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Reliable HRI with Embodied Al

Reliability in HRI is contextually determined:

Human Su b{ect t(cj) the EAI sy.ster.ni needtto . Formal
environments are goals and perceive, interpret, an verification
) : expectations respond in ways that are
inherently social, : : of
ultimodal. and pf humaljs conS|sotent, co[nprehensnble Black Box
luid ’ involved in the and aligneel with Runnzmn

interaction eXPECtatieIs models

Proposed Approach:
HRI centred on building and updating an accessible eXplicit world model,

representing the cOmMmon ground between human and EAl to aligh robot
behaviours with human expectations.
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Common Ground
in Human-Robot
Collaboration

e Common ground = shared
understanding of tasks,
communications, and

environments between agents
(Dillenbourg and Traum, 2006)

* Aligns human and robots in
terms of perception, cognition,
and embodiment

* Forms the basis for cooperative
action in Human-Robot
Collaboration

He must be referring to
XXX subassembly
because in has been
focusing on that area,
pointing approximately
to that part, and he is
at step C.

”
Dillenbourg, P., & Traum, D. (2006). Sharing Solutions: Persistence and Grounding in Multimodal Collaborative Problem Solving. w

Journal of the Learning Sciences, 15(1), 121-151. https://doi.org/10.1207/s15327809jls1501_9



Building
Common Ground

* Perceptual Grounding
* Objects
* Actors
* Activity (Task), Situation (State)

* Joint Attention and Embodied
Communication

* Monitoring speech and behaviours
(gaze, gestures etc.)

e Continuous intention inference

* Acting expressively to convey
intentions



Explicit World Model

* Cognitive Architectures (CAs)

* Use explicit world models to represent
the environment, relational concepts,
and executable procedures

 Raw sensory data is transformed into
symbols and rules — a high level,
interpretable and structured
abstraction of the environment - for
cognitive processing

* Heavily dependent on human
handcrafting
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Langley, P. & Choi, D (2006). “A Unified Cognitive Architecture for Physical Agents.” In 7
Proceedings of the 21st National Conference on Artificial Intelligence, Vol 2, 1468-1474 w



Explicit World Model

* Neuro-symbolic Architectures

* Explicit, interpretable, and self-evolving world
models

* Develop internal representations without human
handcrafting

Knowledge Module Learning (Nguyen et al. 2025)
NeSyC (Choi et al., in press)

Choi,W.; Park, J.; Ahn, S.; Lee, D.; and Woo, H. In Press. “A Neuro-Symbolic Continual Learner for Complex Embodied Tasks in Open Domains.” In 2025 13th International Conference
on Learning Representations (ICLR). ,

Nguyen, T.-S.; Yang, H.; Neoh, T. Y.; Zhang, H.; Ee, Y. K;; and Fernando, B. 2025. “Neuro-Symbolic Knowledge Reasoning for Procedural Video Question Answering with Knowledge wﬂ
Module Leaming (KML).” ArXiv, abs/2503.14957.



Spatial-Temporal World Models

World models as interface
(Li Fei Fei’s Marble)

 Words and flat media > 3D assets
humans can edit and share

2. World models as simulator
(Deepmind’s Genie)

’ Continuous’ Controuable Video H W., Chao, Y. W., M ian, A., Liu, M. Y., Fox, D., Mo, K., & Fei-Fei, L. (2026). PointWorld:
WorldS that agents can interaCt W|th uang, W., Chao, Y. W., Mousavian, A., Liu, M. Y., Fox, D., Mo, K., & Fei-Fei, L. ( )- PointWorld:

Scaling 3D World Models for In-The-Wild Robotic Manipulation. arXiv preprint arXiv:2601.03782.
* SIMA 2-style agents built on top

World models as cognition
(LeCun-style architectures)

* Multimodal perception - latent
variables and transition functions

* Internal predictive state
Dharmarajan, K., Huang, W., Wu, J., Fei-Fei, L., & Zhang, R. (2025). Dream2Flow: Bridging Video

“Why Fei-Fei Li, Yann LeCun and DeepMind Are All Betting on “World Models” Generation and Open-World Manipulation with 3D Object Flow. arXiv preprint arXiv:2512.24766 g 7
— and How Their Bets Differ” https://entropytown.com/articles/2025-11-13- w
world-model-lecun-feifei-li/



World Models as Global Workspaces

 Global Workspace Theory (Baars 2005) is
a foundational cognitive architecture that

describes global-information sharing
mechanisms in the brain.

* World Models function as global
workspaces to provide a unified,

interpretable representation of the current
state of perception, goals, and context that
IS broadcast across specialised cognitive
modules — essentially acting as a shared
internal model that enables coordination

and decision-making.

Baars, B. J. (2005). Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. In S. Laureys (Ed.), Progress in brain research (Vol. 150, pp.

45-53). Elsevier. https://doi.org/10.1016/S0079-6123(05)50004-9
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Sun, Ron & Franklin, Stan. (2007). Computational Models of Consciousness: A Taxonomy and Some Examples. Cambridge Handbook of Consciousness.

10.1017/CBO9780511816789.008.

O
ooo

Baars Global Workspace Theory as depicted in Sun, et.al. (2007)

A

wﬂ



World Models as Global Workspaces

* Episodic (event-centric, relational) vs
Spatial-Temporal (flow, physical)

* Event-centric Representation

* Event, Scene (time, space, causes,
characters and goals)

* Hierarchical time scales
* Extended (coarse grained)

* Brief (fine grained)
* Constructing World Models
* Event Segmentation
* Goal Inference
* Event Model

Tversky, B., Zacks, J. M., & Hard, B. M. (2008). The structure of experience. In T. F. Shipley & J. M. Zacks (Eds.), Understanding events: From perception to action (pp.
436-464). Oxford University Press. https://doi.org/10.1093/acprof:0s0/9780195188370.003.0019

A


https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195188370.003.0019

Event Perception and Segmentation

Event Segmentation Theory (EST)
proposes that perceptual systems
spontaneously segment an activity
into events as a side effect of trying
to anticipate upcoming
information.

 Event boundaries are associated
with changes in time, space, 4
causes, characters and goals

* Actions are hierarchically
organized by goals and subgoals

* Coarse-grained events focus on
objects, using more precise nouns and
less precise verbs.

* Fine-grained events focus on actions
onthose objects, using more precise
verbs but specifying the objects less
precisely.

<1
Kurby CA, Zacks JM. Segmentation in the perception and memory of events. Trends Cogn Sci. 2008 Feb;12(2):72-9. doi: 10.1016/j.tics.2007.11.004. PMID: 18178125 w‘
PMCID: PMC2263140.



Human State Sensing / Goal Inference

Human States/ Intent expressed multimodally

Robot infers human
state:

Fatigue

Cognitive
1 load
Anxiety
Confusion
Comfort

There are many

The plank e Speech ¢ Gesture ® Gaze ® Touch
pointing to one Pose ® Proxemicse Facial cues

goes first

@0 Y

Facial Cues

Approval

Robot infersintent/
goal:

Object
Action
Task
Situation

Human State & i
Intent (Latent) Physiology

Ambiguous verbalinstructions,
but pointing/gaze makes it
clear

The large, Ah, there’s
rectangular the large

d0 &
Gesture

-
A e

Proxemics

plank goes first

Monitoring human state (facial expressions, nodding etc.) can also help in

predicting errors and misalignment.
» Enables flexible (non-task specific) error management framework

Hand d b di Stiber, M., Taylor, R. H., & Huang, C. M. (2023, March). On using social signals to enable flexible error-aware HRI.
ands an ) eyes ar'e L.sz rea. |.ng In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (pp. 222-230). 7
butverbalinstruction is specific Bremers, A., Pabst, A., Parreira, M. T., & Ju, W. (2023). Using Social Cues to Recognize Task Failures for HRI: w
Overview, State-of-the-Art, and Future Directions. arXiv preprint arXiv:2301.11972.



Event Frame: Assembling Furniture

Explicit World Model [ Morning
. Location Living Room
Represe ntatlon Goal Assemble Furniture
Characters Human_1, Robot_1
Event Frame: Unpacking Event Frame: Reading Instructions Event Frame: Assembling
Time {Time 1} Time {Time 2} Time {Time 3}
Space {Configuration 1: Space {Configuration 2} Space {Configuration 3}
characters, objects} Sub-Goal Understand assembly Sub-Goal Assemble parts
Sub-Goal Identify and layout procedure
States
parts for assembly
States

States {Pre: Parts in box;
Post: Parts organised
on the floor}




Implications for Robotic Architectures

- ~

s N
Percepti " Perceptual '~
k2 N . Perceptual Buffer |« S ! P ) K
Neuro- \ Event Segmentation lL.----=. Grounding .
. | ‘/ ....... —_ "::::__.—'_ \-\ ....... —_/‘
Symbolic ‘. longterm |~ Inference —~.|  Shortterm  pe="°7 | T
’ Rule Learnin .~ =" 7] Conceptual Memor§ Belief Memory [~ ™~ = - ——— e T TS -~
\'\.\ _g,/ ya 1--. , Human-State ™
...... , ~. Sensing 2
Long-term Goal Reasoning S~ - -7
e - Goal Me./mory .
e TN r1.—— Goallnference Environment
: Common \ - o o~
"« L Episodic Encoding N 4
Ground A Episodic Memory |_ , _ )
’ . ke Skill Retrieval and Selection ‘\
'~ epresentation 7 ¥ Purple-coloured annotations added to
S~ = - . the architectural diagram from
Long-term Problem Solving > Short-term Choi, D. & Langley, P. (2018).
_.=] Skill Memory < Goal Memory Evolution of the Icarus cognitive
______ R4 Skill Learning architecture. Cognitive Systems
T - L Research, 48, p.25 - 38.
" <,
Neuro- \\ Motor Buffer Execution
Symbolic Rule ;
Learning -+ With the help of neuro-symbolic rule learning of relations and procedures, robotic
S~ .7 architectures get richer vocabulary of how to describe states and how to change
"""" certain states into another.

* These rules constitute an explicit world model that the robotic agents can use to

infer abstract states, form a common ground with another agent, select relevant w*
goals, and execute for the chosen goals.



Call To Action — Capability Gaps

* Robust Perceptual Grounding
* Visual scene parsing
e Situation recognition
* Human state sensing/recognition

* Accessible Common Ground Representation
* Expressive (capture rich social, multimodal, and fluid nature of HRI)
* Efficient (lightweight enough for real-time updating)

* Implementation in Embodied Cognitive Architecture
* Event perception and segmentation
* Human goal inference (Theory of Mind)
* Neuro-symbolic rule learning from continuous experience
* Common ground influence on robot's decision making



Thank you!



Architectures for Embodied Agents: A
Synergy of Classic and Foundation Model
Paradigms

Organised by:

Dongkyu Choi, Samsung Electronics

Pat Langley, Georgia Tech Research Institute

Jaeheung Park, Seoul National University

Kenneth Kwok, Agency for Science, Technology and Research
Sanjay Oruganti, Rensselaer Polytechnic Institute



NESYC: ANEURO-SYMBOLIC CONTINUAL LEARNER FOR
COMPLEX EMBODIED TASKS IN OPEN DOMAINS

Choi,W.; Park, J.; Ahn, S.; Lee, D.; and Woo, H. In Press. “A Neuro-Symbolic Continual Learner for Complex Embodied Tasks in Open Domains.” In 2025 13th International .
Conference on Learning Representations (ICLR). w



Knowledge Module Learning

Nguyen, T.-S.; Yang, H.; Neoh, T. Y.; Zhang, H.; Ee, Y. K;; and Fernando, B. 2025. “Neuro-
Symbolic Knowledge Reasoning for Procedural Video Question Answering with Knowledge
Module Leaming (KML).” ArXiv, abs/2503.14957.



Event Model - Representation

* Scripts and Frames

CHAIR frame
A-kind-of: furniture
number-of-legs: an integer (default=4)
style-of-back: straight, cushioned, ...
number-of-arms: 0,1,2
John's-chair frame
a-kind-of: furniture
number-of-legs: 4
style-of-back: cushioned
number-of-arms: 0

Generic Restaurant Frame

a-kind-of:

Business Establishment

Types:

Range: (Cafeteria, Seat-Yourself, Wait-to-be-seated,
Fastfood)

Default: IF plastic-orange-counter THEN fastfood
IF stack-of-trays THEN cafeteria

IF wait-for-waitress-sign OR reservation-made
THEN wait-to-be-seated

OTHERWISE seat_yourself

Location:

Range: an ADDRESS

if-needed: (Look at the menu)

Name:

if needed: (Look at the menu)

Food-style:

Range: (Burgers, Chinese, American, Seafood,
French)

Default: Chinese

if-added: (Update Alternative of Restaurant)

Time-of-Operation:

Range: a time-of-day

Default: open evenings except Mondays

Payment form:

Range: (Cash, CreditCard, Check, Washing-Dishes
Script)

Event-Sequence:

Default: Eat-at-Restaurant Script

A Framework for Representing Knowledge

Marvin Minsky

with some foodstyle

taurants with the same

MIT-AI Laboratory Memo 306, June, 1974.




Event Model - Representation

* Situational Scene Graphs



Event Model - Representation

Belief-Desire-Intention (BDI) Agent Model

* Belief: Agent's understanding of the world,

including itself and other agents Michael Bratman

* Desire: Agent's goals, preferences, and values

* Intentions: Agent's plans, strategies, and actions

Agent State expressed as
Beliefs-Desires-Intentions (BDI)

Mccann, H., & Bratman, M.E. (1991). Intention, Plans, and Practical Reason.
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