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Abstract

Abductive reasoning aims to make the most likely infer-
ence for a given set of incomplete observations. In this
paper, we introduce “Abductive Past Action Inference”, a
novel research task aimed at identifying the past actions
performed by individuals within homes to reach specific
states captured in a single image, using abductive infer-
ence. The research explores three key abductive inference
problems: past action set prediction, past action sequence
prediction, and abductive past action verification. We intro-
duce several models tailored for abductive past action infer-
ence, including a relational graph neural network, a rela-
tional bilinear pooling model, and a relational transformer
model. Notably, the newly proposed object-relational bilin-
ear graph encoder-decoder (BiGED) model emerges as the
most effective among all methods evaluated, demonstrating
good proficiency in handling the intricacies of the Action
Genome dataset. The contributions of this research sig-
nificantly advance the ability of deep learning models to
reason about current scene evidence and make highly plau-
sible inferences about past human actions. This advance-
ment enables a deeper understanding of events and be-
haviors, which can enhance decision-making and improve
system capabilities across various real-world applications
such as Human-Robot Interaction and Elderly Care and
Health Monitoring. Code and data available at https:
//github.com/LUNAProject22/AAR

1. Introduction
Reasoning is an inherent part of human intelligence as

it allows us to draw conclusions and construct explanations
from existing knowledge when dealing with an uncertain
scenario. One of the reasoning abilities that humans possess
is abductive reasoning. Abductive reasoning aims to infer
the most compelling explanation for a given set of observed
facts based on a logical theory. In this work, we study the
new problem of inferring past human actions from visual
information using abductive inference. It is an extremely

useful tool in our daily life, as we often rely on a set of facts
to form the most probable conclusion. In fact, a comprehen-
sive understanding of a situation requires considering both
past and future information. The ability to perform abduc-
tive reasoning about past human actions is vital for human-
robot collaboration AI-assisted accident and crime investi-
gation and assistive robotics. Furthermore, robots working
in dynamic environments benefit from understanding pre-
vious human actions to better anticipate future behaviour
or adapt their actions accordingly. Imagine the scenario
where a rescue robot enters an elderly person’s house to
check on why he or she is not responding to the routine
automated phone call. Upon entering the house, the robot
observes its surroundings and notices that the back door is
left open but nothing else is out of the ordinary. These ob-
servations may form a basis for a rational agent – the elderly
might have opened the door and went into the garden. The
robot can immediately make its way to search for him/her
in the back garden. This example illustrates how a social
rescue robot can utilize observed facts from the scene to
infer past human actions, thereby reasoning about the indi-
vidual’s whereabouts and ensuring their safety through ab-
ductive reasoning.

In recent years, there have been some great initiatives
made in abductive reasoning for computer vision [18, 24,
44]. In particular, [24] generates the description of the
hypothesis and the premises in the natural language given
a video snapshot of events. Without the generation of a
hypothesis description, these methods boil down to dense
video captioning. A similar task is also presented in [18]
where given an image, the model must perform logical ab-
duction to explain the observation in natural language. The
use of natural language queries in these tasks presents chal-
lenges related to language understanding, making the ab-
ductive reasoning task more complicated.

In contrast to these recent works, we challenge a model
to infer multiple human actions that may have occurred in
the past from a given image. Based on the visual informa-
tion from the image, objects such as a person, glass and
cabinet, may provide clues from which humans can draw
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conclusions – see Fig. 1. We term this new task, Abduc-
tive Past Action Inference and further benchmark how deep
learning models perform on this challenging new task. For
this task, the models are not only required to decipher the
effects of human actions resulting in different environment
states but also solve causal chains of action effects, a task
that can be challenging even for humans. Furthermore, the
task relies on the model’s ability to perform abductive rea-
soning based on factual evidence i.e., determining what ac-
tions may have or have not been performed based on visual
information in the image. Humans can solve this task by
using prior experience (knowledge) about actions and their
effects and using reasoning to make logical inferences. Are
deep learning models able to perform abductive past action
inference by utilizing visual knowledge present in a given
image and a learned understanding of the domain? We aim
to answer this question in this paper.

Human action can be viewed as an evolution of human-
object relationships over time. Therefore, the state of
human-object relations in a scene may give away some cues
about the actions that may have been executed by the hu-
man. We hypothesize that deep learning models are able
to perform logical abduction on past actions using visual
and semantic information of human-object relations in the
scene. As these human-object relations provide substantial
visual cues about actions and the effects of past actions, it
makes it easier for the models to infer past actions. On the
other hand, there is also the duality in which the evidence
should support those conclusions (the actions inferred by
the model). If a human executed a set of actions A which
resulted in a state whereby a human-object relation set R is
formed as an effect of those executed actions (i.e., A → R),
then using the relational information, we can formulate the
task by aiming to infer A from R. Therefore, we argue that
human-object relational representations are vital for abduc-
tive past action inference and provide further justifications
in our experiments.

In this work, our models rely on the human-centric
object relation tuples such as (person, glass) and (per-
son, closet) obtainable from a single image at the current
point in time to perform abductive past action inference.
One can see why these human-centric relations are vital
for identifying past actions: the (person, glass) relation
may lead to deriving actions such as (person-pouring-water,
person-took-glass-from-somewhere) while (person, closet)
may imply actions such as (person-opening-closet, person-
closing-closet) see – Figure 1. Therefore, we use objects
and their relationships in the scene to construct human-
centric object relations within each image. These relations
are made up of both visual and semantic features of rec-
ognized objects. To effectively model relational informa-
tion, we use bilinear pooling and to model inter-relational
reasoning, we use a new relational graph neural network

(GNN). We propose a new model called BiGED that uses
both bilinear pooling and GNNs to effectively reason over
human-object relations and inter-relational information of
an image to perform abductive inference on past actions ef-
fectively.

Our contributions are summarized as follows: (1) To the
best of our knowledge, we are the first to propose the abduc-
tive past action inference task, which involves predicting
past actions through abductive inference. (2) We bench-
mark several image, video, vision-language, and object-
relational models on this problem, thereby illustrating the
importance of human-object relational representations. Ad-
ditionally, we develop a new relational rule-based inference
model which serve as relevant baseline models for the ab-
ductive past action inference task. (3) We propose a novel
relational bilinear graph dncoder-decoder model (BiGED)
to tackle this challenging reasoning problem and show the
effectiveness of this new design.

2. Related Work
Our work is different from action recognition [17,19] in a

fundamental way. First, in action recognition, the objective
is to identify the actions executed in the visible data (e.g.,
a video or an image in still image action recognition [14]).
In action recognition, the models can learn from visual cues
what the action looks like and what constitutes an action.
In our work, we aim to infer past actions that the model
has never seen the human performing. The model only sees
visual evidence (e.g. human-object relations) in the scene
which is the outcome of executed actions. There are no mo-
tion cues or visual patterns of actions that the model can
rely on to predict past actions. From a single static image,
the machine should infer what actions may have been ex-
ecuted. This is drastically different from classical action
recognition and action anticipation tasks.

Abductive past action inference shares some similarity to
short-term action anticipation [8, 10] and long-term action
anticipation [1]. However, there are several notable differ-
ences between the two tasks. Firstly, in abductive past ac-
tion inference, the goal of the model is to identify the most
plausible actions executed by a human in the past based on
the current evidence, whereas, in action anticipation, the
model learns to predict future action sequences from cur-
rent observations. The primary distinction lies in abductive
past action inference, where observations (evidence) may
imply certain past actions, contrasting with action antic-
ipation tasks that predict future actions without certainty.
In other words, in abductive past action inference, the ev-
idence and clues indicate possible actions executed in the
past that resulted in the evidence or clues. However, in ac-
tion anticipation, the clues [33], context [13], current ac-
tions [12], and knowledge about the task [45] are used to
infer probable future actions, but there is no guarantee that



the predicted actions will be executed by a human. For in-
stance, observing a person cleaning a room with a broom
suggests prior actions such as picking up the broom from
somewhere must have happened among many others. Even
if putting away the broom is anticipated somewhere in the
future, other actions such as holding the broom and opening
a window are also possible. Therefore, while action antic-
ipation addresses the uncertainty of future human behav-
ior, abductive past action inference models can utilize scene
evidence (such as objects in the scene) to infer the most
likely past actions. Additionally, in abductive past action
inference, the uncertainty arises from the fact that several
different actions may have resulted in similar states R. In
our task, models should comprehend the consequences of
each executed action and engage in abductive reasoning to
infer the most probable set or sequence of past actions. An-
other key difference between action anticipation and abduc-
tive past action inference is that in action anticipation, pre-
dictions made at time t can leverage all past observations.
In contrast, abductive past action inference relies solely on
present and future information, where new future observa-
tions can potentially alter the evidence about past actions,
making the inference process more challenging.

Visual Commonsense Reasoning (VCR) [41, 43] and
causal video understanding [28, 29] are also related to our
work. In VCR [43], given an image, object regions, and a
question, the model should answer the question regarding
what is happening in the given frame. The model has to
also provide justifications for the selected answer in rela-
tion to the question. Authors in [27] also studied a similar
problem where a dynamic story underlying the input image
is generated using commonsense reasoning. In particular,
VisualCOMET [27] extends VCR and attempts to gener-
ate a set of textual descriptions of events at present, a set
of commonsense inferences on events before, a set of com-
monsense inferences on events after, and a set of common-
sense inferences on people’s intents at present. In this vein,
given the complete visual commonsense graph representing
an image, they propose two tasks; (1) generate the rest of
the visual commonsense graph that is connected to the cur-
rent event and (2) generate a complete set of commonsense
inferences. In contrast, given an image without any other
natural language queries, we recognize visual objects in the
scene and how they are related to the human, then use the
human-centric object relational representation to infer the
most likely actions executed by the human.

Recently, there are machine learning models that can
also perform logical reasoning [3,5,15,21,46]. Visual scene
graph generation [38] and spatial-temporal scene graph gen-
eration [4] are also related to our work. Graph neural net-
works are also related to our work [35,36,42]. Our work is
also related to bilinear pooling methods such as [9, 11].

Figure 1. Proposed object-relational approach for abductive past
action inference. Models are tasked to: 1) abduct the set of past
actions, 2) abduct the sequence of past actions, and 3) perform
abductive past action verification.

3. Abductive Past Action Inference
Task: Given a single image, models have to infer past

actions executed by humans up to the current moment in
time. We name this task Abductive Past Action Inference.
Let us denote a human action by ai ∈ A where A is the
set of all actions and E1, E2, · · · is a collection of evidence
from the evidence set E . As the evidence is a result of ac-
tions, we can write the logical implication A → E where A
is the set of actions executed by a human which resulted in a
set of evidence E . Then, the task aims to derive 1) the set of
past actions, 2) the sequence of past actions that resulted in
the current evidence shown in the image, and 3) abductive
past action verification. The abductive past action verifica-
tion is a binary task where the model is given a single image
and is required to answer a yes or no to an action query (did
the person execute action ax in the past?).

3.1. Object-Relational Representation Approach

Our primary hypothesis is that human-object relations
are essential for abductive past action inference. Therefore,
we propose a human-object relational approach for the task.
In all three tasks, our general approach is as follows. We
make use of detected humans and objects in the image and
then generate a representation for human-centric object re-
lations. Then, using these human-centric object relations,
we summarize the visual image, and using neural models,
we infer the most likely actions executed by the human. The
overview of this approach is shown in Figure 1. Next, we
first discuss abductive past action set inference, followed by
the details of abductive past action verification.

Abductive past action set prediction. Let us denote the
object by o ∈ O, the predicate category by p ∈ P , and
the human by h. The jth relation Rj is a triplet of the form
⟨h, p, o⟩. In the ith image, we observe n number of relations
Ri = {R1, R2, · · ·Rn} where Ri is the relation set present
in the situation shown in that image. These relations consti-
tute the evidence (E). The relation set Ri is an effect of a
person executing an action set/sequence Ai = {a1, · · · aK}.



Therefore, the following association holds.

Ai → Ri (1)

However, we do not know which action caused which re-
lation (evidence), as this information is not available. The
association reveals that there is a lack of specific knowledge
about the exact effects of individual actions and when mul-
tiple actions have been executed, the resulting effect is a
combined effect of all executed actions. Consequently, the
learning mechanism must uncover the probable cause-and-
effect relationships concerning actions. Therefore, given R
we aim to perform abductive past action inference to infer
the most likely set of actions executed by the human using
neural network learning.

We learn this abduction using the deep neural network
functions ϕ(), and ϕc(). The relational model, ϕ takes rela-
tion set as input and outputs a summary of relational infor-
mation as a vector xr.

xr = ϕ(R1, · · · , Rn; θϕ) (2)

The parameters of the relational model are denoted by θϕ.
The linear classifier (ϕc) having the parameters θc, takes
relational information as a vector xr as input and returns
the conditional probability of actions given the relational
evidence as follows:

P (a1, · · · , aK |R1, · · · , Rn) = ϕc(xr; θc) (3)

The training and inference sets comprise images and
corresponding action set Ai. From each image, we ex-
tract the relation set Ri. Therefore, the dataset consists of
D =

⋃
i{Ri,Ai}. Given the training set (D), we learn the

model function in Equations 2 and 3 using backpropagation
as follows:

θ∗ϕ, θ
∗
c = argminθϕ,θc

∑
i

−log(P (Ai|Ri)) (4)

where θ∗ϕ, θ
∗
c are the optimal parameters. As this is a multi-

label-multi-class classification problem, we utilize the max-
margin multi-label loss from PyTorch where the margin is
set to 1, during training.

Abductive past action verification. Abductive verifica-
tion model ϕver() takes the evidence E and the semantic
representation of the past action (e.g. textual encoding of
the action name) ya as inputs and outputs a binary classifi-
cation score indicating if the evidence supports the action or
not, i.e. ϕver(E , ya) → [0, 1]. Specifically, we encode the
past action name using the CLIP [31] text encoder to obtain
the textual encoding ya for action class a. Then, we con-
catenate ya with xr and utilize a two-layer MLP to perform
binary classification to determine whether action a was ex-
ecuted or not. We use the max-margin loss to train ϕver().

Note that semantic embedding of action classes (ya) is not
a necessity here. For example, one might learn the class
embeddings from scratch removing the dependency on lan-
guage or use one-hot-vectors.

3.2. Relational Representation

To obtain the relation representation, we extract features
from the human and object regions of each image using a
FasterRCNN [32] model with a ResNet101 backbone [16].
Let us denote the human feature by xh, the object feature
by xo, and the features extracted from taking the union re-
gion of both human and object features by xu. As we do
not know the predicate or the relationship label for the re-
lation between xh and xo, we use the concatenation of all
three visual features xh, xo, and xu as the joint relational
visual feature xv = [xh, xo, xu]. Using FasterRCNN, we
can also obtain the object and human categories. We use
Glove [30] embedding to acquire a semantic representation
of each human and object in the image. Let us denote the
Glove embedding of the human by yh and the object by yo.
Then, the semantic representation of the relation is given
by ys = [yh, yo]. Using both visual and semantic repre-
sentations, we obtain a joint representation for each human-
centric object relation in a given image. Therefore, the de-
fault relation representation for a relation R =< h, p, o >
is given by r = [xv, ys]. Note that we do not have access to
the predicate class or any information about the predicate.
Next, we present several neural and non-neural models that
we developed in this paper that uses relational representa-
tions for the abductive past action inference task.

The details of abductive past action sequence inference
are provided in the supplementary materials (section 4.1).
Next, we present our graph neural network model to infer
past actions based on relational information.

3.3. GNNED: Relational Graph Neural Network

The graph neural network-based encoder-decoder model
summarizes relational information for abductive past ac-
tion inference. Given the relational data with slight nota-
tion abuse, let us denote the relational representations by
a n × d matrix R = [r1, r2, · · · , rn], where rn has d di-
mensions. In our graph neural network encoder-decoder
(GNNED) model, we first project the relational data using
a linear function as follows:

R′ = RWl + bl (5)

where R′ = [r′1, r
′
2, · · · , r′n]. Then, we construct the affin-

ity matrix WA(i, j) using Jaccard Vector similarity, where
WA(i, j) shows the similarity/affinity between the i-th re-
lation and the j-th relation in the set. Here, we use Jaccard
Vector Similarity which is a smooth and fully differentiable
affinity [8]. Note that Jaccard Vector Similarity is bounded



Figure 2. The graph neural network encoder (left) and graph neural
network decoder (right) architecture. The residual connections are
shown with the + sign.

Figure 3. The Bilinear Graph Encoder-Decoder (BiGED) archi-
tecture.

by [-1,1]. Thereafter, we obtain the graph-encoded rela-
tional representation as follows:

Ge = ReLU((WAR′)Wg + bg) (6)

where Wg and bg are the weight matrix and bias term re-
spectively. We call equations 5-6 the graph module. Using
the graph module as a base model, we develop a graph en-
coding layer. The relational graph neural network encoder-
decoder architecture we proposed is shown in Figure 2. Our
graph encoder-decoder model consists of one graph encoder
and three graph decoders by default. The graph module is
able to model the inter-relations between human-object re-
lations and reasons about them to perform abduction on past
actions. The graph encoding layer (left) is very similar to
the Transformer encoder layer [39]. The graph encoding
layer consists of drop-out layers, layer norm [2], linear lay-
ers, and residual connections [16]. The graph decoder layer
(right) is also similar to a Transformer decoder layer except
for the graph module. Finally, we apply max-pooling at the
end of the graph encoder-decoder model to obtain the final
image representation xr.

3.4. RBP: Relational Bilinear Pooling

To effectively model the higher-order relational informa-
tion between human and object features, we use bilinear
pooling. Given the human representation xh and the object
representation xo, we use bilinear pooling with a weight
matrix Wb of size d × d × d and linear projection matrices

Wbl,Wjb as follows:

o′ = ReLU(Woxo + bo) (7)
h′ = ReLU(Whxh + bh) (8)
rb = ReLU([h′Wbo

′; ([h′; o′]Wbl + bbl)])Wjb + bjb (9)

where [;] represents the vector concatenation and h′Wbo
′

is the bilinear pooling operator applied over human and
object features. ([h′; o′]Wbl + bbl) is the output of con-
catenated human and object features followed by a linear
projection using weight matrix Wbl and bias term bbl. In
contrast to bilinear pooling, the concatenated linear pro-
jection captures direct relational information between hu-
man and object features. Then, we concatenate the bilinear
pooled vector (h′Wbo

′) and the output of the linear projec-
tion (([h′; o′]Wbl + bbl)). Next, we use ReLU and apply
another linear projection (Wjb + bjb). Finally, we concate-
nate the overlap feature xu with the overall model output
(rb) and apply max-pooling across all relational features
([rb;xu]) in the image to obtain xr.

3.5. BiGED: Bilinear Graph Encoder-Decoder

Finally, to take advantage of both bilinear relational
modeling and graph neural network encoder-decoder mod-
els, we combine both strategies as shown in Fig 3. The main
idea is to replace the projection function in Equation 7 with
a graph neural network encoder-decoder model. Let us de-
note the graph neural network encoder-decoder model by
fGed(). Then, equation 7 will be replaced as follows:

O′ = fGed(Xo) (10)

where Xo is all the object features in the image. After-
ward, we apply equation 9 before using bilinear modeling
to obtain the relational representation. Note that as there
are only one or two humans in the image, we do not use
the GNNED to model human semantic features. The in-
puts to the BiGED model are the visual human features xh,
concatenated visual and semantic object features [xo, yo]
as well as the union features xu. Next, we concatenate
the human and object features [xh, xo, yo] to obtain a joint
feature and then pass it through a linear layer and another
GNNED model. The outputs of the bilinear, joint feature-
based GNNED models and overlap union feature xu are
concatenated to obtain the final relational representation.
Afterward, we use max-pooling to obtain the representation
xr for the image. For all models, we employ a linear classi-
fier to infer past actions using the representation vector xr.

4. Experiments and Results
4.1. Action Genome Past Action Inference dataset

We extend the Action Genome (AG) dataset [20] and
benchmark all models on the AG dataset for the abductive



past action inference task. Built upon the Charades dataset
[37], the AG dataset contains 9,848 videos with 476,000+
object bounding boxes and 1.72 million visual relationships
annotated across 234,000+ frames. It should be noted that
not all video frames in the Charades dataset are used in
the AG dataset. Only a handful of keyframes are used in
AG, and we follow the same. The AG dataset does not pro-
vide action annotations. To obtain action annotations for
images of AG, we leverage the Charades dataset which con-
tains 157 action classes. The process of generating action
sets and sequences using images from the Action Genome
and action labels from the Charades dataset for the abduc-
tive past action inference task is detailed in Section 2 of the
supplementary materials.

4.2. Experimental Setup

After obtaining the action annotations of images for a
given video, we drop videos having only one image as there
are no past images and therefore, no past actions. For the
remaining images, we assign action labels from the previous
images in two different evaluation setups:
1. Abduct at T : Given a image at time T , we add action
labels from all the previous images to the ground truth (in-
cluding actions from the current image) where At denotes
all past actions of the tth image. Therefore, the ground truth

action set A is given by A =
T
∪
t=1

At.

2. Abduct last image: Based on the first setup, we add
an additional task where the model has to perform infer-
ence only on the last image of each video which contains
all past actions. If the last image is T ′, then the action set

is A =
T ′

∪
t=1

At. Note that in the Action Genome dataset,
the images are sampled non-homogeneously from the Cha-
rades dataset videos. Therefore, the previous image occurs
several seconds before the current image. In our abductive
past action inference task, the ground truth past action sets
are confined to the length of each video. We provide details
on the number of images for a set of n past actions in the
AG dataset for these setups in the supplementary materials
– section 2 and figure 4.

4.3. Evaluation Metrics

We utilize the mean Average Precision (mAP), Re-
call@K (R@K), and mean Recall@K (mR@K) metrics to
evaluate the models for the abductive action set prediction
and action verification tasks. Each image contains 8.9 and
8.2 actions for the Abduct at T and Abduct last image se-
tups respectively. Therefore, K is set to 10 based on the
average number of actions contained in a image. Please see
the supplementary material Section 3 for more implementa-
tion details. We will also release all our codes and models
for future research.

4.4. Baseline Models

We benchmark several publicly available image
(Resnet101-2D [16], ViT [6]) and video models (Slow-
Fast [7] and Resnet50-3D) using the surrounding 8 frames
of a image from the Charades dataset, and Video-Swin-
S [26], Mvitv2 [23] and InternVideo [40] models using
future K images from Action Genome to explore video
based methods. The value of K is set to the minimum
possible frame size for each model, with the default being
5 frames. Image models are pre-trained on ImageNet [34]
while video models are pre-trained on Kinetics400 [22]
dataset and we fine-tune these models on our task. We
use a batch size of 32 with a learning rate of 1e-5. As for
ViT, we use a batch size of 2042 using A100 GPUs. All
video-based methods are fine-tuned end-to-end. We also
use CLIP linear-probe and zero-shot to perform abduction
using several variants of the CLIP model [31]. The
details of all other baseline models (Relational Rule-based
inference, Relational MLP, and Relational Transformers)
are presented in supplementary material Section 1.

4.5. Human Performance Evaluation

Human performance for the abductive past action set in-
ference and verification tasks in the Abduct at T setup is
presented in Tables 1 and 3. Performance on the abductive
past action sequence inference is provided in the supple-
mentary materials–see Table 1 and Section 4.1. All human
experiments for the three sub-problems in the Abduct at T
setup follow the same procedure. Evaluators are asked to
review 100 randomly sampled test images and manually as-
sess all action classes in the Charades dataset without view-
ing the ground truth. They then select the likely past actions
for each image.

4.6. Results: Abductive Past Action Set Prediction

Our results for the abductive past action inference set
prediction task are shown in Table 1. These results are ob-
tained based on the Abduct at T setup. During training, the
model learns from every single image in the video sequence
independently. Likewise, during inference, the model pre-
dicts the past action set on every single image. The end-
to-end trained models such as Slow-Fast [7], ResNet50-3D,
Resnet101-2D, and ViT perform poorly as it may be harder
for these models to find clues that are needed for the ab-
ductive inference task. As there are no direct visual cues
to infer previous actions (unlike object recognition or ac-
tion recognition) from a given image, end-to-end learning
becomes harder or near impossible for these models. The
Video-Swin-S Transformer model [26] shows promise in
end-to-end models due to its use of future context (K future
snapshots) and strong video representation capabilities.

On the other hand, multi-modal foundational models
such as the CLIP [31] variants are able to obtain better



Model mAP R@10 mR@10
Human Performance – 80.60 82.81

End-to-end training
ResNet101-2D [16] 9.27 18.63 11.51
ViT B/32 [6] 7.27 16.84 8.82
Resnet50-3D [7] 8.16 16.08 7.83
Slow-Fast [7] 7.91 14.42 7.65
Video-Swin-S [26] - (K= 5) 14.86 34.18 19.05
MvitV2 [23] - (K=16) 14.01 34.38 15.17
InternVideo [40] - (K=8) 12.29 30.72 12.37

Vision-language models
CLIP-ViT-B/32 (zero-shot) [31] 14.07 14.88 20.88
CLIP-ViT-L/14 (zero-shot) [31] 19.79 21.88 27.77
CLIP-ViT-B/32 (linear probe) [31] 16.16 31.25 16.38
CLIP-ViT-L/14 (linear probe) [31] 22.06 40.18 20.01

Object-relational methods - using GT human/objects
Relational Rule-based inference 26.27 48.94 36.89
Relational MLP 27.73±0.20 42.50±0.68 25.80±0.61
Relational Self Att. Transformer 33.59±0.17 56.03±0.40 40.04±1.15
Relational Cross Att. Transformer 34.73±0.05 56.89±0.47 40.75±0.57
Relational GNNED 34.38±0.36 57.17±0.35 42.83±0.21
Relational Bilinear Pooling (RBP) 35.55±0.30 59.98±0.68 43.53±0.63
BiGED 35.75±0.15 60.55±0.41 44.37±0.21
BiGED - (K=3) 36.00 ± 0.12 60.17±0.44 42.82± 0.90
BiGED - (K=5) 37.34 ± 0.21 61.16± 0.56 44.07 ± 0.87
BiGED - (K=7) 36.57 ± 0.38 60.65 ± 0.52 43.12 ± 0.47

Object-relational method - using FasterRCNN labels
BiGED 24.13± 0.04 43.59± 0.88 30.12± 0.23

Table 1. Abductive past action set inference performance using the
proposed methods on the Abduct at T setup.

Model mAP R@10 mR@10
Relational Rule-based inference 26.18 44.34 33.94
Relational MLP 25.99±0.10 38.79±0.86 23.54±0.72
Relational Self Att. Transformer 30.13±0.11 47.55±0.14 35.05±0.55
Relational Cross Att. Transformer 31.07±0.20 48.33±0.15 35.32±0.50
Relational GNNED 30.95±0.30 48.18±0.17 36.36±0.12
RBP 31.48±0.20 49.79±0.55 36.96±0.36
BiGED 31.41±0.15 49.62±0.64 36.15±0.61

Object-relational method - using FasterRCNN labels
BiGED 22.01±0.26 37.06±0.52 25.01±0.37

Table 2. Abductive past action set inference performance using the
proposed methods on the Abduct last image setup.

results than vanilla CNN models on this task perhaps due
to the quality of the visual representation. Interestingly,
object-relational models such as MLP and rule-based in-
ference obtain decent performance. One might argue that
the performance of human-object relational models is at-
tributed to the use of ground truth object labels in the scene.
However, when we tried to incorporate ground truth objects
using object bounding boxes with red colored boxes as vi-
sual prompts in the CLIP [31] model, the performance was
poor. The poor performance of the CLIP might be attributed
to their training approach, which aims to align overall im-
age features with corresponding text features. During their
training, CLIP assumes that the text in the captions accu-
rately describes the visual content of the image. However,
when it comes to abductive past action inference, no explicit
visual cues are available to indicate the execution of certain
actions. We also note that the CLIP model demonstrates
reasonable zero-shot performance. This may be because the
CLIP model learns better vision features.

We experimented with generative models like ViLA [25]

(instruction tuning) and BLIP (question answering). Details
are in the supplementary materials sections 1.4 for GPT-3.5
and section 1.5 for ViLA. After instruction tuning on our
dataset, ViLA achieved 10.5 mAP, 29.3 R@10, and 19.8
mR@10. We also tested GPT-3.5 with human-object rela-
tions as context, yielding 9.98 mAP, 25.22 R@10, and 20.32
mR@10. Due to the challenges of unconstrained text gen-
eration, models like BLIP, ViLA, and GPT-3.5 are excluded
from the main comparison table.

The results also suggest that the human-object relational
representations provide valuable evidence (cues) about
what actions may have been executed in contrast to holis-
tic vision representations. Among object-relational models,
the MLP model and rule-based inference perform the worst
across all three metrics. The rule-based inference does not
use any parametric learning and therefore it can only rely
on statistics. Interestingly, the rule-based method obtains
similar performance to the MLP model indicating the MLP
model merely learns from the bias of the dataset.

The relational transformer model improves results over
MLP. Furthermore, the relational GNNED performance is
comparable to the relational transformers. The transformer
variants and GNNED have similar architectural properties
and have better relational modeling capacity than the MLP
model. These models exploit the interrelation between vi-
sual and semantic relational representations to better under-
stand the visual scene. This potentially helps to boost the
performance of abductive past action inference.

Surprisingly, Relational Bilinear Pooling (RBP) obtains
particularly good results outperforming the transformer and
GNNED models. The way relational reasoning is per-
formed in RBP is fundamentally different from transform-
ers and GNNED. The RBP models interactions between the
human and object features within a relation more explic-
itly than the GNNED and Transformer. However, unlike
the GNNED or Transformer, RBP is unable to model in-
teractions between relations. Finally, the combination of
GNNED and RBP, i.e., BiGED performs even better. This
result is not surprising as BiGED takes advantage of better
inter and intra-relation modelling. We also experimented
with a BiGED model, that takes K future frames starting
from frame at T (i.e. Action Genome frames from T to
T + K) as inputs. The results of this experiment suggests
that use of future snapshots helps improve performance.

All object-relational models utilize the ground truth ob-
ject labels from the AG dataset to obtain semantic repre-
sentations. We observe a drop in performance when we
use predicted objects from the FasterRCNN model. Ad-
ditionally, FasterRCNN-based object-semantic prediction
performs worse than the visual-only BiGED model (Ta-
ble 4), indicating that incorrect semantics significantly harm
performance. Nevertheless, the performance of BiGED
with FasterRCNN labels is significantly better than end-to-



Model mAP R@10 mR@10
Human Performance – 92.26 93.71
Relational MLP 26.58± 0.37 41.71± 0.82 25.40± 0.66
Relational Self Att. Transformer 27.94± 0.35 45.72± 1.42 30.12± 2.30
RBP 32.19± 0.44 53.76± 0.89 38.44± 0.67
BiGED 34.13± 0.39 57.39± 0.10 41.97± 0.36

Table 3. Abductive past action verification performance using the
proposed methods on the Abduct at T setup.

end trained models and vision-language models. Finally,
it should be emphasized that human performance on this
task is significantly better than any of the modern AI mod-
els, highlighting a substantial research gap in developing
AI systems capable of effectively performing abductive past
action inference.

4.7. Results: Abduction on the Last Image

We evaluated object-relational models on the second
setup, where we perform abduction on the last image of
each video, using models trained in the previous setup. Due
to the variety of possible actions in a video sequence, this
setup is more challenging. It should be noted that this is a
special case of abduct at T. This additional experiment al-
lows us to observe and select the longest time horizon to
determine whether the models are still able to abduct ac-
tions. Results in Table 2 show lower performance across all
models compared to the previous setup, indicating the task’s
increased difficulty. The MLP model and rule-based infer-
ence perform poorly. The GNNED, RBP, and BiGED meth-
ods outperform the Transformer model, despite GNNED’s
similar architecture to the Transformer. BiGED achieves
the highest mAP, while RBP excels in R@10 and mR@10.

4.8. Results: Abductive Past Action Verification

We present abductive past action verification results in
Table 3 using the object-relational approach. We use the
ground truth human and object class names to obtain the
semantic representation. As the query is in textual form (i.e.
the action class name), we suggest that the abductive past
action verification resembles a human-like task. It is easy
to answer yes, or no to the question “Did the person execute
action ai in this image to arrive at this state?” Interestingly,
the performance of this task is slightly lower than the main
results we obtained in Table 1. Even though this task is
mentally more straightforward for the human, it seems the
task is slightly difficult for the machine as it now has to
understand the complexities of human languages.

4.9. Ablation on semantic vs visual

We use both visual and semantic features (Glove em-
bedding of object names) to obtain the relational features –
see Section 3.2. We ablate the impact of visual and semantic
features on each model on Abductive Past Action Set Pre-
diction (abduct at T) and the results are shown in Table 4.

Model Visual Only Semantic Only Both
Rule-based inference – 26.27 –
MLP 17.82 18.55 27.73
Transformer 21.30 32.81 33.59
Relational GNNED 21.55 32.82 34.38
RBP 22.15 33.03 35.55
BiGED 24.62 30.25 35.75

Table 4. mAP on Abductive Past Action Set Prediction (Abduct at
T) using visual and semantic features.

While RBP achieves the best performance using ground
truth object semantics, BiGED is the best-performing model
for visual data alone by a considerable margin, making it
the overall best method. We can conclude while seman-
tic features are effective, both visual and semantic features
are complementary. Qualitative Results. The qualitative
results in supplementary material Section 4.4 demonstrate
RBP and BiGED infer past actions more accurately. Gener-
alizability of BiGED. A visual-only BiGED model trained
to infer past actions was evaluated for action recognition at
the video level. We obtained 50.5 mAP on the Charades
dataset without any tuning. Although not state-of-the-art,
these results suggest the value of the abductive past ac-
tion inference model for general action understanding using
only visual features.

5. Discussion & Conclusion
This paper introduces abductive past action inference,

a task involving past action set prediction, sequence pre-
diction, and verification, all formulated as closed-set clas-
sification tasks. Our experiments show that while deep
learning models can perform these tasks to some extent,
holistic end-to-end models are ineffective. Large multi-
modal models like CLIP show promise, but our pro-
posed human-object relational approaches—such as rela-
tional graph neural networks, bilinear pooling, and the
BiGED model—outperform them, demonstrating the value
of object-relational modelling. We find conditional text
generation unsuitable for this task due to limited control,
and even advanced foundational models fail after instruc-
tion tuning. Overall, human-object-centric video represen-
tations emerge as the most effective approach, and abduc-
tive past action inference may enhance general human ac-
tion understanding.
Acknowledgment. This research/project is supported
by the National Research Foundation, Singapore, un-
der its NRF Fellowship (Award NRF-NRFF14-2022-0001)
and this research is partially supported by MOE grant
RG100/23. It was also partly funded by an ASTAR CRF
award to Cheston Tan and supported by the ASTAR CIS
(ACIS) Scholarship awarded to Clement Tan. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the
views of these organizations.



References
[1] Yazan Abu Farha, Alexander Richard, and Juergen Gall.

When will you do what?-anticipating temporal occurrences
of activities. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5343–5352,
2018. 2

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 5

[3] Le-Wen Cai, Wang-Zhou Dai, Yu-Xuan Huang, Yu-Feng Li,
Stephen H Muggleton, and Yuan Jiang. Abductive learning
with ground knowledge base. In IJCAI, pages 1815–1821,
2021. 3

[4] Yuren Cong, Wentong Liao, Hanno Ackermann, Bodo
Rosenhahn, and Michael Ying Yang. Spatial-temporal trans-
former for dynamic scene graph generation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 16372–16382, 2021. 3

[5] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou.
Bridging machine learning and logical reasoning by abduc-
tive learning. Advances in Neural Information Processing
Systems, 32, 2019. 3

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 6, 7

[7] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 6202–6211, 2019. 6, 7

[8] Basura Fernando and Samitha Herath. Anticipating human
actions by correlating past with the future with jaccard sim-
ilarity measures. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
13224–13233, 2021. 2, 4

[9] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach,
Trevor Darrell, and Marcus Rohrbach. Multimodal com-
pact bilinear pooling for visual question answering and vi-
sual grounding. arXiv preprint arXiv:1606.01847, 2016. 3

[10] Antonino Furnari and Giovanni Maria Farinella. What would
you expect? anticipating egocentric actions with rolling-
unrolling lstms and modality attention. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 6252–6261, 2019. 2

[11] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Dar-
rell. Compact bilinear pooling. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 3

[12] Rohit Girdhar and Kristen Grauman. Anticipative video
transformer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 13505–
13515, October 2021. 2

[13] Dayoung Gong, Joonseok Lee, Manjin Kim, Seong Jong Ha,
and Minsu Cho. Future transformer for long-term action
anticipation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 3052–
3061, 2022. 2

[14] Guodong Guo and Alice Lai. A survey on still im-
age based human action recognition. Pattern Recognition,
47(10):3343–3361, 2014. 2

[15] Zhongyi Han, Le-Wen Cai, Wang-Zhou Dai, Yu-Xuan
Huang, Benzheng Wei, Wei Wang, and Yilong Yin. Abduc-
tive subconcept learning. Science China Information Sci-
ences, 66(2):122103, 2023. 3

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4, 5, 6, 7

[17] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. Going
deeper into action recognition: A survey. Image and vision
computing, 60:4–21, 2017. 2

[18] Jack Hessel, Jena D Hwang, Jae Sung Park, Rowan Zellers,
Chandra Bhagavatula, Anna Rohrbach, Kate Saenko, and
Yejin Choi. The abduction of sherlock holmes: A
dataset for visual abductive reasoning. arXiv preprint
arXiv:2202.04800, 2022. 1

[19] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia
Schmid, and Michael J Black. Towards understanding ac-
tion recognition. In Proceedings of the IEEE international
conference on computer vision, pages 3192–3199, 2013. 2

[20] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos
Niebles. Action genome: Actions as compositions of spatio-
temporal scene graphs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10236–10247, 2020. 5

[21] Yang Jin, Linchao Zhu, and Yadong Mu. Complex video ac-
tion reasoning via learnable markov logic network. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3242–3251, 2022. 3

[22] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 6

[23] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Man-
galam, Bo Xiong, Jitendra Malik, and Christoph Feicht-
enhofer. Mvitv2: Improved multiscale vision transform-
ers for classification and detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4804–4814, 2022. 6, 7

[24] Chen Liang, Wenguan Wang, Tianfei Zhou, and Yi Yang. Vi-
sual abductive reasoning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15565–15575, 2022. 1

[25] Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov,
Andrew Tao, Huizi Mao, Jan Kautz, Mohammad Shoeybi,
and Song Han. Vila: On pre-training for visual language
models, 2023. 7

[26] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3202–3211, 2022. 6, 7



[27] Jae Sung Park, Chandra Bhagavatula, Roozbeh Mottaghi, Ali
Farhadi, and Yejin Choi. Visualcomet: Reasoning about the
dynamic context of a still image. In European Conference
on Computer Vision, pages 508–524. Springer, 2020. 3

[28] Paritosh Parmar, Eric Peh, Ruirui Chen, Ting En Lam, Yuhan
Chen, Elston Tan, and Basura Fernando. Causalchaos!
dataset for comprehensive causal action question answering
over longer causal chains grounded in dynamic visual scenes.
arXiv preprint arXiv:2404.01299, 2024. 3

[29] Paritosh Parmar, Eric Peh, and Basura Fernando. Learning
to visually connect actions and their effects. arXiv preprint
arXiv:2401.10805, 2024. 3

[30] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543,
2014. 4

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 4, 6, 7

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 4

[33] Debaditya Roy, Ramanathan Rajendiran, and Basura Fer-
nando. Interaction region visual transformer for egocentric
action anticipation. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision (WACV),
pages 6740–6750, January 2024. 2

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. CoRR, abs/1409.0575, 2014. 6

[35] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-
genbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE transactions on neural networks,
20(1):61–80, 2008. 3

[36] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne
van den Berg, Ivan Titov, and Max Welling. Modeling rela-
tional data with graph convolutional networks. In European
semantic web conference, pages 593–607. Springer, 2018. 3

[37] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In European Conference on Computer Vision,
pages 510–526. Springer, 2016. 6

[38] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and
Hanwang Zhang. Unbiased scene graph generation from bi-
ased training. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 3716–
3725, 2020. 3

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 5

[40] Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun
Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu, Zun
Wang, Sen Xing, Guo Chen, Junting Pan, Jiashuo Yu, Yali
Wang, Limin Wang, and Yu Qiao. Internvideo: General
video foundation models via generative and discriminative
learning. arXiv preprint arXiv:2212.03191, 2022. 6, 7

[41] Aming Wu, Linchao Zhu, Yahong Han, and Yi Yang. Con-
nective cognition network for directional visual common-
sense reasoning. Advances in Neural Information Processing
Systems, 32, 2019. 3

[42] Changqian Yu, Yifan Liu, Changxin Gao, Chunhua Shen,
and Nong Sang. Representative graph neural network. In
European Conference on Computer Vision, pages 379–396.
Springer, 2020. 3

[43] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi.
From recognition to cognition: Visual commonsense rea-
soning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6720–6731,
2019. 3

[44] Hao Zhang, Yeo Keat Ee, and Basura Fernando. Rca: Re-
gion conditioned adaptation for visual abductive reasoning.
In Proceedings of the 32nd ACM International Conference
on Multimedia, pages 9455–9464, 2024. 1

[45] Qi Zhao, Shijie Wang, Ce Zhang, Changcheng Fu,
Minh Quan Do, Nakul Agarwal, Kwonjoon Lee, and Chen
Sun. Antgpt: Can large language models help long-term ac-
tion anticipation from videos? In ICLR, 2024. 2

[46] Tianyang Zhong, Yaonai Wei, Li Yang, Zihao Wu,
Zhengliang Liu, Xiaozheng Wei, Wenjun Li, Junjie Yao,
Chong Ma, Xiang Li, et al. Chatabl: Abductive learning
via natural language interaction with chatgpt. arXiv preprint
arXiv:2304.11107, 2023. 3


	. Introduction
	. Related Work
	. Abductive Past Action Inference
	. Object-Relational Representation Approach
	. Relational Representation
	. GNNED: Relational Graph Neural Network
	. RBP: Relational Bilinear Pooling
	. BiGED: Bilinear Graph Encoder-Decoder

	. Experiments and Results
	. Action Genome Past Action Inference dataset
	. Experimental Setup
	. Evaluation Metrics
	. Baseline Models
	. Human Performance Evaluation
	. Results: Abductive Past Action Set Prediction
	. Results: Abduction on the Last Image
	. Results: Abductive Past Action Verification
	. Ablation on semantic vs visual

	. Discussion & Conclusion

