
PKR-QA: A Benchmark for Procedural Knowledge Reasoning with
Knowledge Module Learning

Thanh-Son Nguyen*2, Hong Yang*1,2, Tzeh Yuan Neoh*1,4 Hao Zhang*1,2 Ee Yeo Keat1,2

Basura Fernando1,2,3

1Centre for Frontier AI Research, Agency for Science, Technology and Research, Singapore
2Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore

3College of Computing and Data Science, Nanyang Technological University, Singapore
4 Harvard University

Nguyen Thanh Son@a-star.edu.sg, Fernando Basura@a-star.edu.sg.

Abstract

We introduce PKR-QA (Procedural Knowledge Reasoning
Question Answering), a new benchmark for question answer-
ing over procedural tasks that require structured reasoning.
PKR-QA is constructed semi-automatically using a proce-
dural knowledge graph (PKG), which encodes task-specific
knowledge across diverse domains. The PKG is built by cu-
rating and linking information from the COIN instructional
video dataset and the ontology, enriched with commonsense
knowledge from ConceptNet and structured outputs from
Large Language Models (LLMs), followed by manual veri-
fication. To generate question-answer pairs, we design graph
traversal templates where each template is applied system-
atically over PKG. To enable interpretable reasoning, we
propose a neurosymbolic approach called Knowledge Mod-
ule Learning (KML), which learns procedural relations via
neural modules and composes them for structured reasoning
with LLMs. Experiments demonstrate that this paradigm im-
proves reasoning performance on PKR-QA and enables step-
by-step reasoning traces that facilitate interpretability. Code
and dataset are at https://github.com/LUNAProject22/KML.

Introduction
Interest in understanding procedural tasks is growing, driven
by applications in cooking, machinery repair, medical pro-
cedures, and daily activities (Ashutosh et al. 2024), as re-
flected by platforms like WikiHow. Such tasks consist of
sequences of steps, where each step serves a specific pur-
pose and tools are used accordingly. Human understand-
ing of these tasks arises from lifelong learning, enriched by
commonsense knowledge of objects and their affordances,
as well as the ability to reason about temporal and causal
dependencies within multi-step processes. This enables in-
dividuals to infer not just what to do, but why and how each
step contributes to the overarching goal. Emulating this pro-
cedural knowledge reasoning is essential for machines to as-
sist in complex real-world tasks.

Despite the rise of visual question answering and general
knowledge-based benchmarks, there remains a gap in evalu-

*These authors contributed equally.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ating a model’s ability to perform procedural knowledge rea-
soning. To address this, we introduce PKR-QA (Procedural
Knowledge Reasoning Question Answering), a new bench-
mark designed to assess Vision Language Models (VLMs)
and Neurosymbolic (NS) methods on diverse procedural
reasoning capabilities, including multi-hop, deductive, prob-
abilistic, contextual, causal, and counterfactual reasoning.
Many procedural tasks require domain-specific knowledge
and an understanding of task structures, which can be ef-
fectively captured using knowledge graphs. To construct
the PKR-QA questions and answers, we build a procedu-
ral knowledge graph (PKG) that encodes temporal relation-
ships and causal links among key concepts. Our dataset chal-
lenges models to answer procedural questions by combining
information from the video with external knowledge about
the task. Unlike previous video QA benchmarks that primar-
ily test visual comprehension, i.e., reasoning over what is in
the video, our dataset emphasizes task-centric reasoning and
knowledge grounded in the procedure. This introduces new
challenges that jointly demands visual understanding, visual
reasoning, and procedural knowledge reasoning.

While VLMs demonstrate impressive reasoning and
knowledge capabilities, their internal reasoning mechanism
is not that transparent. Techniques like chain-of-thought,
graph-of-thought, and tree-of-thought aim to enhance VLM
reasoning (Wei et al. 2022; Besta et al. 2024; Yao et al.
2023), yet the reasoning remains implicit due to the lack of
constraints on intermediate variables. Moreover, reasoning
and execution are often entangled within the VLM’s inter-
nal mechanism. To address this, methods like ViperGPT de-
couple reasoning from execution by generating executable
programs. Inspired by such approaches and neurosymbolic
(NS) models (Johnson et al. 2017; Mascharka et al. 2018;
Andreas et al. 2016; Perez et al. 2018; Hudson and Manning
2019, 2018; Chen et al. 2021; Endo et al. 2023), we pro-
pose Knowledge Module Learning (KML), which models
knowledge-based relations as parameterized, trainable mod-
ules leveraging on modern embeddings. KML generates the
program of knowledge modules to answer knowledge-based
reasoning questions as compositions of knowledge modules
using the PKG schema and LLMs. KML explicitly answers

knowledge-based reasoning questions leveraging the pow-
erful reasoning mechanism of moderns LLMs allowing it
to execute reasoning steps in a more transparent manner to
derive the answer. KML supports explicit knowledge-based
reasoning, constrained to a well-defined set of knowledge
operations, plays a crucial role beyond procedural tasks in
domains that require structured decision-making, reliabil-
ity, and interpretability. KML provides explicit reasoning
steps that can be systematically verified, debugged, and re-
fined. Unlike end-to-end black-box models, which often lack
transparency in their decision-making, structured reasoning
through predefined operations enables more interpretable,
trustworthy, and controllable AI systems. Our dataset and
the approach promote these aspects.

Our contributions are three-fold. First, we introduce PKR-
QA, a new benchmark to test procedural knowledge rea-
soning by question answering. Second, we propose KML, a
neuro-symbolic method that executes LLM-generated pro-
grams over knowledge graphs using relation-specific neural
modules. Third, we benchmark PKR-QA with state-of-the-
art VLMs and NS methods. KML variants outperform all
baselines, highlighting the benefit of structured knowledge
for interpretable and controllable procedural reasoning. We
believe PKR-QA will serve as a valuable resource to ad-
vance trustworthy AI in this emerging domain.

Related Work
Understanding procedural and instructional videos remains
a significant challenge in computer vision. The authors
in (Ashutosh et al. 2024) introduced the key step recognition
and procedure-aware video representation learning approach
using step transitions is presented in (Zhou et al. 2023). We
leverage on these works.

Knowledge-based Visual Question Answering has be-
come popular in recent years. The majority of the past
benchmarks on knowledge-based visual question answering
are for images while more recently authors in (Wang et al.
2024) presented a benchmark to evaluate situated and open-
world common-sense reasoning in videos with composition-
ality, temporality, and causality (Parmar et al. 2024). While
the motivation of our work shares similarities with (Wang
et al. 2024), there are notable distinctions. Their focus lies
in situated commonsense reasoning grounded in the specific
contexts depicted in videos, whereas we concentrate on test-
ing the procedural understanding of models given some par-
tial information such as a step of a task.

Integrating External Knowledge with Video Under-
standing has been explored through knowledge graphs
(KGs) for tasks like activity recognition (Ma et al. 2022)
and visual commonsense reasoning (Lin et al. 2019). Vid-
Situ (Sadhu et al. 2021) links events to semantic roles, while
TVQA+(Lei et al. 2019) uses script knowledge for story-
based QA. However, these works focus on descriptive rea-
soning rather than procedural reasoning.

Neurosymbolic frameworks like ViperGPT (Surı́s,
Menon, and Vondrick 2023), MoreVqa (Min et al. 2024)
and (Choudhury et al. 2024) decouple reasoning (e.g., pro-
gram generation) from execution (e.g., API calls). While
ViperGPT uses predefined functions for visual queries, it

lacks mechanisms to learn domain-specific knowledge mod-
ules or constrain reasoning to procedural logic. Similarly,
chain-of-thought prompting (Wei et al. 2022) improves
transparency in LLMs/VLMs but remains dependent on the
model’s internal knowledge, which may be unreliable for
specialized domains. Our framework advances this by (1)
training lightweight, interpretable Knowledge Modules di-
rectly from a domain specific KG and (2) constraining rea-
soning to predefined operations ensuring alignment with do-
main knowledge.

Our work is also related to (Zhong et al. 2024; Shah
et al. 2024), which employ logical queries to extract in-
formation from a KG. This emphasis on curated, domain-
specific knowledge is especially valuable for AI assistants
operating in contexts where domain expertise, rather than
general commonsense reasoning, is crucial for success. Prior
knowledge completion works that learns embeddings of en-
tities and relations in KGs are also related to us (Bordes
et al. 2013; Wang et al. 2014). In contrast, KML utilizes em-
beddings to learn relational mappings, employing a separate
neural network for each relation through contrastive learn-
ing.

PKG Construction and Dataset Creation
Motivated by recent advances in the semi-automated con-
struction of knowledge-based question answering datasets
(Hoang et al. 2024), we introduce the Procedural Knowl-
edge Reasoning Question Answering (PKR-QA) dataset. It
is built on a Procedural Knowledge Graph (PKG) that in-
tegrates information from the COIN training set, the COIN
ontology, GPT-4o-generated annotations, and external com-
monsense knowledge from ConceptNet, followed by hu-
man verification. To enable systematic QA generation, we
define a set of question templates and associated Cypher
queries (Francis et al. 2018), which are executed over the
knowledge graph to retrieve correct answers. In the follow-
ing sections, we detail the construction of both the knowl-
edge graph and the QA dataset.

Defining PKG’s Schema (PKGS). A knowledge graph
schema provides a high-level abstraction of the graph, spec-
ifying the types of entities that exist and the valid relation-
ships that can occur between them. It serves as a blueprint
for structuring the data and interpreting the semantics of the
graph. In our case, PKGS contains nodes where each node
correspond to an entity type (E) and edges represent relation
types (R) (Figure 1). The core entity types in PKGS include
Domain, Task, Step, Action, Object, Tool, and Purpose. Re-
lation types capture meaningful procedural links, such as
task-step associations or tool usage (e.g. HAS TOOL), and
may carry attributes like id, type, or additional semantic
metadata.

Populating PKG. Based on this schema, we instantiate
PKG by populating it with specific entity and relation in-
stances. Each entity e ∈ E has three main attributes: type,
name, and id. Relations r ∈ R represent specific con-
nections between entity instances. To construct this graph,
we integrate annotations from the COIN dataset (Tang

HAS_TASK

Domain

HAS_STEP

HAS_STEP

HAS_STEPTask

HAS_ACTION
HAS_TOOL

HAS_OBJECT

Step

HAS_PURPOSE

Action

HAS_NEXT_STEPSTART END

HAS_PURPOSE

Object

HAS_PURPOSE

Tool

Purpose

HAS_NEXT_STEP

HAS_SIMILAR_PURPOSE

COIN-based
LLM-based
ConceptNet

HAS_NEXT_STEP

Procedural Knowledge Graph Schema Traversal Template Sample Question

Figure 1: (Left) Schema of the Procedural Knowledge Graph (PKG) showing the high-level abstraction of PKG. In the middle
are examples of Traversal Templates that define reasoning patterns over PKG to generate question-answer pairs. Corresponding
example questions are shown on the right. In the traversal templates, blue text indicates information grounded in the input
video, while red text denotes the target answer node.

et al. 2019), fine-grained information extracted using GPT-
4o (Hurst et al. 2024), and commonsense knowledge from
ConceptNet (Speer, Chin, and Havasi 2017).

COIN-based Data (Domain, Task, Step): We ex-
tract the procedural structure from the training split of the
COIN dataset, which provides annotations for domains,
tasks, and steps. For each unique instance of these enti-
ties, we create corresponding nodes in the graph. We define
HAS TASK edges to link each domain to its associated tasks,
and HAS STEP edges to connect tasks to their constituent
steps. To capture procedural flow, we analyze step sequences
from all training videos and construct HAS NEXT STEP re-
lations that represent the temporal ordering of steps. Addi-
tionally, we introduce special START and END nodes to ex-
plicitly mark task boundaries. Each HAS NEXT STEP edge
is annotated with its observed frequency to model empirical
transition likelihoods between steps.

LLM-Augmented Data (Action, Object, Tool):
To enhance procedural specificity, we use GPT-4o to ex-
tract action-object pairs from step descriptions. For instance,
the phrase “remove the tire” yields the action “remove” and
the object “tire”. Because COIN lacks explicit tool annota-
tions, we further prompt GPT-4o to infer potential tools for
each step. The tool lists are manually verified. We standard-
ize terms (e.g., “scissor” → “scissors”), consolidate dupli-
cates (e.g., “marker”, “marker pen”), and unify task-specific
variants (e.g., “toilet detergent” → “detergent”). Some task-
sensitive distinctions are preserved (e.g., “filter” → “coffee
filter”) when relevant to the procedural context.

ConceptNet-based Data (Purpose): In procedural
tasks, actions are typically performed—and tools or objects
used—with specific purposes. To represent such intent in our
graph, we incorporate commonsense knowledge from Con-
ceptNet, a large-scale semantic network that connects words
and phrases through meaningful, human-readable relations
such as UsedFor, CapableOf, and IsA. Specifically, we
extract potential purposes of actions, tools, and objects us-
ing the UsedFor and CapableOf relations. To contex-

tualize these purposes within specific procedural steps and
tasks, we use GPT-4o to infer task- and step-specific inter-
pretations for each entity’s purpose –see the prompt template
in (Nguyen et al. 2025) for more details. This step ensures
that the resulting knowledge is not generic but grounded in
the procedural context in which the entity is used.

To reduce redundancy and merge semantically simi-
lar purposes, we compute pairwise cosine similarities of
Sentence-BERT embeddings (Reimers and Gurevych 2019)
and apply a similarity threshold of 0.8, validated through
manual inspection. Pairs of highly similar purposes are
linked using a HAS SIMILAR PURPOSE edge. The result-
ing purpose-augmented graph is stored in Neo4j1, support-
ing efficient querying and reasoning via Cypher. All contents
are manually verified to ensure the reliability of the KG. The
constructed KG contains 2,954 unique entities and 12,484
relations. Detailed distributions of entities and relations are
shown in (Nguyen et al. 2025).

PKR-QA is a multiple-choice question answering dataset
designed to evaluate reasoning over procedural knowledge
in instructional videos. Each instance consists of a video
segment, a question, five answer choices, and one correct
answer. Unlike traditional video QA datasets that focus on
grounding answers directly in the visual content of a sin-
gle video, PKR-QA emphasizes reasoning over procedural
knowledge that extends beyond the given video.

Traversal Templates for Procedural Reasoning We de-
fine questions in PKR-QA based on traversal templates
which are specific reasoning patterns over PKG. For in-
stance, the traversal Step HAS TOOL−−−−−−→ Tool

HAS PURPOSE−−−−−−−−→
Purpose corresponds to the question: “What is the purpose
of the tool used in this step?”. We design 17 such traver-
sal templates to cover a wide range of procedural reasoning
types. For each template, we generate multiple question vari-
ants using GPT-4o-mini, followed by manual filtering to en-

1https://neo4j.com/

sure quality and clarity. These templates form the backbone
for producing diverse yet semantically consistent question-
answer instances. Figure 1 presents examples of Traver-
sal Templates alongside their corresponding questions. The
complete set of 17 question templates with example ques-
tions is provided in (Nguyen et al. 2025).

Question and Answer Generation We generate ques-
tions by aligning each video segment with its correspond-
ing Task and Step nodes in PKG, then apply traversal
templates to form questions and retrieve answers. For each
question, we sample one correct answer and four distractors.
To ensure balanced answer distributions and reduce bias, we
apply sampling strategies that equalize the frequency of each
answer candidate across correct and incorrect options. Each
question is paired with a Cypher query that retrieves sup-
porting facts from PKG. These structured annotations serve
as logical forms for KG-based evaluation, model supervi-
sion, and reasoning trace analysis.

PKR-QA is designed for scenarios with limited training
data but having access to structured knowledge, such as a
knowledge graph. We construct a training set of 1,700 sam-
ples (100 per traversal template) and a validation set of 850
samples (50 per template). The test set contains 46,921 ques-
tions, generated from all video segments in the COIN test
split. This setup supports zero- and few-shot generalization.

To assess the quality of our dataset, we evaluate whether a
question can be reasonably answered by a human—referred
to as plausibility. We conducted a case study with eight
participants, each answering a subset of 170 questions. For
each question, participants were shown a video segment, the
question, and five answer options, and were asked to se-
lect the correct answer. Each question was independently
answered by three participants. A question is considered
plausible if at least one participant selected the correct an-
swer. Using this criterion, we found that 92.4% of the ques-
tions are plausible. Additionally, random baselines perform
at chance level (∼ 20% accuracy), suggesting low annota-
tion artifacts or answer biases.

Knowledge Module Learning
In this section, we introduce our proposed Knowledge Mod-
ule Learning (KML) for procedural knowledge reasoning,
which effectively handles uncertain (probabilistic) inputs
while producing interpretable reasoning outputs using a
small number of trainable parameters. We train a collection
of neural networks known as Neural Knowledge Module
(KM) to represent each binary relation type of PKG. Then
given a video and a question, we ask LLM to generate a pro-
gram consisting of KM invocations to answer the questions.
Then we execute those KMs sequentially with the grounded
evidence extracted from the video to obtain the final answer.
Next, we present the details.

Knowledge Module Learning. For each binary relation
type Rk(Ei, Ej) in the PKG that maps from entity type Ei
to Ej , we learn a KM as a learnable neural relation (ϕRk

)
with parameters (θRk

). KM learns to map from a given head
entity ei ∈ Ei to the corresponding set of tail entities Ij

where Ij ⊆ Ej of relation Rk as follows:

ϕRk
(x(ei; θx); θRk

) → ej (1)

where x(ei; θx) is a d-dimensional embeddings of the
head entity and ej is a vector that is closer to x(ej)
for all ej ∈ Ij . Here, Ij is the set of tail entities un-
der relation Rk for the head entity ei or formally Ij :=
{ej ∈ E | Rk(ei, ej) = True}. Then the objective of KM
learning is to make sure to learn (θRk

, θx) such that for each
head entity embedding x(ei) can be mapped to a vector ej
that is representative of all corresponding tail entities Ij . We
iterate over all the triplets (including the inverse triplets) of
all relation types of PKG in a batch-learning manner and
train the KMs using the contrastive loss.

−log
exp(

ej·x(ej)
τ)∑

∀ep∈B exp(
ej·x(ep)

τ)
(2)

Here B is the set of tail entities in the batch of triplets ex-
cluding Ij , ej ∈ Ij is one of the positive target entity for
ei under Rk, and τ is the temperature. Note that we L2 nor-
malize all embeddings and the vector ej before computing
the contrastive loss. Contrastive loss plays a crucial role in
learning neural relation functions ϕRk

(i.e. KMs), for mod-
elling symbolic binary relations of the form Rk(Ei, Ej).

The embedding learning function x(; θx) is implemented
using CLIP (Radford et al. 2021) text encoder embeddings
with frozen parameters (θx). Alternatively, we also learn the
embedding function from scratch using standard implemen-
tations2. Similarly, we also learn the inverse KM for each
inverse relation R∗

k(Ej , Ei) of each relation Rk. Let us de-
note the set of all KMs by ϕR = {ϕRk

|k = 1, · · · }.
At inference, KM takes an input embedding and maps that

to an output embedding that represents a set of correspond-
ing tail entities of that relation. For example, Table 3 shows
the semantic meaning of each output embedding that maps
to a set of tail entities of relation HAS TOOL for given input
embedding of the Step entity. We experimented with differ-
ent neural configurations of multi-layered perceptron (MLP)
and found that two-layered MLP with Tanh activation per-
forms the best for learning KMs. Next, we present how to
answer questions using KMs and LLM generated programs.

Question Answering. Given the video v, the question Q,
and options Y = {y1, · · · , yn} (n = 5) we prompt a
LLM ϕ() to find the relevant entity type (Eg) that should
be grounded in the video to answer the question.

ϕ(Q, PKGS) → Eg (3)

For example, Eg can be a task, step, object or action. Then
we find the entity instance(s) that is present in the given
video V of the entity type Eg using a vision foundation
model (VLM) as follows:

VLM(V,Eg) → xe (4)

where xe ∈ RC represents the score vector for the entity
type (e.g., step distribution) across all categories of that en-
tity type. We assume there are C categories for entity type

2We learn these using torch.nn.Embedding

Eg . To obtain estimates about the grounding entity Eg , we
use ProceduralVRL (P.VRL) (Zhong et al. 2023) a VLM tai-
lored for procedural tasks.

Given the collection of Knowledge Module names (ϕR)
and the question Q, and the grounded entity type Eg , we
use LLM (denoted by ϕG()) to generate a list of sequence of
Knowledge module invocations (known as program or P1)
to answer the question. Using a similar concept to chain-
of-thought (Wei et al. 2022; Wang et al. 2022), tree-of-
thought (Yao et al. 2023), and graph-of-thought (Besta et al.
2024) we ask the LLM to generate multiple alternative pro-
grams to answer the same questions.

ϕG(Q,ϕR, Eg) = [P1 =
〈
ϕri , ϕrj , ϕrk , ...

〉
, ·, (5)

Pl =
〈
ϕri , ϕrj , ϕrk , ...

〉
]

Here Pl is the specific module invocations and each Pl

may result in different answers following an alternative-
thought of reasoning approach. The LLM module ϕG()
can be implemented with any LLM with good reasoning
capability. We use a special prompt that invokes deep
understanding and consistent knowledge graph traversal
and alternative thought invocations– see (Nguyen et al.
2025) for more details on the prompt. As an example,
to answer the question what is an alternative
tool that can be used for this step?
it generates the following program of modules.

HAS TOOL(Step) → Tool
HAS PURPOSE(Tool) → Purpose
SIMILAR PURPOSE(Purpose) → Purpose
PURPOSE TO TOOL(Purpose) → Tool

where PURPOSE TO TOOL(Purpose) is the inverse rela-
tion of HAS PURPOSE(Tool). LLM may generate multiple
programs that leads to the answer, typically 3-5 alternatives
for complex problems. To predict the answer, we execute
each program in order, inputting the grounded entity rep-
resentation zi into the first module. For each program (P1

to Pl), zi is fed into the first module to obtain intermediate
embedding, invoking all modules sequentially. For example
zj = ϕri(zi) then zk = ϕrj (zj) and finally zf = ϕrk(zk).
Therefore the final embedding representing the answer to
the given question is zf . We can also inspect the meaning
of each intermediate representation as shown in Table 3
allowing more interpretable reasoning that can handle
uncertain inputs.

To compute the first input embedding zi, we use the
grounded top-K entity instance and weight the embeddings
of each grounded entity instance category name as follows:

zi = S ×Xe
T (6)

Xe = [x(e1), x(e2), · · · , x(ek)] (7)

where ek is the k-th category of the entity type Eg and S =
[s1, s2, · · · , sk] is a vector containing top-k scores for each
grounded entity-type category (e.g. Step categories).
Inference. Given the options Y = {y1, . . . , yn}, we obtain
the embeddings of Y , i.e., x(Y) = [x(y1), x(y2), · · ·x(yn)].
Then we compute the cosine similarity between the final
embedding zf and x(Y) and apply softmax to predict the
answer index for each program. When there are alternative

programs, we take the maximum score from all programs as
the final answer.
VQA Training for KML. We also fine-tune the KMs us-
ing a few examples of the video-question-answer using our
dataset. We compute the cosine similarity between zf and
x(Y) and apply softmax to predict the answer index.

ŷ = softmax (cosine sim (x(Y), zf)) (8)

Then we train all KMs jointly using the cross-entropy loss
over the correct answer index. At test time, we predict
the right answer using the argmax of the cosine similar-
ity scores. One of the advantages of KML (auto-program)
approach is that, given the relation types, we do not need
to manually select any neural modules, or generate pro-
grams manually. We use LLMs such as GPT, DeepSeek or
Mistral. More implementation details of KML is presented
in (Nguyen et al. 2025).

Experiments
Experimental Setup
We conduct experiments on the PKR-QA benchmark to
evaluate the effectiveness of VLMs and Neurosymbolic
methods for procedural knowledge-based question answer-
ing. We use NVIDIA A100 GPUs (80GB VRAM) for con-
ducting experiments with VLMs, NVIDIA GeForce RTX
2080 Ti and A5000 GPUs for training KML, and RTX 3090
GPUs (24GB VRAM) for training knowledge graph embed-
ding methods.

VLM Evaluation Settings. We evaluate VLMs under five
different settings to assess their procedural knowledge rea-
soning ability: (1) Zero-shot: VLMs take a video segment
(8 uniformly sampled frames), a question, and options as in-
put; (2) VLM+P.VRL: VLMs take a video segment (8 uni-
formly sampled frames), a question, options, and the top-5
step/task categories from P.VRL as input; (3) KG-training:
VLMs are tuned using the triplet instances of our PKG as
questions using LoRA (Hu et al. 2021) and then evaluate the
fine-tuned VLMs with PKR-QA; (4) QA training: VLMs
are tuned using LoRA for 100 epochs with 4 randomly sam-
pled frames as input, demonstrating the impact of few-shot
fine-tuning. All models are trained using the training set of
1,700 question-answer pairs; (5) KG+QA training: VLMs
are tuned using triplet instances following KG-training, and
1,700 question-answer pairs as described in QA training.

Neurosymbolic Methods. We explore three variants of
KML, differing in how the embedding function x(; θx) is
implemented. In KML-F-CLIP, x(; θx) is a frozen CLIP
text encoder. In KML-CLIP, we initialize x(; θx) with CLIP
embeddings and fine-tune its parameters. In KML-Rand, θx
is learned from scratch (i.e., randomly initialized). We com-
pare our KML against the following NS methods:
Inference by Graph Propagation (IGP):We implement a
simple NS baseline that uses a given program and a set of
grounded entities with associated probabilities or logits to
answer questions. Given a directed knowledge graph with
binary relations, we propagate uncertainty from grounded

entities through the relations specified in the program. Us-
ing breadth-first traversal, we accumulate scores at each tar-
get entity by summing the propagated logits. This approach
resembles probabilistic logic-based inference.
KG Embedding Methods: We compare against standard
KG embedding models, including TransE (Bordes et al.
2013), TransH (Wang et al. 2014), and RotatE (Sun et al.
2019). After training, we use LLM-generated programs (as
in KML) to perform multi-hop reasoning. These models are
selected for their support of compositional reasoning. Em-
bedding dimensions are tuned on a validation set, yielding
optimal sizes of 256 for TransE, 100 for TransH, and 256
for RotatE. We also include variants with CLIP-initialized
entity and relation embeddings to enable direct comparison
with CLIP-based KML models.
Modern NS methods: We compare with modern NS meth-
ods including ViperGPT (Surı́s, Menon, and Vondrick 2023)
that uses the power of LLM and vision models, and
MAC (Hudson and Manning 2018). We evaluate MAC on
a classification-based VQA task, using a single image frame
and a question (without answer choices) as input. The model
predicts from 2,079 answer classes aggregated from the
dataset. We use GloVe (Pennington, Socher, and Manning
2014) embeddings for text and extract visual features with
a pretrained ResNet101 (He et al. 2016). We tuned the em-
bedding size, MAC hidden size, and the number of MAC
layers, selecting the best setup based on validation perfor-
mance. The comparison with NS methods such as (Jaiswal
et al. 2025; Li et al. 2025) are left for future work.

Metrics. Since VLM-generated text may not exactly
match the predefined multiple-choice options, we adopt the
filtering and MCQ accuracy computation strategy from (Yue
et al. 2024; Lin et al. 2023). We report both overall accuracy
and mean accuracy for each model. Accuracy is computed
as the average score across all test samples, while mean ac-
curacy (mAcc)s is the average of per-template accuracies,
providing equal weight to each traversal template.

Analysis and Discussion
Benchmarking VLMs on PKR-QA. Table 1 compares
the performance of various VLMs across five training and
inference settings, revealing several key insights. Provid-
ing predicted step and task information from Procedu-
ralVRL (VLM+P.VRL) consistently improves performance
over the zero-shot setting. These gains highlight the impor-
tance of grounded procedural context in enhancing reason-
ing, even for strong models like MiniCPM-V and Qwen2.5-
VL. Training on KG triplets yields some improvement
over zero-shot baselines, though the gains are modest and
less consistent, suggesting that aligning symbolic represen-
tations with multimodal inputs remains non-trivial. QA-
based fine-tuning leads to larger improvements, particu-
larly for MiniCPM-V and Qwen2.5-VL. These gains indi-
cate that VLMs are capable of adapting to task-specific su-
pervision, even when provided with a relatively small num-
ber of QA pairs (1,700 samples). The best performance is
achieved when combining both KG and QA training, with
Qwen2.5-VL reaching 74.2/73.8, indicating that integrating

Setting Model Acc mAcc

Zero-shot

DeepSeek-VL2 (27.4B) (Wu et al. 2024) 58.4 55.4
MiniCPM-V (8B) (Yao et al. 2024) 62.6 59.7
mPLUG-Owl3 (7B) (Ye et al. 2024) 63.1 60.2
Qwen2.5-VL (7B) (Bai et al. 2025) 59.6 57.8
VideoChat2-HD (7B) (Li et al. 2023) 61.2 58.4

VLM + P.VRL

DeepSeek-VL2 (27.4B) (Wu et al. 2024) 64.5 59.9
MiniCPM-V (8B) (Yao et al. 2024) 67.4 63.8
mPLUG-Owl3 (7B) (Ye et al. 2024) 65.5 61.6
Qwen2.5-VL (7B) (Bai et al. 2025) 69.4 65.8
VideoChat2-HD (7B) (Li et al. 2023) 65.5 59.9

KG-training
MiniCPM-V (8B) (Yao et al. 2024) 63.5 61.0
mPLUG-Owl3 (7B) (Ye et al. 2024) 64.8 61.4
Qwen2.5-VL (7B) (Bai et al. 2025) 67.3 64.1

QA training
MiniCPM-V (8B) (Yao et al. 2024) 71.1 71.4
mPLUG-Owl3 (7B) (Ye et al. 2024) 71.8 72.4
Qwen2.5-VL (7B) (Bai et al. 2025) 73.6 73.4

KG+QA training
MiniCPM-V(8B) (Yao et al. 2024) 72.1 72.1
mPLUG-Owl3 (7B) (Ye et al. 2024) 73.1 73.8
Qwen2.5-VL (7B) (Bai et al. 2025) 74.2 73.8

Table 1: Comparison of VLMs in different settings. Under-
lined scores denote the best-performing method within each
setting, while bold scores highlight the best overall.

Setting Model Acc mAcc
No Training
/ No Program

ViperGPT 41.6 40.9
GPT-4o + P.VRL 71.2 69.0

Program Only IGP (+P.VRL) 62.8 60.0

QA training Only MAC 11.6 20.0

KG-training

TransE 63.6 51.6
TransH 73.1 66.3
RotatE 41.6 29.2
TransE+CLIP 56.8 45.4
TransH+CLIP 70.6 65.9
RotatE+CLIP 48.8 35.2
KML-F-CLIP (Ours) 74.6 71.6
KML-Rand (Ours) 73.5 70.0
KML-CLIP (Ours) 75.3 71.5

KG+QA training
KML-F-CLIP (Ours) 76.7 75.3
KML-Rand (Ours) 77.4 76.3
KML-CLIP (Ours) 78.1 77.1

Table 2: Performance comparison of NS methods.

structured procedural knowledge with task-specific exam-
ples provides complementary benefits for enhancing proce-
dural understanding in VLMs.

Benchmarking Neurosymbolic Methods. As shown in
Table 2, all KML variants outperform all baselines, confirm-
ing the benefit of executing LLM-generated KG-traversal
programs with relation-specific KMs for procedural rea-
soning QA. KML achieves the highest performance un-
der KG+QA training using KML-CLIP variant. The per-
formance of KML-Rand is not far from KML-F-CLIP and
interestingly, when tuned with KG+QA training the KML-
Rand performs better than KML-F-CLIP under the same
setting. ViperGPT performs poorly on our benchmark due
to the absence of built-in reasoning operators and reliance
on predefined program templates that are not suited for
the structured reasoning required in procedural knowledge
tasks. IGP suffers from combinatorial explosion and poor
grounding, often generating irrelevant results from uncer-

tain starting nodes. In contrast, KML handles such uncer-
tainty better by grounding traversal via learned knowledge
modules. MAC, originally designed for visual reasoning
tasks (e.g., answering questions like “What is to the left of
the green box?”), fails in our setting due to its lack of ac-
cess to external procedural knowledge. Among KG embed-
ding methods, TransE and TransH perform better due to
their additive or projective composition, aligning well with
our program-based reasoning. RotatE underperforms, likely
because its complex-valued, rotation-based composition is
less effective for multi-hop reasoning. CLIP-based initial-
ization yields mixed results—improving RotatE but degrad-
ing TransE and TransH—indicating varying alignment with
visual semantics across models. We also evaluate GPT-4o
using top-5 predicted step/task category names from P.VRL.
It achieves 71.2% accuracy and 69.0% mean accuracy.

KML’s Interpretability. One key advantage of KML is
its interpretability, as illustrated in the qualitative examples
in Table 3 and Table 4. We observe step-by-step reason-
ing and intermediate interpretations from the learned em-
beddings, offering insight into the model’s decision process.
The output entities represented by the output vectors of each
KM seems reasonable and accurate for the given task.

KML’s Generalizability. To assess KML’s generalizabil-
ity, we added ten binary relations from the STAR bench-
mark. KML-F-CLIP achieved 74.9% on Interaction and
76.7% on Feasibility questions, outperforming prior bests
of 71.8% (Jaiswal et al. 2025) and 62.4% (Yu et al. 2023).
For Sequence and Prediction questions, it scored 57.3%
and 49.8%, respectively. We also trained KML-F-CLIP us-
ing a GPT-4o-generated KG from 7,687 WikiHow tasks
(57,027 steps, 8.7M triplets) capturing tools, actions, ob-
jects, and purposes. Evaluated on our PKR-QA dataset,
it achieved 73.9% mean accuracy, rising to 74.9% with
KG+QA training, suggesting that while generic KGs help,
domain-specific modules remain advantageous.

KML’s Robustness. Figure 2 (left) shows KML’s perfor-
mance using top-k step/task predictions (k = 1 to 5). Using
all top-5 predictions yields the best QA performance, while
top-1 predictions still achieve strong results, demonstrating
the model’s robustness to imperfect inputs. Figure 2 (right)
reports a moderate correlation (0.24) between step predic-
tion accuracy and QA accuracy, suggesting KML does not
heavily depend on input quality, benefiting from embedding-
based reasoning and generalizable knowledge modules.

KML Ablation. We train KML modules from scratch us-
ing only QA training, with KML-F-CLIP achieving 59.3%
mean accuracy—highlighting the value of training on PKG
data. KML allows exploration of multiple programs per
question (see (Nguyen et al. 2025)), though gains over
single-program use are marginal. It also supports expert
program editing for improved reliability. Evaluating differ-
ent LLMs for program generation in KML-F-CLIP, GPT-
4o leads with 71.6% accuracy, followed by LLaMA-3-
8B (68.4), DeepSeek-V2.5 (66.5), Mistral-7B (66.2), and
Qwen-2.5 (63.7), showing KML’s robustness across LLM
models.

Q. What is the other task that
use the tool in this video for

the same purpose?

Task: Make Orange Juice
Step: pour the orange juice

into the cup
HAS TOOL TOOL TO STEP STEP TO TASK

Out=Tool Out=Step Out=Task
cup (0.361) pour into the ingredients

(0.337)
MakeCookie (0.221)

mug (0.273) pour in after mix it (0.314) MakeCocktail (0.208)
measuring cup (0.253) add some ingredients to the

tea (0.308)
MakeHomemadeIceCream

(0.191)
yogurt (0.249) add some ingredients in the

coffee (0.307)
MakeChocolate (0.188)

bottle (0.223) pour the ingredients into the
bowl (0.293)

MakeCoffee (0.185)

Table 3: Three-hop Reasoning using KML-F-CLIP: The
step-by-step reasoning outputs of KML with estimated prob-
ability value over the domain of relation using embeddings.

Q. What is an alternative tool
can be used for this step?

Task: Polish Car Step: clean
the scratch

HAS TOOL HAS PURPOSE SIMILAR PURPOSE PURPOSE TO TOOL
Out=Tool Out=Purpose Out=Purpose Out=Tool

microfiber towel (0.237) wiping up dust (0.249) cleaning things (0.233) cloth (0.263)
microfiber cloth (0.229) dusting (0.241) cleaning (0.219) towel (0.253)
polishing pad (0.217) cleaning (0.238) wiping up wet spill (0.205) soap (0.219)

cloth (0.168) wiping up wet spill (0.228) clean dirty things (0.204) curtains (0.178)
towel (0.125) wiping (0.215) cleaning up (0.200) cushion (0.178)

Table 4: Four-hop Reasoning using KML-F-CLIP: The step-
by-step reasoning outputs of KML with estimated probabil-
ity value over the domain of relation using embeddings.

Figure 2: (Left) QA performance of KML-F-CLIP using
top-1 to top-5 grounded entities from P.VRL. (Right) Cor-
relation between step prediction accuracy and QA accuracy.

Conclusion
We introduced PKR-QA, a benchmark for procedural
knowledge reasoning that challenges models to answer pro-
cedural questions. Our evaluation of VLMs revealed their
inherent capability to leverage procedural knowledge. How-
ever, their closed-loop reasoning mechanisms lack the trans-
parency, controllability, and domain-specific constraints re-
quired for mission-critical applications such as medical pro-
cedures or industrial automation. To address this gap, we
proposed the Knowledge Module Learning (KML) frame-
work, which explicitly grounds reasoning in procedural
knowledge graphs and decouples hypothesis generation (via
LLM-based program synthesis) from structured execution
(via learnable knowledge modules). By constraining reason-
ing to predefined operations aligned with procedural logic,
KML ensures reliability and interpretability without sacri-
ficing performance. Our experiments highlight the promise
of such neurosymbolic architectures, where lightweight,
domain-aware modules (trained directly on KG relations)
performs well in knowledge-intensive reasoning.

Acknowledgments
This research is supported by the National Research Foun-
dation, Singapore, under its NRF Fellowship (Award# NRF-
NRFF14-2022-0001) and by funding allocation to Basura
Fernando by the A*STAR under its SERC Central Research
Fund (CRF), as well as its Centre for Frontier AI Research.

References
Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2016.
Learning to compose neural networks for question answer-
ing. arXiv preprint arXiv:1601.01705.
Ashutosh, K.; Ramakrishnan, S. K.; Afouras, T.; and Grau-
man, K. 2024. Video-mined task graphs for keystep recogni-
tion in instructional videos. Advances in Neural Information
Processing Systems, 36.
Bai, S.; Chen, K.; Liu, X.; Wang, J.; Ge, W.; Song, S.; Dang,
K.; Wang, P.; Wang, S.; Tang, J.; et al. 2025. Qwen2. 5-VL
Technical Report. arXiv preprint arXiv:2502.13923.
Besta, M.; Blach, N.; Kubicek, A.; Gerstenberger, R.;
Podstawski, M.; Gianinazzi, L.; Gajda, J.; Lehmann, T.;
Niewiadomski, H.; Nyczyk, P.; et al. 2024. Graph of
thoughts: Solving elaborate problems with large language
models. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, 17682–17690.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. Advances in neural information pro-
cessing systems, 26.
Chen, W.; Gan, Z.; Li, L.; Cheng, Y.; Wang, W.; and Liu, J.
2021. Meta module network for compositional visual rea-
soning. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 655–664.
Choudhury, R.; Niinuma, K.; Kitani, K. M.; and Jeni, L. A.
2024. Video Question Answering with Procedural Pro-
grams. In European Conference on Computer Vision, 315–
332. Springer.
Endo, M.; Hsu, J.; Li, J.; and Wu, J. 2023. Motion question
answering via modular motion programs. In International
Conference on Machine Learning, 9312–9328. PMLR.
Francis, N.; Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker,
T.; Marsault, V.; Plantikow, S.; Rydberg, M.; Selmer, P.; and
Taylor, A. 2018. Cypher: An evolving query language for
property graphs. In Proceedings of the 2018 international
conference on management of data, 1433–1445.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hoang, L.; Liausvia, F.; Liu, Y.; and Nguyen, T.-S. 2024.
Semi-automated Construction of Complex Knowledge Base
Question Answering Dataset Using Large Language Model.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 230–248. Springer.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.

Hudson, D.; and Manning, C. D. 2019. Learning by abstrac-
tion: The neural state machine. Advances in neural informa-
tion processing systems, 32.
Hudson, D. A.; and Manning, C. D. 2018. Compositional
attention networks for machine reasoning. arXiv preprint
arXiv:1803.03067.
Hurst, A.; Lerer, A.; Goucher, A. P.; Perelman, A.; Ramesh,
A.; Clark, A.; Ostrow, A.; Welihinda, A.; Hayes, A.; Rad-
ford, A.; et al. 2024. GPT-4o System Card. arXiv preprint
arXiv:2410.21276.
Jaiswal, S.; Roy, D.; Fernando, B.; and Tan, C. 2025. Learn-
ing to Reason Iteratively and Parallelly for Complex Visual
Reasoning Scenarios. Advances in Neural Information Pro-
cessing Systems, 37: 137965–137998.
Johnson, J.; Hariharan, B.; Van Der Maaten, L.; Hoffman,
J.; Fei-Fei, L.; Lawrence Zitnick, C.; and Girshick, R. 2017.
Inferring and executing programs for visual reasoning. In
Proceedings of the IEEE international conference on com-
puter vision, 2989–2998.
Lei, J.; Yu, L.; Berg, T. L.; and Bansal, M. 2019. Tvqa+:
Spatio-temporal grounding for video question answering.
arXiv preprint arXiv:1904.11574.
Li, C.; Sugandhika, C.; Ee, Y. K.; Peh, E.; Zhang, H.; Yang,
H.; Rajan, D.; and Fernando, B. 2025. IMoRe: Implicit
Program-Guided Reasoning for Human Motion Q&A. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 12987–12996.
Li, K.; He, Y.; Wang, Y.; Li, Y.; Wang, W.; Luo, P.; Wang,
Y.; Wang, L.; and Qiao, Y. 2023. Videochat: Chat-centric
video understanding. arXiv preprint arXiv:2305.06355.
Lin, B. Y.; Chen, X.; Chen, J.; and Ren, X. 2019. Kagnet:
Knowledge-aware graph networks for commonsense reason-
ing. arXiv preprint arXiv:1909.02151.
Lin, J.; Yin, H.; Ping, W.; Lu, Y.; Molchanov, P.; Tao,
A.; Mao, H.; Kautz, J.; Shoeybi, M.; and Han, S. 2023.
VILA: On Pre-training for Visual Language Models.
arXiv:2312.07533.
Ma, Y.; Wang, Y.; Wu, Y.; Lyu, Z.; Chen, S.; Li, X.; and
Qiao, Y. 2022. Visual knowledge graph for human action
reasoning in videos. In Proceedings of the 30th ACM Inter-
national Conference on Multimedia, 4132–4141.
Mascharka, D.; Tran, P.; Soklaski, R.; and Majumdar, A.
2018. Transparency by design: Closing the gap between
performance and interpretability in visual reasoning. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 4942–4950.
Min, J.; Buch, S.; Nagrani, A.; Cho, M.; and Schmid, C.
2024. Morevqa: Exploring modular reasoning models for
video question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
13235–13245.
Nguyen, T.-S.; Yang, H.; Neoh, T. Y.; Zhang, H.; Keat, E. Y.;
and Fernando, B. 2025. Neuro Symbolic Knowledge Rea-
soning for Procedural Video Question Answering. arXiv
preprint arXiv:2503.14957.

Parmar, P.; Peh, E.; Chen, R.; Lam, T. E.; Chen, Y.; Tan, E.;
and Fernando, B. 2024. Causalchaos! dataset for compre-
hensive causal action question answering over longer causal
chains grounded in dynamic visual scenes. Advances in Neu-
ral Information Processing Systems, 37: 92769–92802.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural lan-
guage processing (EMNLP), 1532–1543.
Perez, E.; Strub, F.; De Vries, H.; Dumoulin, V.; and
Courville, A. 2018. Film: Visual reasoning with a general
conditioning layer. In Proceedings of the AAAI conference
on artificial intelligence, volume 32.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748–8763. PMLR.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. In Pro-
ceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computa-
tional Linguistics.
Sadhu, A.; Gupta, T.; Yatskar, M.; Nevatia, R.; and Kemb-
havi, A. 2021. Visual semantic role labeling for video un-
derstanding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 5589–5600.
Shah, M.; Cahoon, J.; Milletari, M.; Tian, J.; Psallidas, F.;
Mueller, A.; and Litombe, N. 2024. Improving LLM-based
KGQA for multi-hop Question Answering with implicit rea-
soning in few-shot examples. In Biswas, R.; Kaffee, L.-
A.; Agarwal, O.; Minervini, P.; Singh, S.; and de Melo,
G., eds., Proceedings of the 1st Workshop on Knowledge
Graphs and Large Language Models (KaLLM 2024), 125–
135. Bangkok, Thailand: Association for Computational
Linguistics.
Speer, R.; Chin, J.; and Havasi, C. 2017. Conceptnet 5.5:
An open multilingual graph of general knowledge. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 31.
Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2019. Rotate:
Knowledge graph embedding by relational rotation in com-
plex space. arXiv preprint arXiv:1902.10197.
Surı́s, D.; Menon, S.; and Vondrick, C. 2023. Vipergpt:
Visual inference via python execution for reasoning. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 11888–11898.
Tang, Y.; Ding, D.; Rao, Y.; Zheng, Y.; Zhang, D.; Zhao, L.;
Lu, J.; and Zhou, J. 2019. Coin: A large-scale dataset for
comprehensive instructional video analysis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 1207–1216.
Wang, A.; Wu, B.; Chen, S.; Chen, Z.; Guan, H.; Lee, W.-N.;
Li, L. E.; and Gan, C. 2024. SOK-Bench: A Situated Video
Reasoning Benchmark with Aligned Open-World Knowl-
edge. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 13384–13394.

Wang, X.; Wei, J.; Schuurmans, D.; Le, Q.; Chi, E.; Narang,
S.; Chowdhery, A.; and Zhou, D. 2022. Self-consistency
improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 28.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in neural information processing systems, 35:
24824–24837.
Wu, Z.; Chen, X.; Pan, Z.; Liu, X.; Liu, W.; Dai,
D.; Gao, H.; Ma, Y.; Wu, C.; Wang, B.; et al. 2024.
Deepseek-vl2: Mixture-of-experts vision-language models
for advanced multimodal understanding. arXiv preprint
arXiv:2412.10302.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao,
Y.; and Narasimhan, K. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models. Advances
in neural information processing systems, 36: 11809–11822.
Yao, Y.; Yu, T.; Zhang, A.; Wang, C.; Cui, J.; Zhu, H.; Cai,
T.; Li, H.; Zhao, W.; He, Z.; et al. 2024. MiniCPM-V:
A GPT-4V Level MLLM on Your Phone. arXiv preprint
arXiv:2408.01800.
Ye, J.; Xu, H.; Liu, H.; Hu, A.; Yan, M.; Qian, Q.; Zhang,
J.; Huang, F.; and Zhou, J. 2024. mplug-owl3: Towards
long image-sequence understanding in multi-modal large
language models. In The Thirteenth International Confer-
ence on Learning Representations.
Yu, S.; Cho, J.; Yadav, P.; and Bansal, M. 2023. Self-chained
image-language model for video localization and question
answering. Advances in Neural Information Processing Sys-
tems, 36: 76749–76771.
Yue, X.; Ni, Y.; Zhang, K.; Zheng, T.; Liu, R.; Zhang, G.;
Stevens, S.; Jiang, D.; Ren, W.; Sun, Y.; Wei, C.; Yu, B.;
Yuan, R.; Sun, R.; Yin, M.; Zheng, B.; Yang, Z.; Liu, Y.;
Huang, W.; Sun, H.; Su, Y.; and Chen, W. 2024. MMMU:
A Massive Multi-discipline Multimodal Understanding and
Reasoning Benchmark for Expert AGI. In Proceedings of
CVPR.
Zhong, Y.; Yu, L.; Bai, Y.; Li, S.; Yan, X.; and Li, Y.
2023. Learning procedure-aware video representation from
instructional videos and their narrations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 14825–14835.
Zhong, Z.; Zhong, L.; Sun, Z.; Jin, Q.; Qin, Z.; and Zhang,
X. 2024. SyntheT2C: Generating Synthetic Data for Fine-
Tuning Large Language Models on the Text2Cypher Task.
arXiv preprint arXiv:2406.10710.
Zhou, H.; Martı́n-Martı́n, R.; Kapadia, M.; Savarese, S.; and
Niebles, J. C. 2023. Procedure-aware pretraining for instruc-
tional video understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
10727–10738.

