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Abstract

We introduce ViDSE, a Video framework that Deduce
and Selects visual Evidence for training-free video goal
inference using language models. Unlike approaches that
directly apply vision-language models (VLM) or combine
VLM+LLM to process dense video visuals, ViDSE explicitly
selects relevant visual evidence (e.g., frames) based on the
hypothesis deduced by the LLM. This approach not only im-
proves accuracy but also reveals the logical process behind
the model’s decisions, enhancing explainability. Our exper-
iments demonstrate that this selection process significantly
reduces ambiguity in the subsequent inference reasoning
stage and outperforms VLM-only and VLM+LLM models
on goal inference tasks such as CrossTask and COIN. We
further validate ViDSE’s generalizability and robustness on
action recognition tasks, such as ActivityNet and UCF-101,
under training-free and open-vocabulary conditions. We
observe that ViDSE easily generalizes to other video tasks
(e.g., action recognition) requiring filtering of redundant
and irrelevant information.

1. Introduction

Video understanding benefits from the “Scaling Law”
[18], which suggests that progress can be achieved by in-
creasing data scales [13, 16, 19], model complexities [3, 31,
44, 53], and computational resources [1]. The recent emer-
gence of large language models (LLMs) and their visual ex-
tensions (VLMs) further verified the effectiveness of scal-
ing law. These language-based models (LMs) [5,25,41,51]
have shown strong generalization abilities across various
vision-language tasks. This has attracted a growing research
interest in effectively leveraging the LMs to transfer knowl-
edge to out-of-domain and novel tasks.

*This work was done while Matyasko was at A*STAR.

Figure 1. Comparison of ViDSE with VLM-only and
VLM+LLM Integrations for the Video Goal Inference Task: (a)
VLM consists of a vision encoder and an LLM, jointly tuned with
video instructional data (e.g., BLIP-2, Video-ChatGPT, mPLUG-
Owl); (b) VLM+LLM integrations separate VLM as the percep-
tion module and LLM as the reasoning module (e.g., mPLUG-
Owl + Vicuna-13B); (c) ViDSE enhances the (b) by introducing
an Evidence Generator to deduce and select relevant visual frames
(ρ = [10, 30, 50] denotes the ratio of temporally observed video).

However, language models [23, 25, 54] and other foun-
dational models [21, 31] typically require large-scale an-
notated datasets and sufficient computational resources for
training. This makes fine-tuning these models for every
downstream task impractical, especially for goal inference
with partially observed video sequences and limited anno-
tations. Thereby, a new research direction has emerged: ex-
ploring training-free and open-vocabulary vision-language
understanding [42, 47, 48], which enables models to handle
new tasks without task-specific training or large amounts of
annotated data.

Besides the training challenges of LLMs and VLMs,
videos often contain redundant and irrelevant visual infor-
mation, leading to ambiguity in goal inference. Current
methods generally follow two approaches: using VLM-



only [20, 26, 51] or combining VLM with LLM [22, 45, 52]
(see Figure 1a-b). The former integrates perception and rea-
soning with a combo of vision encoder and LLM, while the
latter separates perception (VLM) and reasoning (LLM).
While most methods show promising performance, there is
a clear need for explicit filtering of ambiguous frames. This
is particularly important during the goal inference percep-
tion and reasoning stages, a key focus of our research.

To tackle these challenges, we developed ViDSE (see
Figure 1c, 2), a video framework for goal inference that
reduces ambiguity by deducing and selecting only rele-
vant visual evidence through an evidence generator. ViDSE
operates within the VLM+LLM paradigm, enhancing per-
ception and reasoning by focusing on selected evidence
under traning-free open-vocabulary conditions. Specifi-
cally, it leverages frozen models, including Large Language
Models and Vision Language Models, alongside the Vi-
sion foundational model without task-specific tuning. First,
VLM (BLIP-2 [20]) generates textual captions for each
video frame, while LLM (Vicuna [57]) deduces hypothe-
ses (scripts) relevant to these captions. Next, the “evidence
generator” uses CLIP [31] and the LLM-deduced hypothe-
ses to dynamically select evidential frames. Finally, these
selected frames are fed into the VLM+LLM pipeline to per-
form perception and reasoning, predicting the final goals.

We tested ViDSE on multiple video datasets for open-
vocabulary tasks like goal inference and action recognition.
The results show that ViDSE performs better than VLM-
only and VLM+LLM. While VLMs excel at describing vi-
sual content, they often falter when it comes to reason-
ing, underscoring the necessity of ViDSE’s LLM reasoning.
By adding LLM reasoning, ViDSE handles complex video
tasks without extra training. Our main contributions are:

• Training-Free ViDSE: We introduce ViDSE, which
combines VLM, LLM, and Evidence Generator for
open-vocabulary video tasks without training. VLM
acts as the “eye”, LLM as the “reasoner”, and Ev-
idence Generator as the “selector”, communicating
through language to conduct video deductive infer-
ences.

• Evidence Generator: We propose a training-free
module for deducing and selecting the evidential
frames to support video inference. LLM generates hy-
potheses and scripts (sub-steps), while the vision en-
coder (e.g., CLIP) matches them to the frames as sup-
porting evidence for final inferences.

• Generalization on Video Tasks: ViDSE is tested on
four datasets covering goal inference and action recog-
nition tasks. It performs on par with or better than
state-of-the-art VLMs and VLM+LLMs, proving its
generalizability.

2. Related Work
Supervised learning for video understanding has been

extensively studied in the era of foundational models. With
the success of foundational models on static images (e.g.,
CLIP [31]), numerous video models have been proposed
to learn visual video representations from large-scale data.
Representative works included [29,32,39,44,46,50]. ViFi-
CLIP [32] shows that fine-tuning CLIP with large-scale
video data leads to better video classification. Whereas,
with less data, prompt tuning CLIP can help reduce the risk
of overfitting. Similarly, Vita-CLIP [46] proposes learn-
able prompts at different temporal levels to align video-
text pairs. While [17] add learnable prompt vectors to the
CLIP text encoder to create action classifiers. AIM [50]
plugs adapters into backbones to reduce training computa-
tions and alleviate overfitting. These methods require su-
pervised training with substantial video annotation data. In
contrast, our ViDSE leverages off-the-shelf language and
foundational models with a new deduction-then-selection
module for action inference and recognition without train-
ing, extending the adaptability of foundational models.

Instructional tuning of videos uses both large language
models and vision foundational models [23, 26, 49, 51, 54,
56]. These models are adapted using large-scale VQA
datasets. They show robust zero-shot and open-vocabulary
generation capability on unseen downstream video tasks.
Specifically, Video-LLaMA [54] uses frozen VLM (ViT
[15]) and LLM (e.g., Vicuna [10], LLaMA), and only learn
the Q-Fromer [20]. Similarly, Video-LLaVA [23] com-
bines LanguageBind [58] and Vicuna for video encoding
and language processing and includes a projection layer
to link visual and text tokens together. VideoChat [22]
uses two separate VLMs to create visual captions and vi-
sual embeddings. These are then combined and fed into
a LLM for question-and-answer processing. The mPLUG-
Owl [51] model adopts a cross-attention mechanism with
learnable queries to project visual tokens into textual space.
LongVILA [49] is VLM that scaled up from [24] for longer
context video understanding and uses multiple stages of su-
pervised training. ViDSE differs by not needing to fine-tune
(e.g., Q-Former or linear projection) and insert the training-
free “evidence generator” between VLM+LLMs for video
inferences.

Training-free open-vocabulary image understanding
gaining extensive research interests by treating large-scale
pre-trained models as tools. Many studies, like [27,30], uti-
lize strong zero-shot capabilities of pre-trained CLIP and
combine it with ChatGPT-3.5 for open-vocabulary image
classification. Other research efforts focus on solely en-
hancing CLIP’s ability to understand different vocabular-
ies without additional training, as in [42, 48]. Specifically,
VisDesc [27] expands unseen categories using detailed text
descriptions by inquiring ChatGPT and then pairs images



Figure 2. ViDSE contains four stages: See, Guess, Select, and Infer. (1). Seeing through Visual Descriptor (i.e., BLIP-2) translates visual
frames into dense textual descriptions. (2). Guessing by LLM generate hypotheses (H) and corresponding sub-events (steps). (3). Selecting
frames using CLIP reduce irrelevant frames. (4). Inferring final answer by using selected frames with the “see” & “guess” process again.
Best viewed on computer full screen.

with these descriptions using a frozen CLIP model. Sim-
ilarly, the CHiLS [30] replaces coarse-defined categories
with more specific sub-categories. These sub-categories
are created using label hierarchies or consulting ChatGPT
and matched with visual content using CLIP. Besides, SuS-
X [42] creates a support set that includes open categories
by stable-diffusion [34] or retrieval methods. Using CLIP
models, it then measures the distance between a query im-
age and the support set, broadcasting labels from the sup-
port set to the query. Xu et al. [48] utilize off-the-shelf mask
generators and frozen CLIP for open-vocabulary semantic
segmentation. ViDSE also employs ready-to-use BLIP-2,
CLIP, and Vicuna, but it differs in handling dynamic video
inputs and introduces training-free frame selection module
for narrowing down evidence using foundational models.

Training-free open-vocabulary video understanding
also uses pre-trained foundational models’ perception and
language models’ reasoning abilities to tackle new video
tasks. Example works like [9,52] involve using several large
pre-trained models as tools. These models function in roles
of perception and reasoning and interact with each other
through language. Specifically, the Socratic Models [52] in-
troduce a technique of multimodal prompting VLM+LLM
models. This involves a combination of a vision-language
model (like CLIP with BERT/GPT), an Audio Large Model
[4], and a Large Language Model (LLM). This approach
exchanges information between these large models through
text and can handle new video tasks. Similarly, VideoChat-

Captioner [9] set up a conversation between ChatGPT and
BLIP-2, with ChatGPT asking questions and BLIP-2 an-
swers based on the input video. The video’s descrip-
tion is progressively enhanced through multiple rounds
of automated conversation. Our ViDSE also aligns with
this direction, focusing on interactions between LLMs and
VLMs. Our main difference from existing methods is that
we have found that focusing on the most important parts
of a video using an evidence generator improves open-
vocabulary video inference performance.

3. Method
Our ViDSE framework F solve the open-vocabulary in-

ference task ϕ (e.g., “goal inference”) by processing natural
untrimmed video V = {v1, v2, . . . , vN}, which consists of
N uniformly sampled frames. We infer the most likely hy-
pothesis h based on the video observation without training
or fine-tuning.

h = F(V, ϕ) (1)

Examples of the hypothesis include “make French toast” for
inferring goals in cooking videos, and “baby crawling” for
recognising actions in videos.

An overview of ViDSE modular framework is shown in
Figure 2, it uses three frozen foundational models: VLM
(BLIP-2) as the visual descriptor FVLM, LLM (Vicuna) as
the reasoner FLLM, and evidence generator (CLIP) as the se-
lector FEGE. Given target task ϕ and video V , these models



work together in four stages: See, Guess, Select, and Infer .
Details of each stage are as follows.

Seeing through Visual Descriptor : We uniformly sub-
sample L out of N selected frames. The visual descrip-
tor FVLM takes each sampled frame xi as input and out-
puts a caption (text description) sentence ci. We use BLIP-
2 [20] (FLanT5-XXL) model as a visual descriptor and use
a prompt φd to obtain the frame description, for example,
φd =what is the content of the image?. The sequence of
all frame captions is denoted by C = {c1, c2, · · · , cL} and
there are a total of L captions. Next, we concatenate the
captions in C into a single continuous description paragraph
D using the word “then” to link them up so that D follows
the form of “<caption 1>, then, <catpion 2>,
then, ... <caption L>”.

Guessing Hypotheses with LLM : We use a
LLM (FLLM) to guess the top-k initial hypotheses,
H = {h1, h2, · · · , hk} for the given inference task, ϕ
(Eq. (2)), with an instructional prompt φv . Here φv

is “I want to perform <task>, generate
top-<k> hypotheses, given <text>”.

H = FLLM
(
D, φv) (2)

Hereby, <task> is the task definition name (e.g. ϕ =
goal inference) and <text> is description paragraph D.
Notably, we only show a simplified prompt version for
quick reference and put the full instructional prompt in
the supplementary section. We employ Vicuna [57] as
the FLLM. An example of guessed hypotheses H=[“make
French toast”,“make pancakes”, · · · ] –see also Figure 2.
We further expand each candidate hypothesis in H into a
sequence of detailed events or steps, S. We achieve this by
using prompt φl in the form of “List the steps to
perform <hypotheses>”.

S = FLLM
(
H, φl

)
(3)

Since there are k potential hypotheses, we eventually have
k number of different step sequences. We gather all these
sequences into S = {[sh1

1 , · · · , ], · · · , [shk
1 , · · · , shk

i ]}, re-
flatten it into S = {s1, s2, · · · , sj} of j total steps. The rea-
sons for expanding from H→S lies in two aspects. Firstly,
steps contain more fine-grained information than the hy-
pothesis, as a hypothesis is the outcome of executing a
script containing a list of steps [37]. A specific step often
corresponds directly to visual details, whereas a hypothe-
sis may lack visual representation. Conversely, video infer-
ence tasks like goal inference encompass multiple sub-steps
essential for inference based on deductive reasoning. By
aligning the relevant frames with corresponding steps in a
hypothesis, we can deduce that the hypothesis is a correct
answer from the candidate set H.

Deducing and Selecting by Evidence Generator : The
evidence generator select M out of N frames accroding to
hypotheses H deduced steps S, creating a subset of frames
V̈ where V̈ ⊂ V that are relevant to the inference task. This
mechanism finds the most relevant frame ẍi ( ẍi ∈ V̈) for
each hypothesized step si in S. We use frozen CLIP [31], a
two-tower vision-language encoder to implement FEGE.

V̈ = FEGE
(
V,S

)
= {ẍ1, ẍ2, · · · , ẍM} s.t. M < N

(4)
Specifically, we extract features for N visual frames and

S steps (text) with CLIP vision/text encoders. We then cal-
culate the cosine similarity between each ⟨step, frame⟩
pair in Figure 2 (FEGE). Afterwards, we select the top M
frames with the highest similarities into a set of evidence
frames V̈ . We limit M ≤ 16 and post-process V̈ with du-
plicate filtering. With the evidence generator, we make sure
that selected frames have diverse levels of information rele-
vant to the task.

Final Inferencing by LLM : We use the selected frames
V̈ to make inferences and generate the final hypothesis h
by LLM in an open-vocabulary manner. We repeat the pro-
cess from “Seeing through visual descriptor” and “Guess-
ing hypothesis with LLM” except that we do not require the
LLM to generate the steps again. Instead, we infer a second
set of top-k hypotheses Ḧ. Furthermore, we use the CLIP
model to infer a single CLIP-based hypothesis using V̈ and
H⊕ Ḧ which we denote as hc. The hc is selected from the
candidate hypotheses (H ⊕ Ḧ) by finding the best-matched
hypotheses to the mean-pooled visual features of those se-
lected frames using CLIP visual and textual embeddings.
Then we take the hypothesis combination (operator denoted
as ⊕) of all generated hypotheses, e.g., H, Ḧ and hc as the
candidates and let LLM infer the final hypothesis h using
the selected frame description D̈ and final inference prompt
φf as follows:

h = FLLM{H⊕Ḧ⊕hc}(D̈, φf ). (5)

Here D̈ is obtained from the BLIP-2 model after processing
V̈ . As before, we use the term “then” to form a coherent de-
scription of selected frames. The final inference prompt φf

follows the form of “I want to perform <task>,
only select one answer from options
<hypotheses>, given <text>”. The full prompts
format is provided in supplementary. Notably, we fill the
<hypotheses> with H⊕ Ḧ ⊕ hc, and <text> with D̈.
For operator ⊕, we ablate choices of union operator ∪ and
concatenation as shown in supplementary and choose the
latter one.



Figure 3. Qualitative comparison of ViDSE with SOTAs on the CrossTask goal inference task. More examples are in the supplementary.

4. Experiments
We evaluate the proposed ViDSE on goal inference

tasks using two video datasets under training-free, open-
vocabulary conditions. The evaluation metrics, as presented
in Section 4.2, include SPICE(S) [2], CIDEr(C) [43], ME-
TEOR(M) [14], and BERTScore(B) [55], SBERT(SB) [33])
as in [36] to measure semantic similarity between ground-
truth answers and open-vocabulary inferences. We also
evaluate open-ended inferences by using LLM-as-judge, as
in [7, 8]. Dense ablations are conducted, with results re-
ported in Section 4.3 and the supplementary material. Fur-
thermore, we demonstrate ViDSE’s generalizability on ac-
tion recognition tasks in Section 8.

4.1. Datasets

CrossTask [59] consists of 4,700 instructional videos
(avg. 5 minutes long) about daily life. We evaluate the
goal inference task using the validation set (360 untrimmed
videos) that covered 18 primary tasks and only use the task
labels as our ground truth goal labels during evaluation.

COIN [40] contains 11,827 instructional videos (avg.
2.36 minutes long) with 180 distinct tasks. We evaluate the
test set of 2,797 untrimmed videos and only use the corre-
sponding task label as the goal label.

4.2. Goal Inference

For ϕ = goal inference task, we evaluate the ViDSE on
CrossTask and COIN datasets. Specifically, we infer the
human’s goal with open vocabulary when chronologically
observing the initial ρ=10%, 30%, and 50% parts of the
videos.

As shown in Table 1, the ViDSE outperforms the cur-
rent SOTA multimodal language models (MLMs) on most
evaluation metrics under a training-free open-vocabulary

setting. Notably, the ViDSE surpassed pre-trained end-
to-end MLMs, including the BLIP models, Video-LLaVA,
and mPLUG-Owl. Compared with mPLUG-Owl + Vi-
cuna which uses LLM to make inferences by using video-
level description from MLM, ViDSE is outperformed it
by +5.1 (47.6 vs 42.5) at ρ=10%, +4.9 (50.9 vs 46.0) at
ρ=30% and +4.7 (50.2 vs 45.5) at ρ=50% respectively.
This trend indicates that with the help of the frame selec-
tion module, ViDSE can make better inferences. On the
COIN dataset, with shorter inputs ρ=10%, ViDSE fall be-
hind Video-LLaVA by -3.7 (45.0 vs 48.7) on SBERT; when
ρ=30%, ViDSE surpass the Video-LLaVA by +0.8 (49.6 vs
48.8); and ρ=50%, ViDSE broaden the gap by +3.4 (51.5
vs 48.1). The proposed ViDSE shows overall improvement
across the ρ on the goal inference task. The reason is that
ViDSE can select relevant frames, thus effectively keep-
ing the necessary information in long-duration untrimmed
videos, whereas the other methods lack this flexibility.

4.3. Ablation Study

Ablation Evidence Generator Component. We com-
pare the performance of the ViDSE framework against a
simple counterpart without an evidence generator. This
baseline uses BLIP-2 as a visual descriptor to generate cap-
tions, allowing Vicuna13B to directly infer the goal based
on the given frame captions. The baseline does not generate
steps (Eq. (3)), and there is no Evidence Generator Compo-
nent. As in Table 2, the performance drops when the evi-
dence generator is absent on video goal inference. The ev-
idence generator helps to provide relevant frames that sup-
port accurate goal inference. We put qualitative results of
selected frames in the supplementary material, demonstrat-
ing the correctness of the Evidence Generator. In addition,
we extend this ablation to additional datasets and report re-
sults in supplementary since we also show the generaliza-



CrossTask ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

BLIP-2 [20] 13.3 27.2 11.6 15.9 32.2 11.7 24.2 11.6 16.7 33.1 12.6 24.8 12.2 17.5 34.5
InstructBLIP [12] 6.2 6.6 5.5 -0.2 23.6 4.9 4.6 4.7 -0.4 22.4 4.8 4.2 4.5 -0.3 22.8
Video-ChatGPT [26] 9.0 14.9 10.5 11.9 35.4 10.0 18.1 12.1 15.2 38.4 9.7 23.1 12.5 16.6 39.6
mPLUG-Owl [51] 9.4 13.2 10.2 7.3 35.1 10.1 12.5 10.2 8.9 38.2 10.5 21.3 10.5 10.3 39.4
Video-LLaVA [23] 15.6 39.6 10.6 22.6 43.1 15.3 42.4 10.7 24.0 45.0 17.6 41.1 10.7 25.9 47.2
mPLUG-Owl+V13B 15.7 54.5 11.2 26.9 42.5 16.0 62.3 12.6 28.6 46.0 17.0 50.7 12.8 28.4 45.5

ViDSE (V13B) 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2

COIN ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

BLIP-2 [20] 14.4 27.1 9.4 14.8 34.5 14.2 27.7 9.4 15.8 36.0 14.8 28.9 9.7 16.4 37.2
InstructBLIP [12] 7.0 11.6 6.4 3.7 27.6 6.8 9.4 6.0 4.0 27.7 7.6 10.6 6.5 4.2 28.3
Video-ChatGPT [26] 13.2 29.4 10.7 14.8 41.5 13.3 29.1 10.6 14.8 41.8 12.5 28.0 10.5 14.7 41.0
mPLUG-Owl [51] 10.8 15.4 8.7 7.6 35.7 11.8 18.9 9.7 9.4 40.0 12.8 21.4 10.5 10.3 42.2
Video-LLaVA [23] 21.0 45.2 12.1 19.9 48.7 21.3 44.5 12.0 20.2 48.8 20.4 43.5 11.9 19.8 48.1
mPLUG-Owl+V13B 19.3 60.3 11.9 28.6 47.3 18.9 61.2 12.0 29.0 47.5 20.1 63.7 12.1 29.3 47.7

ViDSE (V13B) 20.4 62.6 12.5 27.2 45.0 23.0 71.4 13.7 30.4 49.6 25.1 76.7 14.3 31.6 51.5

Table 1. Open-vocabulary goal inferences results on CrossTask and COIN datasets. We report following metrics in %: SPICE (S), CIDEr
(C), METEOR (M), BERTScore (B), and SBERT (SB). Best and second best results are highlighted by bold and underline.

CrossTask ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

w/o ES 18.3 61.3 12.7 25.0 42.9 19.7 72.0 14.0 27.5 46.8 22.1 83.0 15.1 30.3 48.8
with ES 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2

COIN ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

w/o ES 18.3 52.8 11.4 23.0 41.9 21.0 63.2 12.7 26.7 46.1 22.0 68.2 13.2 27.8 47.7
with ES 20.4 62.6 12.5 27.2 45.0 23.0 71.4 13.7 30.4 49.6 25.1 76.7 14.3 31.6 51.5

Table 2. Ablation study of the evidence generator component across CrossTask and COIN datasets.

tion ability of ViDSE as discussed in later Section 8.

Select Evidences from Visual Frames vs Frame Captions
We also investigate the effect of choosing relevant frames
based on the original frame captions C and hypothesis steps
using text-to-text matching. We compare the steps S with
frame-captions C using text-to-text similarity using SBERT
model-based text embeddings. Then, those frames (cap-
tions) with the highest similarity to the steps are selected.
We compare the step-to-caption approach vs the step-to-
visual-frame similarity-based approach that uses CLIP vi-
sual features. Results in Table 3 show that using the CLIP
to select visual frames is better than using SBERT-based
text matching. More ablations in supplementary.

Select Evidence using Frame Captions versus Hypothe-
sized Steps by LLM We also compare with counterparts
that use frame captions C generated by visual descriptor
(e.g. BLIP-2), and then use CLIP to select the relevant
frames from the N sampled frames. Table 4 shows that us-
ing LLM-generated steps to find the evidence frames is bet-

ter for inference performance. The LLM-generated steps
capture more details of contextual information and better
align the selected frames with the underlying task. This re-
sults in a more coherent and relevant selection of evidence
frames, enhancing overall performance.

Select Evidence using Hypotheses vs Expanded Hypoth-
esized Steps by LLM We compare with counterparts that
directly use top-k hypotheses, H, to select the relevant
frames from the N sampled frames. Table 5 shows that
using LLM-generated steps, which consist of more “fine-
grained” information to find the evidence frames, is better
for inference performance.

5. Analysis on Impact of Evidence Generator
To further evaluate the effectiveness of our evidence gen-

erator, we measured how well the selected frames matched
with the ground truth label. We use different frame sam-
pling methods for frame selection; we then use CLIP [31]
to measure the similarity between the selected visual frame
and text label features. We obtained the visual features by



Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

Steps-to-caption(text) 21.8 75.1 15.3 32.8 47.2 22.3 96.7 16.8 35.3 50.6 23.3 81.3 15.8 34.2 49.3
Steps-to-frame(visual) 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2

Table 3. Comparison between step-to-frame vs step-to-caption matching in the Evidence Selector component on CrossTask dataset for goal
inferences.

Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

Use captions 21.4 79.7 15.1 31.2 45.9 21.4 83.9 16.7 33.3 48.9 22.2 80.4 15.8 33.3 49.3
Use generated steps 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2

Table 4. Comparison between captions-to-frame versus steps-to-frame matching in the Evidence Selector on CrossTask dataset for goal
inference.

Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

Use hypotheses 21.9 79.9 15.2 31.9 46.9 21.6 84.2 16.4 33.8 49.5 23.6 79.9 16.2 33.6 50.1
Use generated steps 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2

Table 5. Comparison between hypotheses-to-frame versus steps-to-frame matching in the Evidence Selector component on CrossTask
dataset for goal inferences.
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Figure 4. Comparisons of Visual-Textual Similarities w/ and w/o
Deducing and Selecting by Evidence Generator on goal inference
task.

averaging the sampled frames. The results shown in Fig-
ure 4 indicate that the frames selected by the ViDSE evi-
dence generator have better similarity with the text features
of the ground truth label.

6. New Metric: LLM-as-Judge

Besides conventional evaluation metrics, we use the
Llama3-8B1 model as a “judge” to compare generated in-
ferences with ground truths. This is inspired by recent stud-
ies showing that large language models (LLMs) can effec-
tively act as “judges” to evaluate inferencing qualities [7,8].
With LLM as judge, we ask it to rate a binary output—“yes”
or “no”—indicating whether the generated inference and
the ground truth have similar meanings. The experimen-
tal results in Table 6 demonstrate that ViDSE receives more
“yes” ratings from the Llama3 judge than other methods, in-
dicating the effectiveness of ViDSE. The evaluation prompt
of Llama3 and full results are in the supplementary materi-
als.

1https://llama.meta.com/llama3/

Method CrossTask COIN UCF101 AN
Percentage (%) 10 30 50 10 30 50 100 100

BLIP-2 [20] 32.2 34.1 35.8 31.2 31.6 32.2 72.8 53.4
InstructBLIP [12] 11.7 10.0 10.4 16.1 15.1 14.8 74.8 54.1
Video-ChatGPT [26] 22.4 19.8 21.0 24.6 25.0 24.3 64.7 44.7
mPLUG-Owl [51] 27.8 38.8 42.8 26.8 32.1 34.6 65.9 49.0
Video-LLaVA [23] 42.2 43.6 49.0 42.5 43.0 41.2 63.6 60.4
mPLUG-Owl+V13B 39.1 43.1 44.5 38.7 38.6 30.4 74.1 54.2

ViDSE (V13B) 51.8 58.1 63.2 38.1 42.5 47.3 79.7 71.9

Table 6. Accuracy evaluated by Llama3 judge. Best and sec-
ond best results are highlighted by bold and underline respectively.
(AN : ActivityNet)

7. Inferences Time and Amount of LLM Calls

We record the inference time and number of LLM calls
for comparison on a single NVIDIA A100 GPU. The aver-
age time taken excludes the time required for loading and
pre-processing the videos or visual frame, only start timing
when prompting the model to make an inference based on a
given inference task ϕ (e.g., “goal inference”). For BLIP-2
and InstructBLIP, we query the language model 16 times as
we use them for frame-level inferences. For mPLUG-Owl +
Vicuna-13B, we only time the inference after mPLUG-Owl
generates the video-level caption. The proposed ViDSE us-
ing original Vicuna-13B [10] shows a longer inference time
than other MLMs that only need one LLM call. However,
the inference time of ViDSE could potentially be shortened
through engineering efforts, as shown by using the quan-
tized model, or LLM from [11], which compresses and
serves LLM more efficiently, but resulting in degraded in-
ference performance. In addition, the generated interme-
diate outputs from the LLM are not limited to the primary
inference task. These outputs can be leveraged for other
downstream tasks, such as video retrieval or summarization,



which could effectively reduce the overall computation re-
quired for subsequent tasks where multiple analyses of the
same video are required.

Methods LLM LLM
size

Average
Time
Taken
(s)

Number
of LLM
calls

BLIP-2 [20] FlanT5-
XXL

11B 7.63 16

InstructBLIP
[12]

FlanT5-
XXL

11B 10.01 16

Video-
ChatGPT [26]

Vicuna7B 7B 1.87 1

mPLUG-
Owl [51]

Llama7B 7B 3.92 1

Video-
LLaVA [23]

Vicuna7B 7B 2.31 1

mPLUG-
Owl+V13B

Vicuna13B 13B 0.50 1

ViDSE

Vicuna13B 13B 15.17 4
GPT-3.5 UD 6.70 4
Llama3-8B 8B 8.12 4
Vicuna13B
by [11]

13B 4.92 4

Vicuna13B-
8bit

13B 13.25 4

Table 7. Average time taken (seconds) for video inference. “UD”
is indicating “Undisclosed”.

8. Generalizability on Action Recognition
We validate the generalizability of ViDSE on video ac-

tion inference task (i.e., ϕ = action recognition). We
tested ViDSE on UCF101 and ActivityNet datasets using
untrimmed video under the same training-free and open-
vocabulary settings. UCF101 [38] is a widely utilized
benchmark for action recognition tasks. It contains 13,320
short videos (avg. 7.5 seconds long) and encompasses 101
distinct action classes. We evaluate all three test splits of the
dataset. ActivityNet-v1.3 [16] contains 19,994 untrimmed
YouTube videos (avg. 2 minutes long) consisting of 200 ac-
tion classes. We evaluate the validation set, which consists
of 4,926 videos.

As in Table 8, ViDSE outperforms SOTA multimodal
LLM on UCF101 and ActivityNet datasets regarding
BERTScore and SBERT. This indicates that ViDSE could
generate good semantically equivalent inferences as the
ground truth categories. On the UCF101, the ViDSE falls
behind models like BLIP-2 and InstructBLIP in terms of
metrics such as SPICE, CIDEr, and METEOR. The rea-
son is that the BLIPs are pre-trained on image-captioning
tasks and excel at generating short image-level captions.
Besides, each frame from the short video of UCF101 is
more likely to convey similar information about the actions,
so frame selection may not be that important in those short
videos. In contrast, ViDSE performed better on the Activi-
tyNet, which contained noisy video input, highlighting the
advantage of the evidence generator. Since action videos
contain fewer sub-events (steps) than long-duration instruc-

tional videos (e.g., CrossTask), ViDSE’s advantage is lower
than that of the goal inference task. However, the ViDSE
still achieves comparable performance compared to end-to-
end pre-trained multimodal LLM. These findings validate
the generalizability of ViDSE and its potential to be ex-
tended to other action-relevant tasks without training.

Method UCF101 ActivityNet
S C M B SB S C M B SB

BLIP-2 [20] 21.0 48.9 16.2 12.5 60.6 22.3 72.1 13.6 18.4 53.6
InstructBLIP [12] 21.0 87.8 13.2 21.8 61.9 10.3 42.2 6.5 5.5 46.5
Video-ChatGPT [26] 13.6 27.7 13.2 3.0 54.0 17.9 46.3 13.3 13.0 54.6
mPLUG-Owl [51] 13.4 31.7 13.9 5.8 54.8 14.8 33.0 11.5 11.0 51.1
Video-LLaVA [23] 12.1 24.8 12.7 4.9 50.2 19.8 47.6 14.9 16.6 53.7
mPLUG-Owl+V13B 18.2 71.7 12.9 24.5 58.7 22.0 82.2 13.2 25.6 59.2

ViDSE (V13B) 20.7 83.9 15.7 29.3 63.6 24.0 94.0 14.7 28.8 61.0

Table 8. Open-vocabulary action recognition on UCF101 and Ac-
tivityNet1.3 datasets.

9. Discussion and Conclusion

In conclusion, we introduce the ViDSE, a training-free
modular framework for open-vocabulary video goal infer-
ence. The ViDSE uses three frozen large models, BLIP-2,
CLIP, and Vicuna, to accomplish a stage video inference
process: See, Guess, Select, and Infer. We validate that
these foundational models could play different roles and
interact well with each other through language. We also
propose a training-free evidence generator that deduces and
selects relevant frames for drawing inference. Our exper-
imental results confirm the ViDSE’s effectiveness and its
ability to generalize to two distinct video inference tasks,
thereby demonstrating its broad applicability. The ViDSE,
with its current capabilities, can be further enhanced by in-
tegrating more advanced foundational models, promising
even better results in the future. Its limitations lie in its re-
liance on LLMs to draw inferences; thereby, it is difficult to
control the generation process and suffers from LLM draw-
backs like hallucinations. Besides, LLMs are statistical-
based methods and do not contain an explicit logical rea-
soning process, causing ViDSE to have weak explainabil-
ity. Despite limitations, the proposed framework is novel
for training-free open-vocabulary inference tasks on video
data.
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The supplementary material is structured as follows:
Section 1 provides an extensive set of ablation studies and
analysis. Section 2 details the implementation of baseline
methods and ViDSE, including the prompts used for large
language model in our experiments. Section 3 showcases
qualitative results with additional examples illustrating the
inference process.

1. Supplemental Ablations and Analysis
1.1. Ablation Evidence Generator on ActivityNet

dataset

We extended the ablation of evidence generator on
ActivityNet-v1.3 dataset since we have shows the gener-
alization ability of proposed ViDSE on action recognition
task. We report the results in Table 9. The performance of
ViDSE with evidence generator is outperform the counter-
part that without evidence generator. The untrimmed videos
in the ActivityNet dataset contain many frames unrelated to
the target actions. Therefore, we shows the effectiveness
of evidence generator in deducing and selecting the more
relevant frames in order to perform action recognition.

ActivityNet ρ = 100%
S C M B SB

w/o ES 21.2 79.6 12.7 22.3 57.4
with ES 24.0 94.0 14.7 28.8 61.0

Table 9. Ablation study of the evidence generator component on
ActivityNet dataset.

1.2. Result Table of Analysis on Impact of Evidence
Generator

In addition to the plots of visual-textual similarities with
and without evidence generator on goal inference task, we
report the full results number in Table 10. We have also
included experiments on ActivityNet dataset to shows that
evidential frames selected by ViDSE with evidence gener-
ator have better alignment with actual labels compared to
uniformly or randomly frame sampling.

1.3. Prompt for LLM-as-Judge

The Figure 5 shows the complete prompt for Llama3-8B
to act as judge and evaluate open-ended inferences.

1.4. Ablation Number of Iteration for Deduction
and Selection Process

We compare ViDSE (1 iteration) with the counterparts
that perform 2 and 3 iterations of frame deduction and selec-
tion process. Table 11 shows that more iterations of frame
selection does not yield improvements. This reflects that

one evidence generator is sufficient to select relevant frames
for make inference and balance computations and perfor-
mance well.

1.5. Ablation Number of Frames.

We also study the influence of the number of sampled
frames, L, and selected frames, M together, by varying the
frame number limit so that L,M ≤ {4, 8, 16, 32}. Table
12 shows that performance is optimal when limited to 16
frames, as it also indicates that including more frames does
not improve performance.

1.6. Ablation on Large Language Model.

We conduct ablation on using different LLM (e.g. Vi-
cuna [57], GPT-3.5-Turbo [6], Llama-3-8B-Instruct) in the
FLLM and compare their inference performance. As shown
in Table 13, the Vicuna-13B model performs better than
Vicuna-7B while achieving comparable performance with
GPT-3.5. In addition, we also compared with the quantized
Vicuna-13B-8bit model and Vicuna-13B model from [11]
which compresses the LLM and speeds up the inferences.
This ablation study suggests that using more robust LLMs
could enhance inference performance.

1.7. In-Context Learning Prompt.

We ablate the effect of In-Context Learning [6, 28, 35]
(ICL) within the LLM prompt for open-vocabulary infer-
ence in the LLM prompt. Table 14 results suggest that using
ICL helps improve open-vocabulary inference performance.

1.8. Hypothesis from CLIP.

We also study the impact of the hypothesis hc from CLIP
for video inference. The Table 15 shows using (H ⊕ Ḧ ⊕
hc) as an option list for the final stage inference brings a
slight improvements.

1.9. Operators to Combine Hypotheses List.

We test two types of operators ⊕ to combine H, Ḧ and
hc. One is list concatenation: [ H ] + [ Ḧ ] + [ hc] and an-
other is union of set { H } ∪ { Ḧ } ∪ {hc}. Their main dif-
ference is list concatenation allows redundant options, but
the union operator does not; this would affect the frequency
of individual hypotheses inputted to LLM. As in Table 16,
the concatenation operator performs better than the union
operator.

2. Implementation Details
In this section, we provide the implementation details of

both baselines and the proposed ViDSE framework, includ-
ing the prompts used to query the vision-language models
(VLM) and large language model (LLM).



Method CrossTask COIN ActivityNet
10% 30% 50% 10% 30% 50% 100%

Uniformly sampled 0.764 0.780 0.788 0.768 0.793 0.800 0.815
Randomly sampled 0.759 0.777 0.783 0.763 0.789 0.796 0.813

ViDSE dynamic sampled 0.784 0.802 0.806 0.781 0.802 0.818 0.831

Table 10. Similarity score between visual and text features by CLIP after frame selection process.

Let A = <Ground Truth Label>, Let B = <Inferences>.
Determine if A and B have similar meanings, then provide a binary output of ’Yes’
or ’No’ only.

Figure 5. Prompt for Llama3 to judge correctness between the generated inferences and ground truth.

Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

1 iteration 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2
2 iterations 23.1 73.6 15.0 33.3 47.5 21.8 76.2 15.8 33.4 49.2 23.4 83.2 16.1 32.5 49.4
3 iterations 23.5 74.6 15.4 32.8 47.6 20.7 72.4 15.2 32.7 48.6 22.9 80.3 16.2 33.5 49.7

Table 11. Ablation study on iteration of frame selection.

Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

4 frames 19.1 59.5 12.9 29.4 43.3 16.8 68.6 13.2 30.2 44.0 16.5 69.6 13.1 31.6 45.5
8 frames 20.4 70.8 13.7 30.7 46.2 21.1 82.8 15.6 33.6 49.6 22.7 84.7 16.2 35.7 50.8
16 frames 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2
32 frames 19.3 64.0 14.8 31.1 46.4 21.0 79.9 15.5 30.7 47.3 23.5 83.8 17.1 34.5 51.5

Table 12. Ablation of number of sampled frames (L) and relevant frames selected (M ).

Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

Vicuna (7B) 20.1 77.2 13.4 30.5 45.4 21.5 88.6 14.3 32.0 47.4 21.2 86.5 14.8 32.6 48.6
Vicuna (13B) 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2
Vicuna (13B) by [11] 23.8 78.6 15.6 33.5 48.3 21.3 82.9 15.7 33.3 49.4 22.7 76.1 16.0 33.0 49.6
Vicuna (13B) 8bit 21.0 74.9 16.8 34.2 48.9 20.7 80.6 17.1 35.2 50.7 23.9 82.5 17.0 36.5 51.5
GPT-3.5-Turbo 18.7 75.4 15.5 31.3 47.0 19.6 92.3 16.7 35.5 51.3 20.9 88.6 17.5 37.8 52.5
Llama3 (8B) 18.8 75.4 15.4 29.8 44.6 21.9 109.3 18.0 37.6 51.3 23.3 116.9 17.9 40.4 51.7

Table 13. Ablation study of the LLMs.

Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

without ICL 19.7 46.4 12.1 19.0 42.4 18.9 38.2 11.9 16.7 42.3 18.5 36.3 11.2 16.1 41.8
with ICL 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2

Table 14. Ablation study of the In-Context Learning (ICL) prompt.



Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

w/o hc 22.7 80.1 15.2 32.3 47.2 22.4 91.7 16.5 34.5 50.3 23.7 76.2 15.9 33.8 49.2
With hc 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2

Table 15. Ablation study of hypothesis from CLIP (hc).

Method ρ = 10% ρ = 30% ρ = 50%
S C M B SB S C M B SB S C M B SB

Set Union Operator 22.8 77.1 15.4 31.8 47.2 21.8 83.0 15.8 33.2 49.5 23.4 78.2 15.9 33.8 49.8
List concatenation 23.0 80.1 15.4 32.3 47.6 23.1 91.7 16.9 35.0 50.9 24.4 80.8 16.3 34.5 50.2

Table 16. Ablation study on concatenation of hypotheses.

2.1. Open-vocabulary Inference Baselines

2.1.1 BLIP-2

BLIP-2 [20] has proficient zero-shot image question-
answering ability; we use it for frame-level infer-
ence (16 frames) as it is designed for image-to-text
tasks. We use BLIP-2 with FLanT5-XXL model
with the prompts: ‘‘Question: What is the
intention or goal of the person in the
photo? Short answer: ’’ for goal infer-
ence task, while ‘‘Question: What is the
ongoing action of the person in the
photo? Short answer: ’’ for the action recog-
nition task. We then computed the evaluation metrics of
each frame-level caption against the ground truth label and
took the mean values as the final measurement of each
video-level inference.

2.1.2 InstructBLIP

InstructBLIP [12] with FLanT5-XXL model is instruction-
tuned based on pre-trained BLIP-2 [20]. Instead of a
question-answer format, we use an instruction format
prompts: ‘‘Please provide the intention or
goal of the person in the photo.’’ for
goal inference task, whereas ‘‘Please provide a
short answer of the ongoing action of
the person in the photo.’’ for the action
recognition task. We use the same evaluation method as
the BLIP-2 baseline since both are applied for frame-level
inference (16 frames).

2.1.3 Video-ChatGPT

Video-ChatGPT [26] is pre-trained on 100K video-caption
pairs and works well in various open-vocabulary video
question-answering tasks. We provide the direct and
clear question prompt, ‘‘What is the intention

or goal of the person in the video?’’
and ‘‘What is the ongoing action of the
person in the video?’’ to the model for zero-shot
video goal inference and action recognition, respectively.
We set the frame number parameter to 16.

2.1.4 mPLUG-Owl

mPLUG-Owl [51] is another large MLM demonstrat-
ing remarkable zero-shot abilities on various open-
vocabulary visual inference tasks. We follow the sug-
gested prompt template, ‘‘‘The following is
a conversation between a curious human
and an AI assistant. The assistant
gives helpful, detailed, and polite
answers to the user’s questions.
Human: <|video|> Human: {Question}
AI: ’’’. The Question is filled with ‘‘What is
the intention or goal of the person in
the video?’’ for the goal inference task, whereas
‘‘What is the ongoing action of the
person in the video?’’ for the action recognition
task. The number of sampled frames per video is 16.

2.1.5 Video-LLaVA

Video-LLaVA [23] proposed as MLM that uses a unified
visual representation before projection to enhance down-
stream visual-language understanding. We use it as a
baseline to perform open-vocabulary video inference with
the following prompts: ‘‘Write a short answer
of the intention or goal of the person
in the video. The person in the video
is: ’’ for goal inference, whereas ‘‘Write a
short answer of the ongoing action of
the person in the video. The person in
the video is: ’’ for action recognition. It is only
supporting to take a maximum of 8 frames for each video
inference at the moment we implemented it.



2.1.6 Combination of mPLUG-Owl & Vicuna-13B

mPLUG-Owl + Vicuna-13B is another baseline method
that use the mPLUG-Owl as a visual descriptor and
Vicuna-13B as LLM agent to make inference with-
out any frame selection process. We input the prompt
to mPLUG-Owl as ‘‘‘The following is a
conversation between a curious human
and AI assistant. The assistant gives
helpful, detailed, and polite answers
to the user’s questions. Human:
<|video|> Human: What is the content
of the video? AI: ’’’, and then we use the
LLM to infer directly on top of the video description
generated by mPLUG-Owl. The prompt for LLM is similar
to the prompt template used by ViDSE as shown in Table
18. Instead of list the top-k hypotheses, we ask the LLM to
provide only one answer.

2.2. ViDSE Framework

2.2.1 Seeing through Visual Descriptor.

We use BLIP-2 with FLanT5-XXL [20] to generate a cap-
tion for every sampled frame by using a general prompt
(φd): ‘‘Question: What is the content of
the image? Answer: ’’ for all inference tasks.
After L number of captions are generated, we preprocess
the captions by deduplicate the identical captions if there is
any and concatenate the rest by using the word “then” to
create a high-level description so that D follows the form
of “<caption 1>, then, <catpion 2>, then,
... <caption L>”. In a later process, we also do the
same for the M selected frames to generate a new descrip-
tion D̈.

2.2.2 Deducing and Selecting by Evidence Generator.

The evidence generator module is pivotal in aligning vi-
sual features with text features to identify the evidential
frames. We employ the frozen visual and text towers from
the CLIP [31] model by using the ViT-B/16 backbone to
effectively integrate visual and textual information for op-
timal evidence frame selection. Specifically, we use CLIP
vision encoder to encode N visual frames and generate the
frame features, then we use CLIP text encoder to generate
text features by encoding the hypothesized steps S gener-
ated by the LLM. Subsequently, we compute similarity be-
tween visual features and text features. We select the top
similarity score of M frames and resulting in a new set of
evidence frames.

2.2.3 Guessing Hypotheses and Final Inference by
LLM.

We use the readily available LLMs, specifically Vicuna-
13B [10], in the goal inference and action recognition ex-
periments. For Vicuna, we set the temperature to 0.001
and the repetition penalty to 1.0. The full prompt template
(φv, φl, φf ) that are used to generate hypotheses (H or Ḧ),
hypothesized step sequence (S), and final inference (h) are
shown in Table 18. The prompt template is applied to both
goal inference and action recognition tasks without requir-
ing crafting the prompt again from task to task.

3. Qualitative Results
We present a few more detailed qualitative examples as

in Figure 6, 7, and 8 that included detail intermediate out-
puts along the inference process in the ViDSE framework.
We also show a failure example in Figure 9. Best viewed on
computer full screen.



Inference Task ICL Examples

Goal Inference Based on the description: The person is standing on a stepladder, holding a light bulb
in one hand and reaching towards the ceiling fixture with the other. There is a toolbox
on the floor, and another light bulb is in his hand.
Answer: 1: Replace Ceiling Light Bulb
2: Replace Ceiling Fan Blades
3: Install a Ceiling Medallion
4: Adjust Smoke Detector
5: Paint Ceiling
Based on the description: The person is seated at a table covered with a large sheet of
white paper. They are holding a heat gun and aiming it at a colorful arrangement of
crayon pieces placed along the top edge of the paper. Then, crayon wax is melting and
dripping down the paper onto a canvas below.
Answer: 1: Make Melted Crayon Art
2: Make Crayon Candles
3: Prepare Crayon Canvas
4: Make a Fresco Painting
5: Paint Bookshelves

Action Recognition Based on the description: The human is holding a paintbrush or other painting tool,
with their arm extended towards a canvas or surface, possibly leaning or sitting in front
of it.
Answer: 1: Painting
2: Drawing
3: Sketching
4: Coloring
5: Crafting
Based on the description: The human is sitting on a bicycle, hands on the handlebars,
feet on the pedals, and body leaning forward.
Answer: 1: Cycling
2: Biking
3: Wheeling
4: Pedaling
5: Riding

Table 17. ICL examples used in open-vocabulary inference tasks

Inference Task Prompt

φv or φf to infer top-K hypotheses,
H / Ḧ or final answer h

I want to perform ⟨TASK NAME⟩ after observing some visual descriptions.
⟨ICL EXAMPLE⟩
Based on the description: ⟨ D or D̈ ⟩
{Based on these options: ⟨ H ⊕ Ḧ ⊕ hc ⟩}
List the most likely ⟨K NUMBER⟩ correct ⟨TARGET⟩ without any explanation. An-
swer:

φl to generate hypothesized steps, S “Briefly list down the steps to perform ⟨ H ⟩.
List down in point format without require any specific quantity or unit.”

Table 18. Prompt template for LLM used in both goal and action inference tasks. The placeholder ⟨TASK NAME⟩ also denote as ϕ which
is replaceable with the specific inference task name (e.g. goal inference, action recognition), whereas ⟨ICL EXAMPLE⟩ is for insert the
In-Context Learning (ICL) example when infer the hypotheses only, otherwise, it will be empty when not required. The ⟨D or D̈⟩ indicate
the input of visual descriptions. For {Based on these options: ⟨H ⊕ Ḧ ⊕ hc⟩}, it is only applied when there is an option list provided
to prompt LLM select the final inference from the hypotheses. The ⟨K NUMBER⟩ is an integer value to control how many hypotheses
suppose be inferred. Lastly, the ⟨TARGET⟩ is the term of desired outcome (e.g. “action goal” or “ongoing action”) to help LLM understand
the specific output for the inference task.



Figure 6. Qualitative example of goal inference by ViDSE (V13B) framework on CrossTask video (ρ = 50%). We demonstrate the frames
selection process of the evidence generator which leads to better hypotheses and final inference: “Cooking Steaks on a Grill” vs ground
truth: “Grill Steak” (obtain 86.3 SBERT score). We can see the selected frames are more relevant to the grill with charcoal and steak after
frame selection process.



Figure 7. Qualitative example of goal inference by ViDSE (V13B) framework on CrossTask video (ρ = 50%). We can noticed the initial
sampled frames that related to a man with beard are filtered out after frame selection process as it is not relevant to the goal. We also can
find the inference direction shift from salad only to taco salad related after matching the frames with the hypothesized steps that contained
of taco or nachos related steps.



Figure 8. Qualitative example of action recognition by ViDSE (V13B) framework on a video (ρ = 100%) from ActivityNet. Although
video action recognition task is more straightforward, it is still challenging when infer on longer untrimmed video that contained many
ongoing actions. We can see that initial hypotheses H is uncertain about the action, whereas Ḧ inference after frame selection process is
more certain that the action is related to the Rubik’s Cube.



Figure 9. Example of incorrect goal inference by ViDSE (V13B) framework on CrossTask video (ρ = 30%). We can notice that the banana
slices in the bowl is wrongly recognized as “doughnuts” in a bowl. This suggests that a visual descriptor with better object-recognizing
ability could mitigate this misidentified problem. Moreover, the ice cream related frames are not seen, the LLM is missing this important
clue and hence it cannot relate to banana ice cream related goals. We also notice that the frames of ”view of the earth from space” and ”a
man in blue shirt” are filtered out after frame selection process. This shows that the evidence generator is able to select the frames that are
more relevant to the hypotheses.
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