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Abstract

Annotating scene graphs for images is a time-consuming
task, resulting in many instances of missing relations within
existing datasets. In this paper, we introduce the Statisti-
cal Relation Distillation (SRD) method to enhance scene
graph datasets. SRD leverages human-annotated relations
alongside object-to-object and predicate-to-predicate simi-
larities to reinforce the existence likelihood of scene graph
relations. Moreover, SRD can augment relational frequency
using relations of non-selected object and predicate cate-
gories that are usually omitted by scene graph generation
(SGG) task. The output from SRD derives the prior proba-
bility which is combined with model-predicted probabilities
to annotate missing relations in training images and subse-
quently re-train SGG models on the augmented dataset. We
evaluate our proposed method on Visual Genome and GQA-
200 datasets. Experimental results show that training on the
augmented dataset enhances the performance of prominent
scene-graph generation models. The implementation code
at https://github.com/LUNAProject22/SRD.

1. Introduction
Scene graph generation (SGG) is an important computer

vision problem in visual scene understanding [3, 5, 14, 19,
23, 25, 33, 54, 57]. A SGG model learns to predict objects
in a scene and relations between pairs of objects [50]. The
quality of the annotated scene graphs in the training set is an
important factor affecting the generalization performance of
SGG models [26, 32, 51]. However, recent works show that
annotating all-important relations in an image are not an
easy task, and the most common benchmarks such as Vi-
sual Genome (VG) [23, 26] have many missing relations in
the training set [51]. For example, Figure 1a shows two
images and their human-annotated relations (black arrows).
Although there are many relations available, there is only
one annotated relation of <tire, on, motorcycle> for the first
image. Similarly, the second image only has one annotated
relation of <person, walking on, sidewalk>. Moreover, to
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(a) Example of enhanced scene graphs with newly-added relations (red arrows).

(b) Size changes of training samples 
for some predicates. Our method adds 
more relations to images, focusing on 
the infrequent predicates.

(c) Showing Recall@20 of the PredCls 
task for the selected predicates. 
Training on the enhanced dataset 
significantly improve the performance.
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Figure 1. Illustration of our method. (a) We augment training im-
age scene graphs by discovering new relations. (b) This results in
an enhanced dataset having more training relation, specifically fo-
cused on infrequent predicates. (c) This leads to the improvement
of the predicate classification task (PredCls for short) on rare pred-
icates. This figure uses the results from Transformer as the base
model, evaluated on VG dataset.

simplify the task, most methods work on a subset of selected
object and predicate categories. For example, the SGG task
using VG dataset commonly focuses on 150 object and 50
predicate categories although the dataset contains thousands
of object and predicate categories. Consequently, a large
amount of annotations which could potentially be used for
training are omitted.

In this paper, we propose Statistical Relation Distillation
(SRD) method to reinforce the existence likelihood of rela-
tions by accumulating frequency information from similar
relations including the excluded object and predicate cate-
gories. In other words, SRD allows relations of un-selected
object and predicate categories to contribute to the augmen-
tation process. Specifically, SRD transfers the relational

https://github.com/LUNAProject22/SRD


information (i.e., frequency) based on object-to-object and
predicate-to-predicate similarities. The assumption is that
similar objects can have similar relations and similar predi-
cates can form relations with similar object pairs. For exam-
ple, the relation <house, along, street> can be used to infer
that building can also be along street because building and
house are similar objects. Similarly, <sign, attached on,
pole> can be used to infer the relation of <sign, mounted
on, pole> since attached on and mounted on are similar
predicates. Subsequently, we employ deductive reasoning
to add missing relations to enhance the scene graph annota-
tions of training images. In particular, we compute statisti-
cal priors, namely Distilled Statistical Prior (DSP), based on
the reinforced relational information obtained by SRD. DSP
is combined with the self-labeling technique [51] to evalu-
ate relation candidates and choose the most probable rela-
tions to add to the image. Returning to Figure 1a, the newly-
added relations, depicted by red arrows, offer more com-
prehensive relational information among the objects in the
images. Figure 1b shows the differences between the orig-
inal dataset and the enhanced dataset regarding the number
of images containing relations for some infrequent predi-
cates. By adding more training samples for these predicates,
SGG model can improve significantly for these predicates
as shown in Figure 1c. Figure 2 illustrates our proposed
method. On the top part of the figure, we first perform SRD
on the original annotations to obtain distilled information
which is then used to derive statistical priors (DSP) includ-
ing prior pair probability and prior predicate probability. On
the bottom part of the figure, we add new relations to an
image based on the statistical priors and prediction of a pre-
trained SGG model (self-labeling). As SRD utilizes all rela-
tional annotations, DSP encodes evidence from not only the
relations of chosen object and predicate categories but also
from those of non-selected ones. For example, predicate
‘attached on’ is not selected, but its relational information
is (partially) retained by the selected predicate ‘mounted on’
because the two predicates are similar. In other words, the
statistical prior of ‘mounted on’ is enhanced by the pres-
ence of ‘attached on’ annotations. DSP contains condi-
tioned pair probability to answer questions such as “given
a subject, how likely an object category can be the object
of a relational triplet?”, and conditioned predicate proba-
bility to answer the question of “what is the most likely
predicate for a given pair of objects?”. As statistical priors
could vary for different types of images (due to the context
and scene type), we derive context-based DSP. Specifically,
we first cluster images into groups based on image context
(e.g., animals, beach). Then, we apply SRD and obtain DSP
for each cluster. During relation deduction, each image will
use its corresponding cluster’s DSP. Zhang et al. [51] pro-
poses to add new relations (external transfer) and modify
existing relations (internal transfer) based on trained SGG

model’s predictions. Similarly, we leverage a trained SGG
model, but in addition, we take into account the enhanced
prior distribution DSP. This allows us to take advantages of
both the prior and conditional distributions to infer missing
labels of triplets in the training set. Afterwards, we retrain
the models with the enhanced scene graph dataset which
includes both human-annotated and newly added annota-
tions. Experimental results show that our method helps ob-
tain better annotations leading to significant improvements
over the self-labeling external transfer model of [51] using
SGG models such as Motif [50], VCTree [44], and Trans-
former [43] for predicate classification, scene graph clas-
sification and scene graph detection tasks. Although such
statistical priors have been used in prior scene graph genera-
tion models to aid conditional classifier predictions [43,44],
we are the first to use these priors to discover new relations
for subject-object pairs that do not have predicate annota-
tions. Furthermore, to the best of our knowledge, we are
the first to introduce the concept of statistical distillation
which transfers the occurrence statistics of a bigger set to
the statistics of a smaller subset of entities. Then we use
these enhanced statistics to discover relations for the miss-
ing pairs.

Our contributions are as follows. First, we introduce
SRD method to transfer relational information among sim-
ilar relations. SRD allows preserving relational informa-
tion of object and predicate categories that are commonly
omitted in the standard SGG setting. SRD strengthens sta-
tistical prior of triplets, creating more robust statistical pri-
ors (DSP). We further improve DSP by incorporating scene
context information using foundational model features of
images (i.e., CLIP [38]). Secondly, we use DSP to gen-
erate new relations for subject-object pairs lacking predi-
cate labels in the training set. The integration of predictions
from the trained SGG model (conditional probability) with
DSP contributes to the improvement of the training set, sub-
sequently leading to significant performance enhancements
when being evaluated on VG and GQA-200.

2. Related Work
The scene graph, introduced for image retrieval in 2015

[18], has since been applied to various tasks such as visual
question answering [37, 45], image captioning [47, 55, 56],
and image generation [17, 28]. Numerous SGG approaches
have emerged, including TransE-based SGG [13,53], CNN-
based SGG [29, 48], RNN/LSTM-based SGG [44, 46, 50],
GNN-based SGG [30, 36], Transformer-based SGG [6, 7],
and methods addressing long-tail issues [8]. Our work is
primarily related to the methods focusing on unbiased scene
graph generation using data enhancement techniques and
dataset curation [16, 22, 34]. Li et al. [26] argue that there
are noisy labels in annotated predicates for both positive
and negative samples. They propose to detect noisy samples



and then correct them by treating the scene graph generation
problem as a noisy label learning problem. Lyu et al. [32]
focus on hard-to-distinguish samples (predicate triplets) and
proposes a fine-grained categorization loss. Li et al. [27]
use similarity between two predicates quantified using prob-
ability predictions of a biased model and uses this mea-
sure to develop a new reweighting loss function to elimi-
nate the biased predictions. In contrast, our computation
of similarity (among images, objects, and predicates) relies
on embeddings generated from external foundational mod-
els such as CLIP [38] and BERT [9]. Specifically, we make
use of image-visual similarity (CLIP) to cluster image con-
texts, and linguistic (BERT) to obtain object and predicate
similarity. More recently, Yu et al. [49] propose to make
use of large language models to generate open-world scene
graph generation. To solve this task, they use a visually
prefixed prompt and a language prompt learning with a hy-
brid template. Authors also perform predicate clustering
based on the GloVe [35] vectors to obtain highly correlated
predicates. A similar approach is also presented in [54].
Min et al. [33] propose to address the issue of subject-object
pair distributions. Our method also addresses both subject-
object imbalances as well as predicate imbalance issues in
a data and semantic-driven manner.

Zhang et al. [51] developed a method to transfer triplet
information from uninformative ones to informative ones
such as a triplet with “on” predicate is replaced with a more
informative “sitting on”. Secondly, they also propose a
method to infer missing triplets (those ones that are valid,
yet not annotated). The authors use all non-annotated over-
lapping object pairs and pseudo-labeled the missing relation
with a trained model. Even if this strategy could label some
of the missing labels correctly, it has to rely on the accu-
racy of the predictor. We use both the predictor and the
prior to obtain more accurate relations. In the same spirit,
Goel et al. [14] propose a method to replace explicit rela-
tions (on, under) with implicit relations (riding on) using
a model-based relabelling approach. Lin et al. [31] use a
graph convolutional approach to obtain refined feature rep-
resentations for each object, subject, and relation features.
Li et al. [25] propose using feature augmentation to enrich
the feature diversity of original relation triplets by replac-
ing and mixing up their intrinsic or extrinsic features from
other samples. Similarly, a semantic embedding augmenta-
tion strategy to eradicate bias is used in [1]. Our strategy is
to acquire information from all samples and use the infused
statistics to improve on the predicate and subject-object bi-
ases by self-labelling missing rare predicates. Good priors
have significantly improved many other problems in Com-
puter Vision and Machine Learning [11, 12, 42]. We dis-
cover prior for the relational data using SRD.

Furthermore, there are more recent advancements in
scene graph detection extending DETR [2] with specialized

query learning [20]. Large language model-based weakly
supervised scene graph generation has been studied to ad-
dress labelling issues [21] and Few-shot scene graph gener-
ation has been studied in [4]. The diverse visual appearance
within the same predicate and the lack of patterns in tail
predicates have been addressed in [24]. External domain
knowledge has been used to improve scene graphs in [52].
Scene graphs were extended to represent situations in [41].

3. Methodology
The overview of our proposed method is shown in Fig-

ure 2. Many object pairs in the existing dataset are valid,
yet not annotated with the correct relation triplet categories–
see also the Figure 5. Therefore, our objective is to obtain
a predicate label for each pair of objects that have object
class annotation but no predicate label in the training set
of a scene graph dataset. Specifically, we make use of a
trained predicate classification model (ϕ()) and our distilled
statistical priors as explained in Section 3.3 to infer missing
predicate labels. Given a pair of object instances annotated
in an image having subject and object classes oi and oj that
is not annotated with a predicate label, we infer a new prob-
ability P (t|I) for the triplet t =< oi, r, oj > where r is the
predicate. We use pretrained predicate classification model
ϕ() to obtain Pϕ(r|I, oi, oj) and multiply it with the prior
triplet probability (PG(t)) as follows:

P (t|I) = PG(t)× Pϕ(r|I, oi, oj) (1)

The prior triplet probability (PG(t)) is an enhanced prior
obtained using the statistical relation distillation. In contrast
to traditional statistical priors, the new prior PG(t) is esti-
mated using the scene-summary graph of the entire dataset
(GD) and relation-to-relation and object-to-object semantic
similarities. Using the output from Equation (1), we predict
the missing relation (selecting only the maximum value) for
each pair of objects that lack a predicate label in the train-
ing set images. The enhanced dataset is used to retrain SGG
models. The technique of using a pretrained model to en-
hance the training set is referred to as self-labeling in the
literature and has been extensively employed in previous
studies [51]. In the following sections, we will explain the
scene summary graphs and the process of statistical rela-
tion distillation in Section 3.2. The method for obtaining
prior triplet probability (PG(t)) is detailed in Section 3.3,
and the approach for adding new relations into an image is
discussed in Section 3.5.

3.1. Scene-Summary Graph (SSG)

A dataset of scene graphs D = {I,G,O,R} contains
q images I = {I1, · · · , Iq} and the corresponding scene
graphs G = {G1, · · · , Gq}. Each Gi = Oi × Ri × Oi,
where Oi ⊆ O is a set of objects appearing in image Ii and
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Figure 2. Illustration of the method. (1) Statistical Relation Distillation (SRD) enhances the original frequency of relation-triplets (tuples)
by accumulating frequency from similar relations. (2) The new frequencies are used to compute pair probability (2a) and predicate
probability (2b). (3) priors are combined with model-generated probabilities to identify and add missing relations. ‘Freq.’ and ‘Prob.’ are
the short forms of ‘frequency’ and ‘probability’.

Ri ⊆ R is a set of predicates (relations) between the ob-
jects. O = {o1, · · · , oM} and R = {r1, · · · , rL} are the
set of all the objects and relations appeared in G, respec-
tively. A scene graph consists of relationship triplets in the
form of <subject, predicate, object> where subject and ob-
ject are objects from O and predicate is from R. A scene
graph contains relations between object instances. For ex-
ample, in an image of two cats sitting on a table. The corre-
sponding scene graph contains object instances (e.g., table,
cat1, and cat2) and the relations (described by predicates)
between them. We define a scene summary graph (SSG) to
store the frequency of relationship triplets in scene graph at
the object-category level. In the above-mentioned example,
the corresponding image SSG contains <cat, on, table>
with the frequency value of two because it has two relations
<cat1, on, table1> and <cat2, on, table1>. The SSG for
an image Ii is denoted as Gi and is represented as a tensor
of size L × M × M for predicate, subject, object, respec-
tively. where L = |R| is the number of all the predicates
and M = |O| is the number of all objects. The value at in-
dex (j, k, l) is the frequency of triplet <ok, rj , ol> obtained
from Gi. The SSG of a dataset is obtained by aggregating
SSG of all the images in the dataset as follows:

GD =

q∑
i=1

Gi (2)

where GD, represented as a tensor of size L × M × M is
the SSG of dataset D. The GD contains all the relations
between objects and the corresponding frequency. The fre-

quency information in the GD along with additional simi-
larity information is used to deduce new relations and new
statistical prior.

3.2. Statistical Relation Distillation (SRD)

Similar objects might have similar relations and a re-
lation can be described using semantically similar predi-
cates. Inspired by these observations, we propose Statistical
Relation Distillation (SRD) method to distill relational in-
formation among triplets having similar objects and/or sim-
ilar predicates. We base on similarity matching to obtain
new frequencies for all possible relations in the dataset
given the SSG of the dataset GD. Specifically, the frequency
of a relationship triplet is passed to other triplets of similar
objects and/or predicates, and in turn, receiving from those
as well. Next, we explain the SRD in detail.

SRD takes the original SSG (GD, obtained by Equa-
tion 2), object similarities, and predicate similarities as in-
put, and computes the distilled SSG, denoted as G′

D. The
distillation can take two paths: 1) self-distillation and 2)
subset-distillation. In self-distillation, GD and G′

D have the
same sets of objects and predicates. Whereas, in subset-
distillation, the objects and predicates in G′

D are subsets
of those in GD. In other words, we distill the informa-
tion from bigger sets of objects and predicates to smaller
sets. For generalizability, we represent G′

D as a tensor of
L′ × M ′ × M ′ where L′ = |R′| and M ′ = |O′|. Here,
R′ ⊆ R and O′ ⊆ O are the sets of relations and objects
encoded in G′

D, respectively. When R′ = R and O′ = O,
it is self-distillation. When R′ ⊂ R and O′ ⊂ O, it is
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('lady', 'wearing', 'shoe', 51)
('lady', 'wearing', 'sneaker', 3) 
('lady', 'wearing', 'tennis shoes', 2)
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('lady', 'wearing', 'heeled shoes', 2)

Original freq.: 51
Distilled freq.: 583
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('lady', 'wearing', 'shoe', 51)
('female', 'wearing', 'shoe', 6)
('woman', 'wearing', 'shoe', 426)
('she', 'wearing', 'shoe', 0)

(lady, wearing, shoe, 51)
(lady, is wearing, shoe, 0)
(lady, wears, shoe, 0)
(lady, wearing a, shoe, 0)

Objects 
Similarity

Figure 3. Example of SRD that enhances the frequency (freq.) of
triplet <lady, wearing, shoe> from 51 to 583. The contributing
triplets (similar relations) are shown with their original frequency.

subset-distillation. We define a similarity function S(·, ·)
which returns a similarity matrix between the terms (object-
object or predicate-predicate). The similarity between two
terms is computed as the cosine similarity of their embed-
ding generated by pretrained large language model (e.g.,
the cosine similarity between the embeddings of table and
desk). The main idea of the distillation process is to esti-
mate the new (weighted) frequency of triplets by propagat-
ing the frequencies from similar triplets. The weights are
determined by how similar they are. SRD consists of three
main steps, object-based distillation, subject-based distil-
lation, and predicate-based distillation (Fig. 3). We first
perform the object-based distillation by computing the ma-
trix multiplication between the original SSG and the object
similarity matrix S(O,O′).

T1 = GD × S(O,O′) (3)

where T1 is a tensor of size L × M × M ′ (for predicate,
subject, obj∗1) and similarity matrix S(O,O′)2 has the size
of M ×M ′. Next we perform the subject-based distillation.

T2 = S(O,O′)T × permute(T1, (1, 2, 0)) (4)

where T2 is a tensor of size M ′ × M ′ × L (for subject∗,
object∗, predicate), permute(·, ·) is a function which returns
a view of the original tensor input (the first parameter) with
its dimensions permuted with the desired ordering of di-
mensions (the second parameter). Lastly, we perform the
predicate-based distillation which is based on the similarity
between predicates S(R,R′).

T3 = T2 × S(R,R′) (5)

where T3 is a tensor of size M ′ × M ′ × L′ (for subject∗,
object∗, predicate∗) and the similarity matrix S(R,R′) has
the size of L × L′. Finally, we permute T3 to obtain the
distilled SSG.

G′
D = permute(T3, (2, 0, 1)) (6)

1“∗” is used to indicate the dimensions that has done the distillation
2The similarity matrix returned by the similarity function S(·, ·).

where G′
D has the size of L′ × M ′ × M ′ (for predicate∗,

subject∗, object∗). G′
D encodes not only the original fre-

quency information for each triple, but also the distilled
information aggregated from triples of similar objects and
predicates.

3.3. Obtaining Statistical Priors from SSG

Given a SSG, we derive the statistical priors including
the conditioned pair probability and conditioned predicate
probability. The conditioned pair probability can be used
to answer for the question of “given a subject, how likely
an object category can be the object of a triplet?”, and the
conditioned predicate probability is used to answer for the
question of “what is the most likely predicate that can be
used to describe the relation for a given pair of subject and
object?”. The conditioned pair probability for a given sub-
ject oi denoted by PG(o = oj |s = oi) (where oi is the
subject and oj is the object) is computed as follows:

PG(o = oj |s = oi) =

∑L
k=0 G(rk, oi, oj)∑M

l=0

∑L
m=0 G(rm, oi, ol)

(7)

where G(rk, oi, oj) = G[k, i, j] (value at index [k, i, j] of
tensor G) is the frequency of triplet <oi, rk, oj> in SSG.
The probability of having rk as the predicate for the pair
(s = oi, o = oj) is derived using the following equation.

PG(p = rk|s = oi, o = oj) =
G(rk, oi, oj)∑L

m=0 G(rm, oi, oj)
(8)

We obtain DSP by applying these equations on the distilled
SSG (G′

D). Prior triplet probability (PG(t)) is as follows:

PG(t) = PG(o = oj |s = oi) · PG(p = r|s = oi, o = oj)

· PG(s = oi) (9)

where the probability of selecting an object as subject,
PG(s = oi), is uniform.

3.4. Context-based SRD

The likelihood of having a relation between a pair of ob-
jects depends on the context the two objects appear. For
example, in the context of ‘beach’, a man is more likely to
have a relation with a surfboard than with a laptop (see sup-
plementary). Similarly, the exact predicate to describe the
relation between a pair of objects could also vary in differ-
ent contexts. For example, man is likely to wear jacket if
the context is under snow, but man is more likely to hold
jacket if the context is indoor. Therefore, our hypothesis is
that relation distillation by deduction should be performed
on the images belonging to the same context to avoid pass-
ing irrelevant information. Our objective is not to know the
exact context of each image, but rather which images be-
long to the same context. Therefore, we group the images



into different clusters and consider the images belonging to
the same cluster to have the same context. Specifically, we
apply the K-Means algorithm to cluster the images into K
clusters based on the CLIP (ViT-B-32) [38] model image
features. To decide the number of clusters, we based on the
Silhouette coefficient [40]. For each cluster, we compute
the context-based SSG and apply SRD on the SSG to ob-
tain context-based distilled SSG. Then, the context-based
distilled SSG is used to derive the statistical priors (DSP)
for the cluster using the method described in Section 3.3.

3.5. Relation Deduction: Adding Missing Relations

For each image in the training set, we identify and add re-
lations for pairs of annotated objects that lack human anno-
tations. When adding new relations, we filter out triplet can-
didates that do not have overlapping subject-object bound-
ing boxes. Following the methodology of [51], we select
only those triplets that appeared in human annotations, fo-
cusing on the top 50% infrequent predicates for candidate
pairs. This strategy enables us to add more new rare triplets
into the training set compared to the frequent ones. Ad-
ditionally, we label a pair of object instances (without a
predicate label) with a predicate for the subject and object
categories only if that triplet appears at least 15 times in
the training set. This approach helps us to add rare but
high-quality triplets rather than those annotated by mistake
(i.e., those that appear only a few times). This strategy pre-
vents the introduction of noise or incorrect relations. For
each valid candidate pair, we choose a valid predicate (i.e.,
belonging to the less frequent 25 predicates) based on the
score computed as described in Equation 1.

4. Experiments

Datasets. We evaluate our proposed approach on two
benchmark datasets: Visual Genome(VG)-150 [23] and
GQA-200 [15]. For the VG dataset, we use the default splits
of 57,723, 5,000, and 26,446 images for training, valida-
tion, and testing, respectively [43]. The dataset has 150 se-
lected object classes and 50 selected predicate classes [49].
Similarly, for the GQA dataset, we adopt the default ex-
perimental procedures [10, 33, 49]. This entails employing
57,623 images for training, 5,000 for validation, and 8,209
for testing. Within this dataset, the number of selected ob-
ject classes and predicate classes are 200 and 100, respec-
tively. The base models are implemented based on the code
from [43]3. During SRD process, we leverage the entire set
of object classes and predicate classes annotated within the
datasets. Specifically, for VG, this includes 13,053 objects
and 5,232 predicates, while for GQA-200, it includes 1,684
objects and 310 predicates. However, during the training

3https : / / github . com / KaihuaTang / Scene - Graph -
Benchmark.pytorch

Method Pred.Cls SGCls SGDet

mR@20 /50 /100 mR@20 /50 /100 mR@20 /50 /100

Motif (Base) 12.1 / 15.7/ 17.4 7.2 / 8.7 / 9.3 5.1 / 6.5 / 7.8
–NICE [26] – / 29.9 / 32.3 – / 16.6 / 17.9 – / 12.2 / 14.4
–IETrans [51] 30.2 / 35.8 / 39.1 18.2 / 21.5 / 22.8 12.0 / 15.5 / 18.0
–CFA [25] – /35.7 /38.2 – / 17.0 / 18.4 – / 13.2 / 15.5
–CaCao [49] 30.9 / 37.1 / 38.9 20.4 / 23.3 / 24.4 12.6 / 17.1 / 20.0
–Ours 31.9 / 37.9 / 40.5 18.9 / 21.9 / 22.8 13.5/ 17.9/ 20.6

VCTree (Base) 12.4 / 15.4 / 16.6 6.3 / 7.5 / 8.0 4.9 / 6.6 / 7.7
–NICE [26] – / 30.7 / 33.0 – / 19.9 /21.3 – / 11.9 / 14.1
–IETrans [51] 31.7 / 37.0 / 39.7 18.2 /19.9 / 21.8 9.8 / 12.0 / 14.9
–CFA [25] – / 34.5 / 37.2 – / 19.1 / 20.8 – / 13.1 / 15.5
–CaCao [49] 33.1 / 37.5 / 38.9 23.8 / 27.5 / 28.7 11.8 / 16.4 / 19.1
–Ours 33.4 / 39.0 / 41.1 23.0 / 26.6 / 27.6 12.8 / 16.7 / 19.6

Transf. (Base) 14.8 / 19.2 / 20.5 8.9 / 11.6 / 12.6 5.6 / 7.7 / 9.0
–IETrans [51] 29.1 / 35.0 / 38.0 17.9 / 20.8 / 22.3 11.7 / 15.0 / 18.1
–CFA [25] – / 30.1 /33.7 – / 15.7 / 17.2 – / 12.3 / 14.6
–CaCao [49] 36.2 / 41.7 / 43.7 21.1/ 24.0 / 25.0 13.5 / 18.3 / 22.1
–Ours 34.0 / 39.6 / 41.7 20.1 / 23.0 / 23.9 14.3 / 18.3 / 20.8

Table 1. Comparing to the state-of-the-art methods evaluated on
VG dataset. We use context-based SRD. Bold text indicates best
result and underlined text indicates the second-best result.

and evaluation stages, only the respective selected objects
and predicates are utilized.
Experimental Setup. To be consistent with prior works
[14, 32, 43, 51], we use mean recall at k (mR@k) for the
evaluation. Our method is assessed with VCTree [44], Mo-
tif [50], and Transformer [43] models, employing a pre-
trained Faster-RCNN with ResNeXt-101-FPN for feature
extraction in predicate classification, scene graph classifica-
tion and scene graph detection. We adhere to standard train-
ing protocols from prior methods [43] and use BERT [39]
embeddings for object and predicate similarity computa-
tion. For image context clustering, we choose the number
of clusters based on Silhouette coefficient, i.e., 25 clusters
for VG and 20 clusters for GQA-200.

To mitigate the long-tailed distribution issue, we also
employ the reweighting loss strategy, the same as the ap-
proach outlined in [51]. The reweighting loss technique ad-
dresses this issue by assigning distinct weights to different
predicate classes during the training process. The weight of
relation rk is determined as wk = median of all relation frequencies

frequency of rk
.

Subsequently, these computed weights are incorporated into
our classification loss (i.e., the class-weighted cross-entropy
loss) when re-training the model with the enhanced dataset.
This encourages the model to prioritize less frequent classes
that potentially improve the overall performance. More-
over, during SRD, triplet frequencies are weighted by the
inverse relation frequency of each predicate category (in-
spired by TFIDF –Term Frequency Inverse Document Fre-
quency) to reduce the impact of frequency bias.

4.1. Comparison to State-of-the-Art Methods

We compare with prior scene graph dataset enhancement
methods. In Table 1, our model, being model-agnostic,

https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch


Method P.Cls S.Cls S.Det

@50 @100 @50 @100 @50 @100

Motif (Baseline) 16.8 17.9 8.2 8.6 6.4 7.7
–GCL [10] 36.7 38.1 17.3 18.1 16.8 18.8
–CaCao [49] (ICCV23) 37.5 40.5 19.6 21.9 17.8 19.6
–EICR [33] (ICCV23) 36.3 38.0 17.2 18.2 16.0 18.0
–Ours 35.7 37.0 18.1 19.0 16.2 18.1

VCTree (Baseline) 16.6 17.4 7.9 8.3 6.5 7.4
–GCL [10] 35.4 36.7 17.3 18.0 15.6 17.8
–EICR [33] (ICCV23) 35.9 37.4 17.8 18.6 14.7 16.3
–Ours 35.9 37.0 18.9 19.4 16.9 18.9

Transformer (Baseline) 17.5 18.7 8.5 9.0 6.6 7.8
–GCL [10] 35.6 36.7 17.8 18.3 16.6 18.1
–CaCao [49] (ICCV23) 34.8 36.9 19.3 20.1 18.8 19.1
–Ours 37.6 38.8 20.2 20.7 18.7 20.6

Table 2. Comparing to the state-of-the-art methods evaluated on
GQA dataset [15]. We use context-based SRD. Bold text indicates
best result and underlined text indicates the second-best result.

outperforms established dataset enhancement methods like
IETrans [51] and NICE [26], showcasing good perfor-
mance. This success is attributed to our method’s ability
to leverage all relation and object categories (13,053 ob-
ject classes and 5,232 predicates) in the Visual Genome
dataset, along with a statistical and semantic-centric bias re-
duction mechanism. Using BERT for semantic similarities,
CLIP for semantic clusters, and statistical distillation for
priors, our approach effectively addresses long-tailed issues
in predicate classification, particularly improving rare pred-
icate classes (see Section 4.2). The method remains com-
petitive with foundational model-based data enhancement
methods such as CaCao [49] and excels with Motif and VC-
Tree, demonstrating significant enhancements in predicate
classification and scene graph detection. The integration
of our distilled statistical prior proves beneficial across dif-
ferent methods, emphasizing the practical utility and seam-
less integration of our contribution into existing frameworks
for competitive outcomes. In Table 2, we show the per-
formance of our method on a more challenging GQA-200
dataset. Compared to the VG dataset, the number of object
classes is reduced from 13,053 to 1684 and therefore our
distillation process only transfers statistics from fewer to-
tal possible relations. Nevertheless, even in the GQA-200
dataset, our method performs comparably with other meth-
ods (10 out of 18 times our method obtains the best results)
in the literature demonstrating the robustness of the main
idea of this paper even under a more challenging setup.

4.2. Ablations and Analysis

In this section, we ablate our model using Transformer
and VCTree models. SRD’s components. As presented
in Section 3, our model comprises key components: the
statistical relation distillation module (SRD), and context-
based SRD. We assess their impact in Section 4.1. The

Transformer VCTree

Method mR@20 / 50 / 100 mR@20 / 50 / 100

SL 24.2 / 30.5 / 33.2 23.7 / 33.2 / 37.8
SRD 32.9 / 39.0 / 41.0 32.9 / 38.6 / 40.5
CSRD 34.0 / 39.6 / 41.7 33.4 / 39.0 / 41.1

Table 3. Evaluating the impact of different components of our
method using predicate classification task using VG dataset. SL
and CSRD stand for Self-labelling and context-based SRD.

Transformer VCTree

mR@20 / 50 / 100 mR@20 / 50 / 100

Selected only 32.7 / 38.5 / 40.6 31.3 / 37.5 / 40.4
All 34.0 / 39.6 / 41.7 33.4 / 39.0 / 41.1

Table 4. Evaluating SRD when using different sets of object and
predicate categories for relation distillation.
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Figure 4. Comparison of original and augmented data shows
increased number of rare predicate relations and per class re-
call@100 on PredCls.

first baseline, termed Self-labelling, solely relies on the pre-
trained SGG model ϕ() for conditional probability, neglect-
ing the prior from SRD (Equation (1)). We use this model to
label subject-object pairs that do not have predicate annota-
tions similar to ours. From the results, we see that SRD con-
sistently outperforms the self-labeling model across Trans-
former and VCTree. The inclusion of context improves the
results in all cases. The biggest improvement comes from
the inclusion of SRD.

SRD on Different Set of Object and Predicate Cat-
egories. Here we ablate the impact of using additional
triplets from the full VG dataset. We evaluate the perfor-
mance of the models when we apply SRD on the selected
objects (150 categories) and predicates (50 categories) only.
We compare the results in Table 4. The results show that
when applying SRD on all the VG triplets, the performance
of both Transformer and VCTree are better compared to
when using only relational triplets of selected categories
only. This demonstrates the benefit of using SRD as it al-
lows utilizing all annotations.
The Impact of SRD on Rare and Frequent Predicates.

Using our method, we added 42029, 43759, and 41763



Method Head (16) Body (17) Tail (17)
Motif (Base) [8] 42.3 9.8 0.6

–DT2-ACBS [8] 35.1 (-7.2) 45.2 (+35.4) 38.6 (+38.0)

Motif (Base) 40.8 10.2 3.0
–Ours 37.4 (-3.4) 47.1 (+36.9) 36.7 (+33.7)

VCTree (Base) 40.8 10.2 3.0
–Ours 38.9 (-1.9) 46.0 (+35.8) 38.5 (+35.5)

Transf. (Base) 42.8 13.7 4.6
–Ours 38.8 (-4.0) 46.7 (+33.0) 39.3 (+34.7)

Table 5. Mean Recall @100 on predicate classification (PredCls)
for head, body, and tail predicate classes.

new relations to the training set of the VG dataset when us-
ing Motif, VCTree, and Transformer, respectively. Among
57,723 images in the training set, we added new relations
to about 22,000 images. For GQA-200, we added 23496,
26927, and 24111 new relations to the training set when us-
ing Motif, VCTree, and Transformer, respectively. Among
57,623 images in the training set, about 16,000 images
were added new relations. We now analyze the impact of
our method on both the infrequent and frequent predicates
and with the showcase of Transformer on both datasets.
The other two methods present similar trends. Figure 4
shows the number of relations containing each predicate for
the original data (“Original Relations”) and the number of
newly added relations (“Added Relations”) for the enhanced
dataset. It also compares per-class recall at 100 between the
Transformer baseline and our method for VG. After SRD,
our method can add more instances of rare predicates, in-
creasing their frequency for both VG and GQA-200 (see
supplementary). Notably, the frequencies of rare predi-
cates such as “belonging to” in VG and “growing on” in
GQA-200, are amplified by an order of magnitude, from
560 to 8,490 and 175 to 2,998, respectively. This demon-
strate the effectiveness of SRD in addressing the long-tail
issue in the SGG task. The addition of infrequent predi-
cates significantly enhances the corresponding recall, as il-
lustrated by the solid green line in Figure 4.

While a decline in recall was noted for frequent pred-
icates like ”on” and ”wearing,” augmenting the dataset
with new samples for the 25 least frequent predicates im-
proved performance across 42 out of 50 predicates. Fol-
lowing [8], we compute the mean recall for head, body,
and tail classes (Table 5). Our results show a similar trend
with reduced head-class performance (-3.4%, -1.9%, -4%
for Motif, VCTree, Transformer) but significant gains for
body (+36.9%, +35.8%, +33.0%) and tail classes (+33.7%,
+35.5%, +34.7%). Notably, our method surpasses [8]
across all class groups. Examples of relations added by our
method for VG using Transformer as the base model are
shown in Figure 5. Many important missing relations are

1.(branch, on, tree)
2.(giraffe, has, neck)
3.(leg, of, giraffe)
4.(tree, near, giraffe)

1.(branch, from, tree)
2.(giraffe, eating, leaf)
3.(hair, along, neck)
4.(leaf, growing on, tree)
5.(tail, between, leg)
6.(tree, covered in, leaf)

1.(man, wearing, shirt)
2.(window, on, building)

1.(bus, parked on, street)
2.(man, walking in, street)
3.(window, part of, building)

1.(building, has, door) 1.(building, across, street)
2.(car, parked on, street)
3.(door, to, building)
4.(tree, along, street)
5.(window, part of, building)

Original Relations Newly-added RelationsImage

Figure 5. Example of newly-added relations using our method
with Transformer on Visual Genome dataset.

added to the images. More examples for VG and GQA-200
can be found in the supplementary.
User Study to Evaluate Newly Added Relations. We
qualitatively evaluated newly added relations by sampling
300 triples generated by the transformer model, creating
300 questions. Fourteen participants assessed these rela-
tions, marked in both image and text formats, answering
60 unique questions each, resulting in 880 responses (2-3
responses per question). Results show 59.3% (178) were
unanimously valid, 15% (45) were unanimously invalid,
and the rest had mixed votes. Excluding 16 ambiguous
cases, the accuracy based on majority votes is 76.1%, val-
idating the added relations and enhancing model perfor-
mance for infrequent predicates in SGG tasks.

5. Conclusions
We introduced SRD to enhance the statistical prior of

SGG datasets by distilling information from similar rela-
tional triplets. The enhanced prior probability is used along
with a pre-trained SGG model to annotate missing triplets
to augment the training set. The enhanced dataset is used
to retrain SGG models, demonstrating significant improve-
ments. Experiments with Motif, VCTree, and Transformer
models show state-of-the-art performance in predicate clas-
sification and scene graph detection on VG and across all
three tasks with multiple metrics on GQA-200. Notably,
our method substantially improves the performance of tail
predicate classes. The distilled relational statistics are inter-
pretable, providing insights into the behavior and rationale
behind statistical distillation.
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