

4 Experiment

4.1 Datasets and Evaluation
4.1.1 Datasets

We comprehensively evaluate the efficacy of CaPu
across three publicly available benchmark datasets de-
signed explicitly for CC-ReID. Three datasets include
PRCC (Yang et al, 2021b), LTCC (Qian et al, 2020),
and VC-Cloth (Wan et al, 2020), each contributing
distinct challenges and scenarios for the evaluation of
CC-ReID models.

PRCC (Yang et al, 2021b) is an extended-duration
indoor person ReID dataset, characterized by three sta-
tionary cameras. It encompasses 221 distinct identities
and comprises a total of 33,698 images. Notably, indi-
viduals in PRCC wear same clothing when captured
by cameras A and B in different rooms, while wearing
different clothing when captured by cameras C at dif-
ferent times. The training set comprises 150 identities
with 17,896 images, whereas the testing set involves
the remaining 71 identities, totaling 15,802 images.

LTCC (Qian et al, 2020) is a demanding dataset
designed for prolonged surveillance scenarios, span-
ning days and months. LTCC features challenges such
as frequent clothing changes and serious vagueness,
which involves 17,119 labeled images of 152 persons
under twelve cameras. LTCC is bifurcated into two sub-
sets: a cloth-changing set that contains 14,756 images
of 91 persons with 417 different sets of clothing; and a
cloth-consistent subset consisting of 2,382 images of
the remaining 61 identities without clothing changes.

VC-Cloth (Wan et al, 2020) is a virtual dataset
created by an action-adventure game engine GTA5. It
consists of 19,060 labeled images of virtual people
belonging to 512 different IDs. The dataset includes
images captured from four cameras. Cameras 2 and
3 maintain consistent clothing, while there are four
separate scenes with varying illumination conditions.
For training purposes, there are 256 IDs with a total of
9,449 images. The remaining set for testing comprises
another set of 256 IDs with a total of 9,601 images.

4.1.2 Evaluation Settings

We follow previous studies (Gu et al, 2022; Yang et al,
2023a; Rao et al, 2021) and leverage the standard rank
at K (R@K) accuracy and mean average precision
(mAP) for evaluation. R@K is defined as the fraction
of queries where the correct items are among the top-
K gallery items, and we use the strictest criterion of
K = 1 for evaluation. Following the baseline (Gu et al,
2022), we perform experiments in two experimental
settings: standard and changing settings. The former in-
cludes both samples with changed clothing and samples
with consistent clothing, while the latter only includes
samples with changed clothing. It is important to men-
tion that for PRCC and VC-Cloth datasets, the standard
(SC) setting only includes clothing-consistent samples.
In the standard setting, images with the same ID and
camera view in the testing set are excluded from eval-
uation. In the changing setting, besides the same ID
and camera view, samples with the same clothing are
also excluded during testing to evaluate the model’s
performance on unseen clothing.

Additionally in PRCC, there are two strategies for
evaluating under the cloth-changing setting: single- and
multi-shot matching. The single-shot setting randomly
selects a different outfit image for each ID as a gallery
for testing, creating a small gallery for evaluation. The
multi-shot setting includes all images with both cloth-
changing and cloth-consistent elements for testing,
resulting in a large gallery. While some methods use
single-shot matching multiple times and average the re-
sults, the multi-shot setting is widely preferred because
it reduces result fluctuations caused by randomness. To
ensure a fair comparison, we report the results under
the multi-shot setting in Table 1 to compare with state-
of-the-art methods, while marking the results under
single-shot as ∗.
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Table 1 Comparison of R@K (%) and mAP (%) performance with the state-of-the-arts on small scale datasets. “†” denotes the methods that
are designed for CC-ReID. “‡” indicates the reproduced results. “*” represents the results from a small gallery. Bold numbers are the best
results. Prior “-” means the indirect method using mathematical calculations to introduce prior knowledge. All notations remain consistent
throughout the following.

Method Venue Prior

PRCC LTCC VC-Cloth

Standard (SC) Changing Standard Changing Standard Standard (SC) Changing

R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP

PCB (Sun et al, 2018) ECCV 18 - 99.8 97.0 41.8 38.7 65.1 30.6 23.5 10.0 87.7 74.6 94.7 94.3 62.0 62.2
OSNet (Zhou et al, 2019) ICCV 19 - - - - - 67.9 32.1 23.9 10.8 - - - - - -
HPM (Fu et al, 2019) AAAI 19 - 99.4 96.9 40.4 37.2 66.7 31.6 24.5 10.9 86.8 77.2 94.2 94.0 65.9 64.0
IANet (Hou et al, 2019) CVPR 19 - 99.4 98.3 46.3 46.9 63.7 31.0 25.0 12.6 - - - - - -
ABD-Net (Chen et al, 2019) ICCV 19 - - - 49.2 44.8 - - - - 87.1 81.0 - - 80.9 79.2
ISP (Zhu et al, 2020) ECCV 20 Mask 92.9 - 36.9 - 66.7 30.2 28.8 12.4 89.1 83.6 95.0 94.5 80.1 74.9
AGW (Ye et al, 2021) TPAMI 21 - 98.8 91.7 38.9 34.2 68.8 36.5 32.9 13.8 92.2 85.4 94.9 94.5 80.4 75.2
TransReID (He et al, 2021) ICCV 21 - 97.5 96.1 47.7 50.2 72.8 38.3 31.9 17.1 90.9 81.2 95.1 94.6 71.7 72.5

RCSANet (Huang et al, 2021) † ICCV 21 - 99.6 96.6 48.6 50.2 - - - - - - - - - -
3DSL (Chen et al, 2021) † CVPR 21 Shape - - 51.3 - - - 31.2 14.8 - - - - 79.9 81.2
FSAM (Hong et al, 2021) † CVPR 21 Mask 98.8 - 54.5* - 73.2 35.4 38.5 16.2 - - 94.7 94.8 78.6 78.9
GI-ReID (Jin et al, 2022) † CVPR 22 Gait 79.0 - 33.3 - 63.2 29.4 23.7 10.4 - - - - 64.5 57.8
UCAD (Yan et al, 2022) † IJCAI 22 Mask 96.5 - 45.3 - 74.4 34.8 32.5 15.1 - - - - - -
ViT-VIBE (Bansal et al, 2022) † WACV 22 Shape 99.7 - 47.0 - 71.4 35.8 - - - - - - - -
IRANet (Shi et al, 2022) † IVC 22 Pose 99.7 97.8 54.9 53.0 - - - - - - - - - -
Pos-Neg (Jia et al, 2022) † TIP 22 Shape - - 54.8* - 75.6 37.0 36.2 14.4 - - - - - -
ACID (Yang et al, 2023b)† TIP 23 - 99.1 99.0 55.4* 66.1* 65.1 30.6 29.1 14.5 - - 95.1 94.7 84.3 74.2
MBUNet (Zhang et al, 2023a)† TIP 23 Pose 99.8 99.6 68.7* 65.2* 67.6 34.8 40.3 15.0 - - 95.4 95.3 82.7 70.3
DCR-ReID (Cui et al, 2023)† TCSVT 23 Mask 100.0 99.7 57.2 57.4 76.1 42.3 41.1 20.4 - - - - - -
AIM (Yang et al, 2023a)† CVPR 23 - 100.0 99.9 57.9 58.3 76.3 41.1 40.6 19.1 - - - - - -
CVSL (Nguyen et al, 2024)† WACV’24 Pose 97.5 99.1 57.5 56.9 76.4 41.9 44.5 21.3 - - - - - -

Baseline (Gu et al, 2022)‡ CVPR 22 - 100.0 99.7 54.4 54.2 73.4 39.4 38.0 17.4 92.3 86.7 95.0 95.2 81.9 78.9
CaPu (Ours) VLM-Mask 100.0 99.9 57.9 57.2 76.5 43.1 41.3 20.5 93.8 89.6 95.6 95.6 88.0 83.9

4.1.3 Implementation Details

The expert model is a ResNet50 (He et al, 2016)
trained by CAL (Gu et al, 2022), where the last pooling
layer and the fully connected layer are removed. Fol-
lowing the detailed settings in previous methods (Gu
et al, 2022; Qian et al, 2020; Hong et al, 2021), ran-
dom horizontal flipping, random cropping, and random
erasing (Zhong et al, 2020) are used for data aug-
mentation. CaPu is trained with batchsize of 32. The
Adam (Kingma and Ba, 2015) optimizer is adopted in
CaPu. Specifically, the parameter of the expert model
is fixed at the first 25 epochs for increasing stability,
and the initial learning rate is 3.5e−6 and drops to 10%
of the original at the 30th epochs. The initial learning
rate of the other parts is 3.5e−5, which drops to 10%
of the original for every 20 epochs. The temperature
parameter τ in Eq. (19) is set to 1/16. The margin α in
Eq. (12) and m in Eq. (27) is set to 0.3, and the scaling
factor β in Eq. (26) is set to 16. All hyperparameters
are fixed for all datasets without further tuning. All
classifiers mentioned in the paper are implemented as
a single fully connected layer.

4.2 Comparison with State-of-the-Art
Methods

In Table 1, we conduct a comprehensive evaluation
of the proposed CaPu against eight traditional ReID
methods and fourteen methods specifically designed
for CC-ReID across three datasets. To ensure a fair and
consistent comparison, we replicate the results of the
baseline method (Gu et al, 2022) using officially pub-
lished codes and subsequently employ these weights
for training CaPu. Given the limited scope of avail-
able comparative methodologies, CaPu is benchmarked
against both direct and indirect methods. To highlight
the distinctive characteristics of these two approaches,
an additional column labeled “prior” is incorporated
into Table 1. This column signifies the potent prior
knowledge imposed by direct category methods.

As illustrated in Table 1, the proposed CaPu demon-
strates a notable superiority over most methodologies
and exhibits a substantial performance improvement
over the baseline method (Gu et al, 2022) across all
evaluated metrics and datasets. This establishes CaPu
as the current state-of-the-art in CC-ReID, showcas-
ing its remarkable efficacy in addressing the challenges
posed by clothing-changing scenarios. Specifically,
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in the indoor PRCC dataset, characterized by mini-
mal pedestrian variations and limited environmental
changes in the standard setting, most methods, includ-
ing CaPu, achieve commendable performance. How-
ever, in the Changing setting, CaPu and AIM (Yang
et al, 2023a) emerge as the top-performing meth-
ods, achieving a competitive R@1 accuracy of 57.9%.
Notably, CaPu exhibits a slightly higher mAP than
AIM in this context. This discrepancy is attributed to
AIM, like CaPu, leveraging causal relations between
clothing and identity for identity feature learning. Nev-
ertheless, AIM also employs clothing features without
strong supervisory information, leading to a potential
reduction in precision concerning clothing features.
Consequently, AIM and CaPu yield comparable results
in scenarios with clear data and minimal environmental
interference like PRCC. In contrast, on more complex
datasets LTCC, CaPu outperforms AIM. This high-
lights the superiority of CaPu, combining VLP and
causal reasoning for feature purification, demonstrating
its effectiveness over fixed dual-branch methods.

For the real-world scenarios in LTCC, CaPu
achieves 76.5%/43.1% on R@1/mAP in the standard
setting, surpassing the baseline method (Gu et al,
2022) by 3.1%/3.7%. In the clothing-changing setting,
CaPu achieves competitive results, with 41.3%/20.5%
on R@1/mAP, surpassing the baseline by 3.3%/3.1%
and ranking as the second-best method overall. The
slightly lower performance in this setting compared to
CVSL (Nguyen et al, 2024) reflects the complementary
nature of the two approaches. CVSL, which leverages
human keypoints and graph attention networks to dis-
till shape-related features, is particularly well-suited
for clothing-changing scenarios. However, its reliance
on skeletal information makes it sensitive to factors
such as clothing fit (e.g., loose garments) and environ-
mental conditions, which can affect retrieval accuracy.
In contrast, CaPu’s focus on purifying identity-specific
features ensures robust performance across both set-
tings, demonstrating its versatility and effectiveness in
mitigating spurious associations between identity and
clothing.

Furthermore, among all the competitors, the pro-
posed CaPu achieves the best performance on the
VC-Cloth dataset, where CaPu achieves the highest
88.0%/83.9% on R@1/mAP in the changing setting,
surpassing others by a large margin of 3.7%/2.7% at
least. Besides, CaPu outperforms other methods on the
rest settings, achieving 93.8%/89.6% and 95.6%/95.6%
on R@1/mAP in two standard settings, respectively.
The above results clearly suggest the benefit of CaPu on

Table 2 Ablation studies of each component in CaPU under the
cloth-changing setting. The black dot in solid indicates that the
specific module is considered at the training stage.

Basic Causal PRCC LTCC

B/L Group LCTE LDTE R@1 mAP R@1 mAP

 # # # 54.4 54.2 38.0 17.4
 #  # 54.4 54.3 38.2 17.7
 # #  56.7 56.9 39.7 19.3
   # 56.8 56.5 40.8 19.6
    57.9 57.2 41.3 20.5

Cosine ℒ𝐷𝑇𝐸PRD

V
al
u
e

Rank1

mAP

40.9

19.9

41.1

20.1

41.3

20.5

Figure 5 Ablation studies of the two components in LDTE, “Cosine”
denotes the cosine similarity (Orientation), and “PDR” stands for the
positive-reinforced distance (Distance) in the DTE loss

VC-Cloth by combining the VLP models and the expert
model for feature purification, showing the superiority
of CaPu in handling synthetic samples.

4.3 Ablation Studies
To explore the effectiveness of the proposed modules
in CaPu, we conduct comprehensive ablation studies
from multiple perspectives.

4.3.1 Analysis on Components

The Effectiveness of Each Component. In Table 2,
we conducted ablation experiments on each compo-
nent of CaPu. “B/L” is abbreviated for baseline, and
“Group” denotes the constructed wardrobe group. The
two losses in the “Causal” section represent the two
parts of the treatment effect. Solid circles indicate the
participation of the component in the training process,
while hollow circles indicate the opposite. It’s notewor-
thy that there is a connection between “Group” and
LCTE where “Group” serves as the foundation for LCTE.
Considering only LCTE without “Group” implies us-
ing the image itself as the content for the wardrobe,
reducing LCTE to a triplet loss.

Specifically, the first row denotes the results of the
baseline method. The comparison of rows 1-3 reveals
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Table 3 Comparing different designs of the wardrobe group.

Method
PRCC LTCC

R@1 mAP R@1 mAP

Baseline 54.4 54.2 38.0 17.4
CaPu w/ Direct Group 53.1 53.0 36.7 17.0
CaPu w/ DGNet (Zheng et al, 2019) 54.3 54.9 37.7 17.3
CaPu w/ SCHP (Li et al, 2020) 56.5 56.2 39.1 18.4
CaPu w/ VLP (ours) 57.9 57.2 41.3 20.5

the impact of applying the investigation of the two treat-
ment effects without the wardrobe group. Adding the
simple version of LCTE for training shows only a slight
improvement, but with the addition of DTE, there is a
significant enhancement of 2.7% and 1.9% in mAP on
two datasets, demonstrating the effectiveness of DTE
for feature purification. By comparing the results of
rows 2 and 4, it can be affirmed that the design of
the wardrobe group effectively enhances model perfor-
mance, indicating the positive significance of CTE for
feature purification. Lastly, by comparing the results of
the last row with all previous rows, it can be inferred
that each component of CaPu has positively contributed
to the final outcome, confirming the effectiveness of
each component.

Moreover, the LDTE encompasses two pivotal com-
ponents designed to optimize the distribution when
intervening with identity and clothing representations.
To elucidate the distinct impact of each component,
Figure 5 delineates the model performance changes
when considering different terms. From the figure, we
can infer that while individually applying each strategy
facilitates distribution separation, their combined effect
leads to a more pronounced distribution separation and
consequently yields better results.

The Effectiveness of VLP Pipeline. One major
innovation in CaPu lies in constructing a VLP an-
notation pipeline, harnessing the advantages of VLP
models to adeptly capture clothing information for
knowledge acquisition. To validate the superiority of
the VLP pipeline, we conduct a comprehensive eval-
uation against alternative methods for constructing
the wardrobe group, including SCHP (Li et al, 2020),
a prevalent human parser method applied in DCR-
ReID (Cui et al, 2023), FSAM (Hong et al, 2021),
SPL (Shu et al, 2021a), as well as simpler grouping
strategies and GAN-based approaches, on two realistic
datasets, as delineated in Table 3.

The “Direct Group” means directly grouping fea-
tures of the same identity with different clothing labels.
This design was chosen as a straightforward baseline
because it mimics the process of grouping images

within the same identity while assuming sufficient
variation in clothing. However, this approach fails to
account for the critical challenge of co-occurrence ap-
pearance in CC-ReID datasets, where different samples
of the same identity often share overlapping clothing
attributes (e.g., adding or removing a jacket while re-
taining the same underlying outfit). This overlap can
mislead the model into associating identity-specific
features with clothing patterns, thereby degrading its
ability to disentangle intrinsic identity features. As
shown in Table 3, this approach leads to significantly
degraded performance, underscoring the necessity
of a more robust method for preserving body part
semantics.

The GAN-based approach, using DG-Net (Zheng
et al, 2019), was evaluated as a potentially cost-
effective alternative for generating diverse clothing
variations within the wardrobe group. This method
transfers clothing across identities while preserving
pose and generates new samples that simulate cloth-
ing changes. While this approach introduces variability,
it is limited by the inherent instability and artifacts
in GAN-generated images. These issues include in-
complete clothing changes (e.g., partial adjustments or
artifacts) and the loss of critical discriminative details,
such as facial features. Moreover, the training of GAN
models is dataset-specific, and the process requires sig-
nificant computational resources and time (close to 24
hours in our experiments), which limits their practical-
ity for real-world CC-ReID tasks. As seen in Table 3,
the results obtained using GAN-based methods are only
marginally better than the simpler grouping strategy,
further highlighting their limitations.

In comparison, SCHP (Li et al, 2020) demonstrates
improved results in simpler datasets, such as PRCC,
but struggles under complex conditions, such as those
in LTCC, where accurate segmentation is crucial. The
VLP outperforms all alternative methods by ensuring
high-quality annotations and preserving body part se-
mantics, thereby enabling effective disentanglement of
identity features from clothing variations.

The design of these experiments reflects our in-
tent to validate the importance of preserving body part
semantics and demonstrate the limitations of simpler
alternatives. These results highlight the critical role of
the VLP pipeline in achieving robust and consistent
performance for CC-ReID tasks.

The Effectiveness of Identity Projector. CaPu in-
tegrates both clothing and identity features, facing a
common challenge of misalignment due to differences
in feature dimensions between the VLP models and the
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Table 4 Ablation studies of different projector designs in CaPu.
“Base” stands for the decoded feature is used for testing. “Linear”
refers to direct linear projection between two feature dimensions.
“Weight” denotes normalized learnable weight projection. “MLP”
stands for the Multilayer Perception Union. “w/o” means not
considering the corresponding component in training.

Identity Projector PRCC LTCC

Base Linear Weight MLP w/o Lkeep Ours R@1 mAP R@1 mAP

 # # # # # 54.3 54.3 37.8 17.4
#  # # # # 56.7 55.8 38.8 18.9
# #  # # # 56.1 55.9 40.8 19.1
# # #  # # 55.2 55.3 38.0 19.2
# # # #  # 57.1 56.6 40.8 19.7
# # # # #  57.9 57.2 41.3 20.5

expert models. To address this, the identity projector is
strategically employed. Its purpose is to amalgamate
the distinctive attributes of both feature spaces, seek-
ing to minimize information loss while maximizing
the preservation of the original feature information.
This strategic approach ensures optimal feature align-
ment. The comparative analysis in Table 4 contrasts the
proposed identity projector with several conventional
feature alignment methodologies.

The results in row 1 demonstrates that features
processed through the identity projector retain their
performance compared to the original identity features,
indicating only a minor information shift attributable
to the inherent randomness in neural networks. Upon
scrutiny of rows 2-4 and the final row, it becomes
evident that direct feature mapping (Weight, Leaner,
MLP) for alignment yields only incremental improve-
ments in performance. This underscores the limitation
of direct mapping methodologies, emphasizing their
deficiency in imposing constraints on information con-
sistency. This, in turn, results in notable information
loss and compromises the precision of feature align-
ment, thereby impacting overall performance. In a
noteworthy validation of the efficacy of information
consistency constraints, row 4 demonstrates results ob-
tained without leveraging consistency constraint loss
Lkeep. The discernible contrast with the final row rein-
forces the positive impact of information consistency
on facilitating superior feature alignment. This nuanced
constraint proves pivotal in fortifying alignment accu-
racy, allowing CaPu to adeptly execute the intricate
task of feature purification.

The Effectiveness of Bias Enhancer. The purpose
of the Bias Enhancer is to establish a dynamic corre-
spondence between the frozen clothing representation
and the trainable identity representation, emphasizing
the effect of clothing bias within identity features. In

Table 5 Ablation studies of different bias enhancer designs in
CaPu. “Linear” refers to direct linear projection between two
feature dimensions. “MLP” stands for the Multilayer Perception
Union. Reverse means the features representing Q and K, V in
Figure 4(b) are reversed, where the clothing feature is treated as
Q.

Bias Enhancer PRCC LTCC

Linear MLP Reverse Ours R@1 mAP R@1 mAP

 # # # 57.7 57.0 40.3 19.2
#  # # 56.4 56.1 41.2 19.5
# #  # 57.2 56.7 40.6 19.6
# # #  57.9 57.2 41.3 20.5

Table 6 Comparing different designs of the LDTE, where w/o
LDTE stands for the results without consider the DTE part. The
NegKL and Marginal NegKL stand for two KL settings without
and with margin, respectively.

Method
PRCC LTCC

R@1 mAP R@1 mAP

Baseline 54.4 54.2 38.0 17.4
w/o LDTE 56.8 56.5 40.8 19.6
w/ NegKL 57.1 56.6 40.9 19.9
w/ Marginal NegKL 57.0 56.7 40.9 20.0
ours 57.9 57.2 41.3 20.5

contrast to the direct utilization of all clothing features,
the Bias Enhancer is designed to capture clothing in-
formation influencing identity discernment, facilitating
CaPu in enhancing the precision of feature purification.
Table 5 illustrates two direct methodologies employ-
ing all clothing information, i.e., Linear, and MLP,
compared with CaPu’s Bias Enhancer.

Through a comparison of rows 1-2 with the final
row, it is evident that CaPu’s bias-enhancing design
exhibits considerable advantages over methodologies
relying on the entire clothing features for guidance.
This substantiates the efficacy of the Bias Enhancer.
Additionally, to validate the effectiveness of using iden-
tity features as a query within the enhancer, row 3
presents an experiment using clothing features as query
features. The results indicate that even when clothing
features are utilized as queries, CaPu maintains a cer-
tain level of feature purification. However, with the
identity feature as the computation focus, there is an
introduction of identity information interference into
bias features, affecting the final feature purification out-
come. In summary, the design of the Bias Enhancer in
CaPu effectively reinforces the expression of clothing
bias, promoting the accuracy of feature purification.

4.3.2 Analysis on the alternatives of DTE Loss

The Disentanglement Treatment Effect (LDTE) is a
critical component of our framework, designed to sep-
arate identity-specific and clothing-specific features
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effectively. To validate its impact, we conducted abla-
tion experiments comparing the full model with and
without LDTE. As shown in Table 6, removing LDTE
results in a significant performance drop across both
PRCC and LTCC datasets, confirming its importance
in disentangling these two feature spaces.

To investigate alternative approaches, we explored
the use of negative KL divergence as a potential
design for LDTE. KL divergence is a widely used
metric to quantify the divergence between two proba-
bility distributions, and applying a negative KL diver-
gence can effectively maximize the separation between
identity-specific and clothing-specific feature distribu-
tions. Given its simplicity and broad applicability, KL
divergence represents a natural candidate for this task.

We evaluated two variations: direct negative KL di-
vergence and a margin-based negative KL divergence
that introduces a boundary constraint to limit excessive
separation. The results of these experiments, shown
in Table 6, indicate that both approaches yield slight
improvements over the baseline without LDTE. Direct
negative KL divergence achieves marginal performance
gains, while the margin-based variation produces com-
parable results, suggesting that the boundary constraint
does not significantly impact performance.

While these results demonstrate the utility of KL
divergence in encouraging separation between distri-
butions, neither variation achieves the performance of
LDTE. These findings validate the effectiveness of the
proposed LDTE in disentangling identity and clothing
features, highlighting its role as a key component of
our framework.

4.3.3 Analysis on Complexity

To validate CaPu in acquiring and utilizing prior
knowledge, we conducted a comparison in Table 7
with several methods in terms of model parameters,
FLOPs, and inference time. ISP (Zhu et al, 2020) and
AGW (Ye et al, 2021) represent conventional pedes-
trian re-identification methods, CAL (Gu et al, 2022) is
an indirect-type CC-ReID method, FSAM (Hong et al,
2021) is a direct-type CC-ReID method using masks as
identity aids, and AIM (Yang et al, 2023a) is a causality
based CC-ReID method, exploring the causal relation
between clothing and identity features similar to CaPu.
It is important to note that due to limited access to open-
source implementations, for a fair comparison, CaPu
can only rely on existing results provided by their ori-
gin papers and has to adopt the single-shot matching

Table 7 Comparisons on the model parameters (Params), FLOPs,
training and testing time.

Method
Training Testing PRCC*

Params FLOPs Time Params FLOPs Time R@1

ISP 31.7M - 16.5h 31.7M - 30s 38.9
AGW 23.8M 262.7G 3.2h 23.8M 260.9G 116s 49.6
CAL 24.1M 262.2G 2.1h 23.5M 262.1G 58s 54.6
FSAM 164.3M - 12h 23.8M - 15s 54.5
AIM 143.9M 540.4G 4.1h 23.5M 262.1G 58s 57.8

CaPu (ours) 66.5M 262.7G 2.8 h 23.5M 262.1G 58s 59.4

Table 8 Comparisons on the pre-processing computational
cost.

Method
GPU usage Speed

VQA Grounding Segment Feature Time (/image)

SCHP (Li et al, 2020) - - 1.8G - 0.2s
VLP (ours) 2.9G 2G 5.5G 1.6G 1.4s

strategy on PRCC accordingly, which means the results
are produced on a small gallery.

From the results in Table 7, it is observed that,
compared to CAL (Gu et al, 2022), although CaPu
increases the model parameters by a modest amount
(24.1M for CAL vs. 66.5M for CaPu), it incurs only
a marginal increase in training time (2.1h vs. 2.8h)
while maintaining the same overhead and speed dur-
ing testing, achieving a significant improvement of
4.8% in performance. Compared to FASM (Hong et al,
2021), CaPu achieves a 4.9% performance improve-
ment with smaller parameters (164.3M vs. 66.5M) and
shorter training time (12h vs. 2.8h). In comparison
to the causal-based method AIM (Yang et al, 2023a),
CaPu attains a 1.6% performance improvement with
approximately 50% fewer parameters and training time,
demonstrating the superiority of CaPu in effective
acquisition and utilization of prior knowledge.

To address the computational cost associated with
the VLP pipeline, we conducted a detailed comparison
of GPU usage and processing speed with SCHP (Li
et al, 2020) in Table 8. Although the SCHP (Li et al,
2020) requires minimal GPU usage, solely for segmen-
tation, and achieves a significantly faster processing
time of 0.2 seconds per image. In contrast, the VLP
pipeline involves multiple stages, including VQA,
grounding, segmentation, and feature extraction, re-
sulting in higher GPU usage and a longer processing
time of 1.4 seconds per image. While this increased
complexity incurs greater computational costs, it en-
ables the VLP pipeline to achieve significantly better
segmentation quality, as demonstrated in Figure 6.
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(a) missing parts

VLP Coarse SCHP VLP Coarse SCHP

(b) rough boundaries

(c) noise artifacts (d) structural gaps

Fine Fine

Figure 6 Comparison of segmentation results across several groups:
Each group displays RGB images followed by segmentation results
from VLP (ours), Coarse (Grounded SAM (Ren et al, 2024) using
“clothing” as a prompt), Fine (using “upper cloth”, “lower cloth” and
“shoes” as a prompt) and SCHP (Li et al, 2020). The comparison
highlights the advantages of VLP in addressing issues such as missing
parts, rough boundaries, noise artifacts, and structural gaps.

The comparison highlights the trade-off between
time complexity and performance. SCHP’s simplic-
ity and lower resource consumption make it a viable
choice for tasks where computational efficiency is prior-
itized. However, for scenarios demanding high-quality
and robust segmentation, the VLP pipeline proves ad-
vantageous. Its ability to address challenges such as
missing parts, rough boundaries, and noise artifacts en-
sures reliable feature extraction, which is critical for
downstream tasks requiring fine-grained segmentation.

Additionally, with the rapid development of vision-
language models, stronger VQA alternatives such as
MiniGPT4 (Zhu et al, 2024), MiniCPM-V (Yao et al,
2024), and Qwen2-VL (Wang et al, 2024a) have be-
come available. These models often provide enhanced
visual reasoning capabilities but typically require sub-
stantially more GPU memory (often exceeding 7 GB
even under quantization). While such models may offer
advantages in well-resourced environments, we adopt
BLIP-2 in our framework as a practical and efficient
choice. With a modest memory footprint (2.9 GB for
VQA) and stable performance across diverse input
conditions, BLIP-2 offers a good balance between ef-
fectiveness and computational efficiency—making it
especially suitable in scenarios where accessibility and
deployment scalability are key considerations.

4.4 Qualitative Results
4.4.1 Effectiveness of Clothing Indicator

To vividly illustrate the effectiveness of the Clothing
Indicator and the clothing perception capability of VLP
pipeline, Figure 7 showcases the results for two cloth-
ing scenarios. The indication of clothing attributes

originates from the results of Indication Step 1 in
Section 3.4, while the clothing mask comes from Step
3. Since visualizing other steps exhibits redundancy
with Figure7, only partial step results are displayed
here. Additionally, based on the clothing indication,
the composition of the wardrobe group for the corre-
sponding samples is presented. The results in Figure 7
demonstrate that for typical clothing structures like
Top-Bottom-Shoes, the Clothing Indicator in CaPu
adeptly perceives clothing edges and accurately iden-
tifies clothing components. Similarly, for a different
structure like Dress-Shoes, it precisely recognizes the
clothing region. Notably, in the second case, the model
correctly identifies the clothing region even when
the person’s hand is present in that area, showcasing
CaPu’s resilience to such complexities.

To further evaluate its effectiveness, we conducted
a detailed comparison against SCHP (Li et al, 2020),
a commonly used human parsing model, as well as
a coarse segmentation method based on Grounded
SAM (Ren et al, 2024) using both general and fine-
grained prompts. The results of this comparison are
visualized in Figure 6. The results show that the VLP
pipeline significantly outperforms alternative meth-
ods in handling challenging segmentation scenarios.
While it may seem intuitive that more specific prompts
(e.g., “upper cloth,” “lower cloth,” and “shoes”) would
yield better results, our observations show that they
often lead to unstable segmentation. Specifically, fine-
grained prompts can introduce structural noise and
fragmented outputs, especially under occlusion or non-
frontal views. We attribute this to the training bias of
the grounding model, which is more reliably aligned
with frequently seen, general concepts such as “cloth-
ing.” In contrast, less common fine-grained terms
receive weaker model attention and may even result in
over-segmentation or misalignment.

Compared to SCHP and both prompt variants of the
SAM-based method, the VLP pipeline achieves more
complete, coherent, and noise-free segmentation. It cap-
tures subtle and occluded clothing regions with clear
boundaries and preserves structural integrity—avoiding
the disjointed or noisy masks often observed in other
approaches. These results support the advantage of
combining VQA-guided grounding with SAM in a
modular and reliable way.

Related to the computational cost in Table 8, while
the VLP pipeline involves higher computational costs
due to the use of multiple models (e.g., VQA, ground-
ing, segmentation, and feature extraction), its superior
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Figure 7 Visualization of the clothing indications and images in the corresponding wardrobe groups of two kinds of standard clothing status.

(e) low resolution

(c) back view

(d) unclear face

(a) front view (b) side view

(f) severe illumination

B/L Ours B/L Ours B/L Ours B/L Ours B/L Ours B/L Ours

Figure 8 Visualizations of the feature of interest as heatmaps, produced by Grad-CAM (Selvaraju et al, 2020) under various scenarios. Each
group corresponds to a specific scenario, with two pairs of samples shown. In each pair, the left heatmap represents the baseline method (labeled
as “B/L”), and the right heatmap shows the results of the proposed CaPu method.

B/L

CaPu

all w/o top w/o btm w/o shoesw/o all
Image

Figure 9 Visualization of the feature of interest as heatmaps, pro-
duced by Grad-CAM (Selvaraju et al, 2020). Samples of the same
identity but different clothing statuses in the wardrobe group are il-
lustrated. The above row shows the baseline results; the bottom row
shows the results of CaPu.

segmentation quality justifies this trade-off. By address-
ing issues such as missing parts, rough boundaries, and
noise artifacts, the VLP pipeline ensures robust and

reliable performance, underscoring the importance of
incorporating advanced vision-language pretraining in
our framework. And the above results confirm that the
Clothing Indicator effectively handles the acquisition
of prior knowledge.

4.4.2 Effectiveness of Feature Purification

Analysis of Feature Heatmaps In this section, we vi-
sually assess the effectiveness of feature purification
implemented by CaPu. Figures. 8 and 9 provide atten-
tion maps before and after applying feature purification.
The attention maps depict the model’s focus on specific
regions within the images, thereby offering insights
into the model’s learning dynamics.

Specifically, to evaluate the robustness of CaPu in
capturing identity-related features, we conducted addi-
tional experiments under various challenging scenarios,
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Figure 10 The comparison of retrieval results in various real scenarios. Within each group, the top row shows the baseline results; the bottom
row shows the results of CaPu. Green bars denote the correct retrievals, whereas red bars represent the incorrect ones.

as visualized in 8. These Grad-CAM heatmaps com-
pare the baseline method with CaPu across conditions
such as occlusions, pose variations, and challenging
environmental factors like poor lighting and low reso-
lution. The results demonstrate that the proposed CaPu
effectively purifies identity-related features not onI-
JCVly under ideal frontal-view conditions but also
when facial information is insufficient. By focusing on
body parts such as the torso and limbs, CaPu ensures
robust feature purification and shows strong adaptabil-
ity across diverse scenarios, enhancing the model’s
effectiveness in capturing consistent and discriminative
identity features.

Furthermore, Figure 9 illustrates the model’s atten-
tion shift on images from the wardrobe group, high-
lighting how the model’s focus varies. The first column
of Figure 9 illustrates the attention map derived from
the original RGB image. Notably, the baseline method
primarily concentrates its learned features around the
feet, neglecting critical intrinsic identity content. This
behavior arises due to the model’s vulnerability to spuri-
ous associations between unchanged clothing parts and
intrinsic identity information. The model erroneously
prioritizes clothing features as easily learnable identity
cues, which compromises accuracy. When analyzing
the impact within the wardrobe group, attention maps
in columns 2-4 display the effects of selectively remov-
ing clothing items from original images. The results
in the first row clearly show that despite changes in

clothing, the baseline model continues focusing on the
foot region. This persistence highlights how clothing
information interferes with and introduces bias into the
model’s representations.

In contrast, CaPu’s features demonstrate greater
adaptability when faced with changing clothing and
encompass identity relevant information. This adapt-
ability reduces bias and confirms the effectiveness of
CaPu’s feature purification. Notably, when examining
attention visualizations, CaPu’s features do not always
focus on identity regions like the head but correctly
concentrate on semantically meaningful regions such
as the shoulders, wrists, and ankles. This nuanced fo-
cus reflects CaPu’s deliberate wardrobe design, which
avoids direct masking of clothing sections and instead
preserves semantically relevant clues associated with
identity. The results underscore CaPu’s ability to main-
tain semantic consistency during feature purification
while mitigating spurious associations introduced by
clothing variations.

Analysis of Retrieval Results To comprehensively
evaluate the feature purification effectiveness of CaPu,
we present retrieval results on the real dataset in
Figure 10 and the toy dataset in Figure 11.

Specifically, Figure 10 provides retrieval results in
real-world scenarios, offering a direct comparison be-
tween the baseline method and CaPu under diverse
conditions, including frontal view, occlusion, side view,
and back view. Juxtaposing the two sets of retrieval
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Figure 11 Visualization of the retrieval result on the toy datasets
with only 5 images. The top row shows the results produced by
BLIP2 (Li et al, 2023a); The second row shows the baseline results;
the bottom row shows the results of CaPu. Green boxes denote the
correct retrievals, and red boxes represent the incorrect ones.

results reveals noteworthy differences. As shown in
the first row, the baseline method tends to retrieve im-
ages with superficial resemblances to the query image.
This suggests a bias towards non-essential features
like clothing, which can negatively impact retrieval ac-
curacy, particularly in challenging scenarios such as
occlusions or back views, where facial and upper-body
information is limited.

In more detail, under the frontal view
(Figure10 (a)), the baseline retrieves images with
similar clothing patterns but mismatched identities,
such as retrieving individuals wearing similar shirts,
while CaPu correctly identifies matches by focusing on
intrinsic identity features like body shape and structure.
Under occlusion (Figure 10 (b)), the baseline model
fails to retrieve accurate matches when key regions are
hidden, instead relying on partial cues such as visible
footwear. In contrast, CaPu captures discriminative
identity details from less-occluded body parts to
retrieve correct matches. In side-view and back-view
scenarios (Figures.10 (c) and 10 (d)), where facial
information is unavailable, the baseline often retrieves
results based on non-discriminative features like
pants or shoes. In contrast, CaPu accurately captures
identity-relevant features, even in these challenging
conditions.

Furthermore, in Figure 11 the toy dataset includes
the top 5 gallery images with the highest similarity
scores to the query image by BLIP2 (Li et al, 2023a),

as illustrated in the first row. These images provide a
direct and intuitive comparison among BLIP2, baseline
methods, and CaPu, thereby elucidating their relative
performance. The second row depicts the retrieval re-
sults obtained by the baseline method. Notably, the
baseline method captures certain identity cues, evident
in the improvement in the R@3 image compared to
BLIP2. However, the baseline model remains suscep-
tible to clothing interference. Similar clothing colors,
identical pants, and shoes contribute to potential con-
fusion in the retrieval results. In contrast, the third
row showcases CaPu’s retrieval results, demonstrat-
ing the impact of feature purification. CaPu, with its
refined features, yields more precise retrieval results.
The influence of clothing interference is notably re-
duced, resulting in a more accurate representation of
intrinsic identity cues. This analysis of retrieval results
underscores CaPu’s efficacy in mitigating the impact
of clothing-related spurious associations and highlights
the potential for improved performance in real-world
scenarios.

These results demonstrate CaPu’s ability to purify
identity features and mitigate spurious associations in-
troduced by clothing or other irrelevant factors. Across
all scenarios, CaPu consistently outperforms the base-
line, achieving more robust retrievals by leveraging
body shape and subtle identity cues.

5 Conclusion
This work presents a Causality-based Purifica-
tion (CaPu) model for Cloth-Changing Person Re-
Identification (CC-ReID). Theoretically, CaPu incor-
porates the generalization ability of Vision-Language
Pretraining (VLP) models as clothing indicators to pro-
vide clothing semantics indications as the effective
acquisition of prior knowledge. Furthermore, CaPu re-
defines the challenge of breaking spurious associations
between identity and clothing information as a causal-
ity purification problem, which effectively utilizes the
obtained prior knowledge. Specifically, the clothing an-
notations are accurately captured by the VLP indication
pipeline, and the identity information from the expert
model is purified by diminishing the impact of clothing
on the learned visual representation from two causal
perspectives: Consistency Treatment Effects (CTE)
and Distinctiveness Treatment Effects (DTE). Compre-
hensive experiments across three CC-ReID datasets,
PRCC, LTCC, and VC-Cloth, demonstrate that CaPu
outperforms state-of-the-art methods.
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Limitation Using large-scale VLP models requires
more computational resources than expert models,
which could be a limitation in certain settings. To mit-
igate this, we’ve structured the VLP processing in a
modular way, enabling batch processing to reduce over-
head. However, the computational demands remain,
especially in resource-constrained environments. As
large models continue to be streamlined, more efficient
solutions may emerge.
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