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Abstract—High-dimensional data are more sparsely distributed
in space compared to low-dimensional data of the same size
(e.g., 3D point cloud vs 2D images), a phenomenon known
as the “Curse of Dimensionality” (COD). Consequently, more
samples are required to effectively fine-tune models for high-
dimensional tasks like 3D point cloud understanding, leading
to increased computational costs. Meanwhile, although 3D point
clouds provide comprehensive spatial details, 2D images projected
from specific viewpoints often capture sufficient information for
understanding visual content. To address the COD challenge and
leverage the complementary nature of 3D-2D data, we introduce
a multi-modal, training-free approach named PointTFA™, an
extended version of our original PointTFA. This new approach
incorporates 2D view images projected from 3D point clouds in a
training-free manner to augment cloud classification. Specifically,
PointTFA™ contains two training-free branches that process
3D point clouds and 2D view images independently. Each
branch includes its own Representative Memory Cache (RMC),
Cloud/Image Query Refactor (CQR or IQR), and Training-Free
Adapter (TFA). The model combines the outputs from both
branches through score fusion to make effective multi-modal
predictions. PointTFA™ improves upon single-modal PointTFA
by accuracy gains of 1.01%, 1.32%, and 4.64% on the Mod-
elNet40, ModelNet10, and ScanObjectNN benchmarks, respec-
tively, setting new state-of-the-art performance for training-free
point cloud understanding approaches.

Index Terms—Multimodal Fusion,3D visual understanding,
Few-shot learning, Training-free adaption.

I. INTRODUCTION

N recent years, the growing demand for 3D real-world

applications, such as autonomous driving and drone nav-
igation, has driven the rapid progress of 3D point cloud
techniques, including segmentation [1] [2] [3], classification
[4] [5] [6] [7], detection [8], and self-supervised learning
[]. However, the diversity of open-world environments and
the complexity of 3D point cloud signals make it highly
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Fig. 1: Different Conditions for Point Cloud Under-

standing. (a) Zero-Shot relies on pre-trained models; (b)
Tuned Adaptation learns new tunable modules; (c) Point-
TFA (single-modality) employs training-free alignment from
a 3D support set. (d) PointTFA"" leverages both 3D and 2D
modalities. (Fire/Ice denotes tuning/freezing of parameters.)



challenging to collect and annotate a sufficiently large 3D
training set that generalizes well across different scenarios.

To address this challenge, growing research efforts have
focused on adapting 3D foundational models (e.g., ULIP
[10]) for customized downstream tasks under zero-shot (Figure
la) or few-shot tuning (Figure 1b) conditions. While these
advancements have yielded promising results, they still suffer
from the so-called “Curse of Dimensionality” (COD) [I11].
The COD highlights that high-dimensional samples (e.g., 3D
vs 2D) are sparser in the signal space, making parameter
optimization more difficult and increasing the risk of over-
fitting. Meanwhile, 3D point clouds naturally contain 2D
information, and 2D depth images can be easily obtained via
view projection. On one hand, “3D—2D” projection increases
sample density in the signal space. On the other hand, specific
2D views of a 3D point cloud already contain the necessary
information for content understanding, offering a shortcut for
point cloud analysis.

In this paper, we tackle the COD and leverage the comple-
mentary nature of 3D and 2D modalities through PointTFA™,
a Multi-Modal, Training-Free Adaptation for point cloud
understanding (Figure 1d). PointTFA™ extends our origi-
nal PointTFA (Figure lc) by introducing two independent
branches for 3D and 2D modal inputs. It effectively fuses mul-
tiple modalities without requiring parameter tuning, eliminat-
ing the need for large-scale, high-quality downstream training
samples. This multi-modal extension consistently outperforms
its single-modal counterparts.

Our PointTFA™ (Figure 2) consists of two branches that
receive 3D point cloud and 2D depth image inputs sepa-
rately. Each branch contains three modules: (1) Representative
Memory Cache (RMC), (2) Cloud/Image Query Refactor
(CQR/IQR), and (3) Training-Free Adapter (TFA). Specif-
ically, the RMC extracts CLIP/ULIP features for 2D/3D
training samples and selects representative ones from the
downstream training set to form the support set using an
unsupervised clustering algorithm (e.g., K-Means), reducing
the total number of training samples to be processed. Notably,
2D depth images are obtained via a “3D—2D” projection.
Next, CQR/IQR reconstructs 3D/2D testing features (i.e.,
point clouds and view images) from the support set using
a parameter-free attention mechanism, thereby narrowing the
feature gap between the testing query and the support set.
Hereby, features from the support set act as “keys” and “val-
ues” for reconstructing the testing feature (i.e., the “query”).
Then, the refined 3D/2D testing features are fed into TFA to
match the categorical labels. Label transfer from the support
set to testing samples is achieved through another parameter-
free attention mechanism, where labels are treated as “val-
ues”. Finally, the scores from the 3D and 2D branches are
fused to generate the final prediction. PointTFA™ bypasses
the COD issue in tuning-based methods through a training-
free framework and leverages the complementary nature of
multiple modalities.

We validate that PointTFA™ effectively integrates 3D and
2D information for point cloud understanding and consistently
outperforms single-modal PointTFA on three downstream
3D benchmarks, including ModelNet40, ModelNetl0, and

ScanObjectNN. We verify that both 3D and 2D content un-
derstanding can be achieved through a training-free approach
for classification and fusion. We also compare PointTFA™
with foundational model methods, such as PointCLIP [6] and
CLIP2Point [12], which rely solely on 2D renderings and 2D
CLIP models. In contrast, PointTFA™ performs training-free
fusion of both 2D and 3D data by leveraging ULIP foun-
dational models. We briefly summarize the contributions of
PointTFA™, a new multi-modal, training-free adaptation for
point cloud understanding, as follows.

o PointTFA™: We introduce PointTFA™, a multimodal,
training-free extension of PointTFA that delivers high
efficiency and accuracy. A lightweight projection module
converts each point cloud into multiple 2D views with
texture information. By leveraging training-free knowl-
edge from both rendered images and raw 3D point clouds
using multimodal foundational models, the model shows
high cost-effectiveness under training-free conditions.

o Extension of ‘“memory—refactor—transfer” schema
to 2D modality: We extend the success of RMC (mem-
ory), CQR (refactor), and TFA (training-free adapter)
from 3D cloud modality to 2D view images. We validate
that 2D view images provide complementary information
to 3D modality under training-free conditions.

o Extensive experiments on standard ModelNet10, Model-
Net40 and ScanObjectNN datasets show the effectiveness
of PointTFA™ in 3D understanding tasks.

II. RELATED WORK

3D Point Cloud Classification is mainly divided into
three areas: fully-trained foundational models, training-free
zero-shot models, and few-shot models. These models are
usually pre-trained on large, labeled datasets, which helps
them perform well on specific tasks. For example, PointGLR
[13] uses unsupervised methods to learn the structural features
of 3D point clouds, while PnP-3D [14] offers a flexible so-
lution for integrating 3D point clouds in various applications.
Point-LGMask [5] learns 3D representations through global
alignment and local reconstruction. PointHop [4] extracts
features through local-to-global point interactions and employs
classic classifiers such as SVM or Random Forest, demon-
strating improved explainability and effectiveness. GBNet [7]
combines low-level geometric descriptors with a high-level
attentional back-projection module to learn efficient point
cloud representation. They learn robust features from large
datasets and transfer well to related tasks, but struggle when
upstream and downstream data distributions differ markedly.

Zero-shot 3D point cloud classification does not require
downstream data samples for training. Instead, it uses knowl-
edge from other fields, such as CLIP [15] and ULIP [10],
which are pre-trained on 2D/3D vision-language tasks. For
example, PointCLIP [6] converts 3D point clouds into multiple
2D depth images and uses the CLIP model to extract features
and perform classification. Similarly, CLIP2Point [12] uses
pre-trained adapters to combine depth and rendered image
features. ULIP leverages a frozen CLIP encoder to tune a 3D
encoder to transfer 2D knowledge to a 3D modality. In our



PointTFA™, we customized 2D and 3D foundational models
for downstream tasks under training-free conditions.

Few-shot learning often adds extra tunable adaptive modules
for downstream customization. For example, PointCLIP (few-
shot) [6] adjusts an implanted adapter using a few samples so
that 2D depth features better match downstream requirements,
while CLIP2Point (few-shot) [12] fine-tunes a gating unit to
combine features. In contrast, our PointTFA™ relies on a zero-
parameter process. It broadcasts labels from the support set to
test samples in a training-free manner.

Multimodal Representation Learning focuses on the in-
teraction between modalities (e.g., vision and text). Some
methods use the Transformer to learn how different parts
of an image interact with text descriptions [16] [17] [18].
Although they significantly boost prediction accuracy, they
are also computationally expensive and slow, lowering their
overall efficiency.

Some methods, like CLIP, use separate encoders for images
and text. They create a joint representation for each image-text
pair by aligning the features in a shared embedding space.
CLIP’s success has influenced other areas in representation
learning. It has inspired work on text-based image gener-
ation [19] [20], open-vocabulary object detection [21], and
language-guided visual understanding [22]—[24].

Recent studies integrate multi-modal information into 3D
understanding, leading to promising advances [25] [26] [27].
PCExpert [25] is a self-supervised representation learning
architecture for point clouds that leverages image knowl-
edge guidance and extensive parameter sharing. Introducing
transformation parameter estimation as an auxiliary pretext
task significantly improves point cloud understanding. UCM-
GCN [26] retrieves 3D models from 2D images by rendering
multiple views and constructing graphs, bridging the cross-
modal gap with 2D cues. A relevance loss then embeds 2D
and 3D features into a shared space to reduce distribution
discrepancies. PointMCD [27] enhances the 3D point cloud en-
coder by transferring visual knowledge from a deep 2D image
encoder and aligning 2D and 3D features using Visible-Aware
Feature Projection (VAFP), integrating multi-view descriptors.

Efficient Cache Models adapt to downstream tasks by
storing training samples in key-value databases and inferring
labels through similarity measurement between training and
test samples (i.e., label broadcasting). In 3D tasks, training-
free models like TIP-Adapter [28] and PointNN [29] use test
features as queries to search for similar entries in the database
and retrieve matching features. For example, PointNN man-
ually extracts features from query point clouds and matches
them with pre-stored training features in memory databases.
TIP adopts a similar strategy, leveraging features extracted
from frozen CLIP models for image classification via fea-
ture matching. Similar to Point-NN, Seg-NN [1] extends the
training-free schema to point cloud segmentation. It caches the
support set with U-Net [30] features and applies similarity-
based segmentation between the support set and the query
point cloud. In 2D tasks, models such as Ta-Adapter [31]
and Meta-Adapter [32] fine-tune text-visual embeddings by
leveraging downstream information cached in efficient models.
Specifically, Ta-Adapter fine-tunes task-aware CLIP encoders

via collaborative prompt learning to optimize generated visual
and text features. The adapter in Meta-Adapter employs learn-
able networks to optimize class embeddings guided by a small
number of images. Our approach builds upon the single-modal
training-free PointTFA and introduces multimodal fusion. We
extend this efficient training-free framework to handle mul-
timodal data, enabling its effective application to 3D tasks
without any additional training. By integrating cross-modal
features (e.g., text and images) with 3D point clouds, our
method enhances he robustness of feature representation while
preserving the lightweight inference efficiency of caching-
based models. Experimental results demonstrate that this mul-
timodal extension significantly improves performance on 3D
datasets compared to single-modal baselines, highlighting the
potential of training-free multimodal fusion for 3D tasks.

III. METHOD

We first revisit single-modal PointTFA for 3D recognition
in Section III-A. Next, we present PointTFA™ in Section
III-B, which fuses multi-modal information with 2D & 3D
foundational models (CLIP, ULIP) in a training-free manner.

A. Revisit Single-Modal PointTFA

PointTFA [33] is a training-free method for adapting 3D
foundational models (such as ULIP series [10], [34]) to down-
stream tasks. It is specifically designed for point cloud inputs
and follows a “memory, refactor, and transferring” framework.
It consists of three key modules: Representative Memory
Cache; Cloud Query Refactor; 3D Training-Free Adapter.

Suppose the training set contains N new categories, where
the i-th category has K; samples. We extract features from
each point cloud P; ; using a 3D encoder (ULIP) and convert
their labels into one-hot vectors. Visual features and labels are
separately denotes by p; ; and L;; as in Equation (1-2).

pij= 3DEncoder(P; ), (1)
L; ; = OneHot([category]), 2)
where, i€{0,1,2,---N}, je{0,1,2,--- K}

We collect all training features into Fy.,;, and their corre-
. . N .
sponding labels into L;ain, Where Fipain € R2i=1 KixD gpd
N « e,
Liain € R2Zi=1 KiXN JF 0 Liain} forms initial memory.

Ftrain = {pi,j}7 (3)
Ltrain = {Li,j}7 (4)
where,p; ; € RY>P L e RPN

We create a zero-shot categorical classifier by inputting the
“point cloud of [category]” into the text encoder (ULIP).
Encoding all N categories yields a classifier W € RVXP,

s; = TextEncoder(“point cloud of [category]”), (@)

WU:[507813"' 7SN]7sieR1XD7 (6)

Representative Memory Cache: We apply K-Means clus-
tering to select M key representative samples (C; € RM*D)
for the i-th category and retrieve their corresponding labels
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Fig. 2: Overview of the PointTFA™ Framework. PointTFA™ is a multi-modal extension of the single-modal PointTFA (3D)
framework. It contains two branches: the original PointTFA (3D) and the new PointTFA (2D). The newly added modules
include the Multi-View 2D Images Generator, the 2D Representative Memory Cache, the Image Query Refactor, and the
Multi-View Training-Free Adapter (2D-TFA),in which The dashed line represents the switching of another branch.

(L; € RM*N) The collected representative features and
labels form the RMC={Crmc, Lrmc}-

C; = K-Means (p;) (7
L;=[L;o; Li; Li2;--- 5 Li v, 3)
Cruc = [Co,Cy,--- ,Cn], ©)
Lryic = [Lo, L1, -+, Ly], (10)
Cloud Query Refactor: Given a query feature fier € R**P

and a cached support set Cryc, We generate a new fig by
weighted sum of samples in the RMC cache, as defined below:

~ M-N
fes = > wi - ¢ (1)
k=1

¢, € RY™P denotes the k-th samples in Cgryc, where the
weights wy, are computed as:

p
ef&esl'ck T

M-N
k=1

T is a temperature constant that adjusts the weighting density.
3D Training-Free Adapter: We predict a test point cloud

by fusing two results: one from the 3D-TFA and one from the

zero-shot classifier. We weighted sum them with factor a:

13)

wy, = 12)

-
eflesl‘ck T

Yiuse = @ YTra T Yy

To get yrps, We use one-hot labels from the support set and
broadcast them to the test sample using a similarity weight w:

y1rA = W X Lrmc (14)

The similarity weight is defined by a function 6 that measures
distances between the testing cloud and features in the RMC.
We use similar 6 function as in [28]:

w = e(flestv CRMC) - 6_7(1_ﬁ55‘XCIIMC) (15)

For the zero-shot branch, we first compute the logit by
multiplying the test feature with the categorical classifier in
Equation (6) as below:

Y, = SoftMax( freq X W)

PointTFA enables the 3D foundation model to be adapted
to downstream tasks using support samples, without extra
parameter tuning.

(16)

B. PointTFA™: Multi-Modal, Training-Free Adaption

PointTFA™ differs from our previously proposed PointTFA
primarily by introducing 2D modal information. Since 2D
view information naturally exists in 3D point clouds, it can be
easily obtained through simple projection. Moreover, because
PointTFA is a zero-parameter, training-free mechanism, it can
be easily adapted to process 2D inputs in addition to 3D inputs.
By including 2D views, we naturally integrate knowledge from
both the 2D CLIP and the 3D ULIP foundational models.

Figure 2 shows our PointTFA™. It extends PointTFA by
adding four new modules: the Multi-View 2D Image Gener-
ator, the Representative Memory Cache for 2D Images (2D-
RMC), the Image Query Refactor (IQR), and the Multi-View
Adapter (MV-TFA). Below, we present the details of the
modules.



Multi-View 2D Images Generator creates 2D views from
a 3D point cloud by projecting it from different angles. To
keep computation efficient, we generate 2D images from
six viewpoints: “Front”, “Right”, “Back”, “Left”, “Top”, and
“Down” (see Equation 17). We generate 2D views using the
same projection toolkit described in [35]. This design supports
seamless multimodal fusion, training-free deployment, and
fast inference. As a result, PointTFA™ maintains strong noise
robustness while optimizing both computational efficiency and
accuracy in few-shot scenarios (See Sections IV-L and I'V-K).

Vi ; = View-Projector(P; ;)

e Left Front
Vi;= [1mg17j ,img;’;

a7

Back (18)

: : Down
,img 5™ ..., img |

1,j
2D Representative Memory Cache selects key view im-
ages from the complete view set {V; ;}. This step works like
the 3D-RMC module in Section III-A, reducing the number
of support samples to be processed in later stages. Note that
handling a 2D image is a bit different from handling a 3D
cloud: an image uses a CLIP image encoder to extract visual
features v; ; € R6*P. As each 3D sample corresponds to 6
images, the features for one sample increase by 6 times.

We collect features from all training images into
Fop train € REL 6XKixD and their corresponding labels
into Lop train € RS, Kix N Together, they form the initial
support memory for the view images.

v; ; = ImageEncoder(V; ;), (19)
L; ; = OneHot([category]), (20)
Fop_train = {vij}, 2D
LoD train = {Li;}, (22)

To gather information from different views while reducing
the data volume, we use a weighting matrix wyje,, € R'*6 to
calculate a weighted average of the views. Images feature is

N .
reduced t0 Fop a5, € R2i=1 KixD We determine wyiey by
searching for optimal hyperparameters.

/
F2D_train = Wyjew X F2D_traina (23)

For each category, we apply K-Means clustering to Fyp ¢, .in
using M centers. We then aggregate the resulting M N centers
from all N categories, along with their corresponding labels,
into a 2D RMC, similar to Equations (7-10). Hereby, Cxyc €
R(]\4~N)><D and L{QMC c R(M~N)><N.

C;{MC:[ l07 1?"'7C§V]7

Liyc = [Lo, LY, -+ L],

(24)
(25)

Image Query Refactor mitigates the feature gap between
testing-view images and the samples in the RMC. This is
achieved by projecting testing samples into the RMC space
using a parameter-free attention mechanism.

Given a testing point cloud sample, we first project it into
six view images. We then extract visual features fip, € R6*P
using CLIP and compress them into a single feature vector
f’,—mg € RIxD using Wyiew, as shown in Equations (19, 23).

We reconstruct the testing features f, . via a parameter-free

img

attention mechanism, where the testing sample is treated as
the “query” and the samples in the RMC serve as both the
“key” and “values”. We set T constant to be 100.

MN
s /
Simeg = Z Wy, - V; (26)
k=1
oFime VT
Wk = 0N 7wy 27)
k=1 e’ img "k

The t-SNE visualization in Section V shows that after IQR,
testing samples align with the training set distribution.

Multi-Vew Training-Free Adapter We predict 2D view
images by combining the outputs of the Zero-Shot and TFA
branches.

yimg - y/zs + 6 ' y’/I‘FA (28)

Zero-Shot predictions are computed by summing multi-view
predictions with constant weights w/;,, € R'*5. Each view
prediction is generated by multiplying the view feature with

the text classifier Wg:

y.. = SoftMax (wgiew % (fimg ¥ Wg>) (29)

We generate classification predictions for the query image
using the 2D support memory containing “key-value” pairs,
following the PointTFA approach. The similarity function 6(-)
is used to measure the “query-key” distance similar to [28].
We set w!,,., by optimal searching.

! _ Py 1 /
Yrea = 0 (fimg’ RMC) X Lgyic

e, (30)
_ 6*0(1*f|mg'c RMC) X L%MC

Fusion of 2D+3D branches We fuse predictions from
2D PointTFA and 3D PointTFA using a simple summation
operator, as shown below:

Y = Yimg + Ytuse
= (Yys + @ Y1pa) + (Y + B Y1ra)

Overall, PointTFA™ is a multi-modal extension of our pre-
vious single-modal work, PointTFA. We show that PointTFA,
initially designed for 3D point cloud inputs, can be easily
extended to process 2D image modalities without bells and
whistles.

€1y

IV. EXPERIMENTS
A. Datasets

We evaluate top-1 classification accuracy in a training-free
few-shot setting using three different downstream datasets.
Their features are listed below.

ModelNet10 [36] is a standard benchmark for 3D object
recognition and classification. It includes 10 categories, such
as chairs, airplanes, and tables, with 3,991 training and 908
test samples. Each sample is a 3D object mesh model, usually
represented as point clouds or triangular meshes that capture
the object’s geometric structure.



ModelNet40 [36] is an extension of ModelNet10 and in-
cludes 40 categories. It contains 9,843 training and 2,648 test
samples. Due to its size and variety, it is widely used in
3D object classification and detection, making it an important
benchmark in 3D computer vision.

ScanObjectNN [37] is a 3D object recognition and clas-
sification dataset with 2,902 scans across 50 categories. It is
carefully curated using real-world scan data to simulate indoor
object recognition tasks more effectively.

The dataset contains 3 subsets: OBJ_ONLY: Contains only
the object scan data without any background; OBJ_BG:
Includes background details to mimic real-world scanning
conditions; OBJ_TS50RS: Adds various types of noise to test
model robustness. These settings make ScanObjectNN a key
resource for training and evaluating 3D recognition models in
challenging, noisy settings.

B. Experimental Settings

We integrated PointTFA™ into five pre-trained 3D point
cloud models for evaluation: PointNet 2 [38], PointMLP [39],
PointBERT [40], PointNEXT [41], and PointBERT-ULIP-2
[34]. These models act as 3D encoders and work with CLIP
image and text encoders. All weights are taken from frozen
ULIP-1/2 and CLIP models.

In our few-shot experiments, we evaluate 1, 2, 4, 8, and 16-
shot settings. We follow the prompt in the ULIP series [10],
[34] by inserting category names into a fixed template.

C. Comparison With Train-Free, K-Shot Methods

We compare PointTFA and PointTFA™ with strong transfer
learning methods, including PointCLIP [6], CLIP2Point [12],
RECON [42], OpenShape [43], ViT-Lens [44], ULIP-1 [10],
ULIP-2 [34] , Point-NN [29], Seg-NN [1] and TIP-3D [2§]
(see Table I). PointTFA™ (based on PointBERT_ULIP-2)
shows competitive performance under training-free, few-shot
settings. In the 16-shot setting, it significantly outperforms
both PointTFA and previous SOTA methods on the testing
set.

We test the upper bound of PointTFA™ by using the full
support set. This setting outperforms the 16-shot setting on
the ModelNet40, OBJ_BG, and OBJ_T50R datasets.

D. Comparison to Vanilla ULIP & Single-Modal PointTFA

We apply PointTFA™ to five frozen ULIP backbones with-
out additional training on downstream tasks. We use a support
set processed by K-means as the support memory (see Fig-
ure 3). Our experiments show that PointTFA™ significantly
boosts the performance of all baseline models and outperforms
PointTFA. For example, on the pre-trained PointBERT-ULIP-
2 model, PointTFA" achieves 73.14% accuracy, a 4.92%
improvement over PointTFA on OBJ_TS50RS dataset. This
confirms the generalization and effectiveness of PointTFA™.

E. Ablations

We perform an ablation study focusing on three aspects: the
proportion of training samples, the effectiveness of the mod-
ules, and the model construction strategy. In this section, we
use PointBERT-ULIP-2 as the default setting for PointTFA™.
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compared to the basic frozen ULIP 3D backbone, and it
outperforms the complete PointTFA.
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Percentage of Training Set. We study how the number
of training samples affects PointTFA™. We randomly select
different percentages of samples from each category in the
training set to form a support memory cache. The sample ratio
increases gradually from 10% to 100%. We then test both
PointTFA™ and PointTFA on three datasets.

As shown in Table II, accuracy gradually converges as
the support set increases. Notably, on the ModelNet10 and
OBJ_ONLY datasets, using 100% of the samples causes
PointTFA™ to perform slightly worse than PointTFA. This
might be because adding more support samples effectively
complements the multi-modal information.

Validity of Modules. We validated the effectiveness of
each module, View-Projector, 2D-RMC, IQR, and 2D-TFA.
by adding them one at a time. Note that 2D-TFA is only
applicable after IQR is added.

As shown in Table III, adding the View-Projector, RMC,
and (IQR+2D-TFA) modules sequentially led to a complete
PointTFA™, surpassing PointTFA by 1.01% on the Model-
Net40 dataset. This shows that the modules in PointTFA™
function effectively together.



TABLE I: In the 16-shot setting, our method outperforms PointTFA by more than 1% on all datasets, and by over 4% on
the OBJ_ONLY and OBJ_TS50RS datasets. Here, “2D-Modal” means we use image data during inference, while “3D-Modal”

means we use point cloud data (ULIP-2* indicates using the large-scale Objaverse dataset [

] in the pre-training stage).

Method Conditions (K -shot) 2D-Modal ~ 3D-Modal ModelNet40  ModelNetl0 OBJ_ONLY OBJ_BG  OBJ_TSORS
PointCLIP [6] Train-Free (0) v v 20.18 30.23 19.28 2134 15.38
CLIP2Point [12] Train-Free (0) v v 49.38 66.63 30.46 35.46 2332
PointCLIP-V2 [46] Train-Free (0) v v 64.22 73.13 50.09 4122 3536
RECON [42] Train-Free (0) v v 61.70 75.60 43.70 40.40 30.50
OpenShape [43] Train-Free (0) v v 85.30 - - 56.70
VIT-Lens [44] Train-Free (0) v v 87.60 - - 60.10
ULIP-1 (PointBERT) [10] Train-Free (0) v 60.40 - - 48.50
ULIP-2 (PointBERT) [34] Train-Free (0) - v 75.60 - - -

ULIP-2* (PointBERT) [34] Train-Free (0) - v 84.70 - - - -
Point-NN [29] Train-Free (Full) - v 81.80 - 71.10 74.90 64.90
Seg-NN [1] Train-Free (Full) - v 84.20 - - - -
TIP-3D (our impl) [28] Train-Free (16) - v 86.06 89.76 73.49 75.56 59.61
CLIP2Point [12] Fine-Tune (16) v v 87.46 - - -

PointCLIP [6] Fine-Tune (16) v v 87.20 - - -

PointCLIP-V2 [46] Fine-Tune (16) v v 89.55 - - - -
PointTFA [33] Train-Free (16) - v 89.79 92.62 80.90 82.10 67.18
Our PointTFA™ Train-Free (16) v v 90.80 93.94 85.54 84.51 72.03
PointTFA [33] Train-Free (Full) - v 90.88 93.17 83.48 84.85 63.22
Our PointTFA™ Train-Free (Full) v v 91.33 92.96 83.00 85.40 73.14

TABLE II: PointTFA™ with Different Training Set Sizes:

The accu.racy gradually stabilizes as the percentage of training Data Ratio Data-efficiency

samples increases. 73.4 72
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M m . .
PointTFA™ 75.73 79.17 81.41 83.48 82.96 83.00 Fig. 4: Factors affecting the performance of 2D-RMC: (a)
OBI_BG PointTFA  76.25 78.14 7952 8279 83.13 8485 Ratio of training samples used in K-Means clustering; (b)
PointTFA™ 77.62 81.41 8279 84.34 8520 85.40 . .
om 147 0638 6973 6750 6500 cs2 Number of clusters M. (Yellow and blue indicate PointTFA™
PointTFA : X 7.7 7. . . . .
OBJ_T50RS ) with and without IQR)
PointTFA™ 65.13 68.25 69.67 71.79 72.66 73.14

TABLE III: Validity of modules. We first implemented the
3D PointTFA on ModelNet40. Then, we sequentially added
the View Projector module, the 2D-RMC module, and the
(IQR+2D-TFA) modules.

Shots/Clusters 1 2 4 8 16
PointTFA 87.72 88.05 88.74 89.94 89.79
+ Projector 88.05 88.37 88.86 89.55 90.56
+ 2D-RMC 88.15 88.45 8892 89.66 90.62

+ (IQR+2D-TFA) 88.21 8875 89.26 89.75 90.80

F. Number of Projected Views and Importance of Each View

We analyzed how the number of projected views and
the importance of each view affect the performance of the
PointTFA™. Zero-shot and 16-shot experiments were con-
ducted on the ModelNet40 dataset.

TABLE 1V: Influence of the Number of Projected 2D View
Images on ModelNet40 Classification

Number of Views | 2 4 6 8 10
Zero-shot 1228 12.07 1224 1333 1322 1321
16-shot 90.52  90.56 90.58 90.80 90.50 90.48

Table IV shows that increasing the number of views im-

proves performance, reaching 13.33% in zero-shot and 90.80%
in 16-shot settings with 6 views. However, using more than
6 views introduces redundancy and drops accuracy. We ran-
domly select a subset of categories to study the influence
of the number of views (see Figure 5(a)). We observe that
accuracy also saturates at 6 views, indicating that 6 views
provide sufficient information.

G. Weights of View Images

Table VI shows each view’s importance. By setting all
weights to 1 and setting one designated view’s weight to 10,
we find that the left-side view carries the most useful infor-
mation, while the top and bottom views contribute less. We
randomly select several categories to examine view sensitivity
(Figure 5(b)) and observe that the most informative view varies
across categories, complicating optimal view selection.

H. Factors Affecting the Performance of 2D-RMC

Two main factors affect the effectiveness of 2D-RMC: the
number of clusters M and the number of samples used for K-
Means clustering. We examine these factors using PointTFA™
(16-shot) on the OBJ_T50RS dataset.

In Figure 4a, the yellow curve shows the results when we
use [10%,20%, - ,100%] of the training set to construct



TABLE V: Performance of the Modalities Combination ({X-Test, Y-Train}) on the ModelNet40 Dataset: The X-modal
testing sample is reconstructed from the Y-modal support samples (X, Y € {2D,3D}).

2D View Images 3D Point Clouds ACC

Modalities of Testing Sample

2D View Image (Zero-Shot) X X 13.82%
2D View Image (2D-RMC + IQR + 2D-TFA) v X 51.22%
2D View Image (3D-RMC + CQR + 3D-TFA) X v 16.13%
3D Point Cloud (Zero-Shot) X X 73.45%
3D Point Cloud (2D-RMC + IQR + 2D-TFA) v X 72.85%
3D Point Cloud (3D-RMC + CQR + 3D-TFA) X v 89.79 %
2D View Image + 3D Point Cloud (2D-RMC + IQR + 2D-TFA) v X 73.58%
2D View Image + 3D Point Cloud (3D-RMC + CQR + 3D-TFA) X v 89.93%
2D View Image + 3D Point Cloud (PointTFA™: 2&3D-RMC + CQR + IQR + 2&3D-TFA) v v 90.80%

TABLE VI: Influence of the Weights of Views on ModelNet40
Classification

Importance of each View

View Front Right Back Left Top Down
Zero-shot  13.61  13.01 1256 1337 1240 1240
16-shot 89.34 8951 89.42 90.80 8942 89.42
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Fig. 5: Influences of views on categories. (a) accuracy vs
number of views; (b) accuracy vs each view (“F, R, B, L, T,
D” denote the Front, Right, Back, Left, Top and Down views).

RMC. We observe that the RMC samples become more
representative as the original sample pool increases.

Besides, we tested PointTFA™ without using IQR and
observed a consistent drop in performance (blue curve in
Figure 4a. This result shows that refactoring the testing feature
JimgWith the support set (RMC) is beneficial for performance.

In Figure 4b, we show that performance gradually improves
as the number of clusters increases, and then saturates at
around M = 16. We also consistently see that PointTFA™
performs better than its version without IQR.

1. Exploration of Cross-Scores with Different Modal Data

We tested each prediction {Y,q, Yrpas Yoo YTEa YUnu ) from
Equation 31 ( TableVII) to verify the contribution of each one.
Results show that: Fusion > 3D-TFA > 3D Zero Shot > 2D-
TFA > 2D Zero Shot (from best to worst). This means that
the training-free adapter in PointTFA™ performs better than
the training-free zero-shot model, regardless of the modality.
Moreover, combining all these training-free predictions yields
the best performance. In conclusion, the PointTFA™ signif-
icantly improves the model’s predictive capability by fusing
multiple information sources, confirming its effectiveness in
enhancing 3D point cloud models.

TABLE VII: Comparison of Individual Predictions: Zero-Shot
vs. TFA (2D and 3D) in PointTFA™.

| Yo | Yrea | Yo | Yea | ¥
Accuracy | 75.60 | 88.09 | 13.82 | 50.57 | 90.80

J. Performance of the Modalities Combination

Because PointTFA™ includes 2D and 3D branches, the two
branches share functionally similar modules. For instance, 2D-
RMC parallels 3D-RMC, IQR parallels CQR, and 2D-TFA
parallels 3D-TFA. We aim to investigate whether a single
branch can handle 2D and 3D testing inputs. Specifically, the
2D branch is constructed from the 2D-modal training set, and
we feed the 2D or 3D testing samples into the identical 2D
branch to check the modality mixing between testing/training
samples. Notably, zero-shot does not require a training set, So
we set the training modality to double “X”.

As shown in the first three rows of Table V, we observe
that while the model still classifies when testing and support
samples are in different modalities (e.g., 2D test, 3D train),
its performance is lower than when both are in the same
modality (e.g., 2D test and 2D train). This suggests that,
without parameter tuning, 2D and 3D should be processed
separately rather than mixed cross-modally. A similar trend
appears when using 3D testing samples (see Table V).

When using multimodal inputs (e.g., 2D and 3D test sam-
ples), it is preferable to process them with separate branches
and then apply late fusion to their outputs for improved
performance (see Table V). We refer to this as PointTFA™.

K. Robustness Testing against Noise

We further evaluated the model’s robustness against noise.
Specifically, we added Gaussian noise with a standard devia-
tion of 0.01 to various datasets and compared the performance
of ULIP-2, PointTFA, and PointTFA™ . As shown in Table
VIII, the accuracy of all models decreases when noise is
introduced. However, PointTFA™ consistently outperforms
both PointTFA and ULIP-2 under noisy conditions. This
suggests that it effectively leverages multi-modal information
to mitigate the impact of noise.



TABLE VIII: Performance comparison under noise

16-shot ULIP-2 ULIP-2  PointTFA  PointTFA™
(Noise=0.01)  (Noise-Free)  (+Noise)  (+Noise) (+Noise)
Modelnet40 75.6 43.1 53.1 68.2
Modelnet10 84.8 75.9 79.6 90.3
OBJ_ONLY 53.4 31.5 44.0 47.0
OBJ_BG 48.6 31.0 473 49.9
OBJ_T50RS 40.4 22.7 27.2 32.1

L. Computational Cost-Effectiveness

The performance gains from multimodal integration come
with increased computational demand. To quantify the cost-
effectiveness of PointTFA™, we compare its inference speed
and GPU utilization to those of ULIP and PointTFA, as shown
in Table IX. All models operate under a training-free setting.

PointTFA shows comparable GPU consumption to ULIP
with similar speed (0.0024 ms/sample vs 0.0015 ms/sample)
but a clear accuracy gain (89.79%>75.60%), validating its
effectiveness. The multimodal version PointTFA™ introduces
extra 2D processing and is slower (0.0221 ms/sample) with
slightly higher memory use (1448MiB — 1604MiB), yet still
runs efficiently with low memory cost.

Considering that performance improvements become in-
creasingly challenging as accuracy approaches the 90% level (
PointTFA™ 90.80% vs. PointTFA 89.79%), the observed gain
justifies the modest increase in computational cost.

TABLE IX: Comparison of Inference Time and GPU Memory
of PointTFA™ , PointTFA and ULIP.

Model ULIP-2 PointTFA PointTFA™
Infer Time 0.0015 ms/sample 0.0024 ms/sample 0.0221 ms/sample
- (+0.0009 ms/sample) | (+0.0206 ms/sample)
1446 MiB 1448 MiB 1604 MiB
GPU Mem - (+2MiB) (+156MiB)
Accurac 84.7% 89.79% 90.80%
cutacy - (+14.19) (+15.20)

V. VISUALIZATION

Distributions Changed by 2D-RMC. To show the repre-
sentative power of 2D-RMC, we use t-SNE to compare ran-
domly selected samples changed by 2D-RMC (see Figure (6a-
b)). Samples of the same color belong to the same category. We
observe that 2D-RMC produces more distinct clusters between
categories and tighter clusters within each category.

Distributions Changed by IQR. We also study how Image
Query Refactor changes the distributions of testing samples.
As shown in Figures 6(c-d), features within the same category
become denser, and the categories are more clearly separated.

Predictions of Testing Samples We compared the predicted
confidence scores of ULIP, PointTFA, and PointTFA™ to
visualize how they classify test samples. This comparison
validates the adaptability and enhancement capabilities of
PointTFA™ on large-scale 3D models. Figure 7 shows that
ULIP, PointTFA, and PointTFA™ correctly predict these sam-
ples. However, PointTFA™ shows higher confidence because
of its higher predicted probability. In contrast, Figure 8 shows
that for samples where ULIP or PointTFA make mistakes,
PointTFA™ corrects these errors and shows higher confi-
dence scores than PointTFA. This indicates that PointTFA™
effectively leverages multimodal knowledge to compensate for
missing attribute information in a single modality, bridging the

(a) Random selecet Support Set  (b) 2D-RMC Support Set

IQR

(c) Raw test samples

Fig. 6: Feature Distributions Changed by 2D-RMC and
IQR. (a-b) Comparison of randomly selected support set sam-
ples with those processed by 2D-RMC. (c-d) Comparison of
testing samples before and after IQR processing. Distributions
are visualized using t-SNE.

(d) IQR test samples

gap between upstream and downstream data domains. Overall,
PointTFA™ is a powerful training-free model that enhances
point cloud classification on large-scale 3D models.

VI. CONCLUSIONS

We propose PointTFA™, an improved version of PointTFA.
This multi-modal, training-free method adapts pre-trained 2D
and 3D foundational models (e.g., CLIP and ULIP). We
demonstrate that PointTFA, originally designed for 3D point
clouds, can be extended to handle 2D view images, enhancing
the performance of the pure cloud-based approach. Moreover,
our method shows that point cloud understanding for down-
stream tasks can be achieved effectively without training. By
transferring pre-trained knowledge from CLIP to 3D few-shot
learning, PointTFA™ attains state-of-the-art performance in
training-free, few-shot 3D classification.
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