


Reliable HRI with Embodied AI

Human 
environments are 
inherently social, 
multimodal, and 
fluid

Subject to the 
goals and 
expectations 
of humans 
involved in the 
interaction

EAI systems need to 
perceive, interpret, and 
respond in ways that are 
consistent, comprehensible 
and aligned with human 
expectations

Reliability in HRI is contextually determined: 

Proposed Approach:
HRI centred on building and updating an accessible explicit world model, 

representing the common ground between human and EAI to align robot 
behaviours with human expectations.

Formal 
verification

of
Black Box 

models



He must be referring to 
XXX subassembly 

because in has been 
focusing on that area, 

pointing approximately 
to that part, and he is 

at step C.

Common Ground 
in Human-Robot 
Collaboration

• Common ground = shared 
understanding of tasks, 
communications, and 
environments between agents 
(Dillenbourg and Traum, 2006)

• Aligns human and robots in 
terms of perception, cognition, 
and embodiment

• Forms the basis for cooperative 
action in Human-Robot 
Collaboration

Dillenbourg, P., & Traum, D. (2006). Sharing Solutions: Persistence and Grounding in Multimodal Collaborative Problem Solving. 
Journal of the Learning Sciences, 15(1), 121–151. https://doi.org/10.1207/s15327809jls1501_9



Building 
Common Ground

• Perceptual Grounding
• Objects
• Actors
• Activity (Task), Situation (State)

• Joint Attention and Embodied 
Communication

• Monitoring speech and behaviours 
(gaze, gestures etc.)

• Continuous intention inference
• Acting expressively to convey 

intentions



Explicit World Model
• Cognitive Architectures (CAs)

• Use explicit world models to represent 
the environment, relational concepts, 
and executable procedures

• Raw sensory data is transformed into 
symbols and rules – a high level, 
interpretable and structured 
abstraction of the environment –  for 
cognitive processing

• Heavily dependent on human 
handcrafting

Long-term
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Langley, P. & Choi, D (2006). “A Unified Cognitive Architecture for Physical Agents.” In 
Proceedings of the 21st National Conference on Artificial Intelligence, Vol 2, 1468-1474 



Explicit World Model
• Neuro-symbolic Architectures

• Explicit, interpretable, and self-evolving world 
models

• Develop internal representations without human 
handcrafting

Choi,W.; Park, J.; Ahn, S.; Lee, D.; and Woo, H. In Press. “A Neuro-Symbolic Continual Learner for Complex Embodied Tasks in Open Domains.” In 2025 13th International Conference 

on Learning Representations (ICLR).

Nguyen, T.-S.; Yang, H.; Neoh, T. Y.; Zhang, H.; Ee, Y. K.; and Fernando, B. 2025. “Neuro-Symbolic Knowledge Reasoning for Procedural Video Question Answering with Knowledge 

Module Learning (KML).” ArXiv, abs/2503.14957.

NeSyC (Choi et al., in press)

Knowledge Module Learning (Nguyen et al. 2025)



Spatial-Temporal World Models
1. World models as interface        

(Li Fei Fei’s Marble)
• Words and flat media → 3D assets 

humans can edit and share

2. World models as simulator 
(Deepmind’s Genie)
• Continuous, controllable video 

worlds that agents can interact with
• SIMA 2-style agents built on top

3. World models as cognition 
(LeCun-style architectures)
• Multimodal perception → latent 

variables and transition functions
• Internal predictive state

“Why Fei-Fei Li, Yann LeCun and DeepMind Are All Betting on “World Models” 

— and How Their Bets Differ” https://entropytown.com/articles/2025-11-13-
world-model-lecun-feifei-li/

Dharmarajan, K., Huang, W., Wu, J., Fei-Fei, L., & Zhang, R. (2025). Dream2Flow: Bridging Video 
Generation and Open-World Manipulation with 3D Object Flow. arXiv preprint arXiv:2512.24766.

Huang, W., Chao, Y. W., Mousavian, A., Liu, M. Y., Fox, D., Mo, K., & Fei-Fei, L. (2026). PointWorld: 
Scaling 3D World Models for In-The-Wild Robotic Manipulation. arXiv preprint arXiv:2601.03782.



World Models as Global Workspaces
• Global Workspace Theory (Baars 2005) is 

a foundational cognitive architecture that 
describes global-information sharing 
mechanisms in the brain. 

• World Models function as global 
workspaces to provide a unified, 
interpretable representation of the current 
state of perception, goals, and context that 
is broadcast across specialised cognitive 
modules — essentially acting as a shared 
internal model that enables coordination 
and decision-making. 

Baars, B. J. (2005). Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. In S. Laureys (Ed.), Progress in brain research (Vol. 150, pp. 

45–53). Elsevier. https://doi.org/10.1016/S0079-6123(05)50004-9
Sun, Ron & Franklin, Stan. (2007). Computational Models of Consciousness: A Taxonomy and Some Examples. Cambridge Handbook of Consciousness. 

10.1017/CBO9780511816789.008. 

Baars Global Workspace Theory as depicted in Sun, et.al. (2007) 



World Models as Global Workspaces

• Episodic (event-centric, relational) vs 
Spatial-Temporal (flow, physical)

• Event-centric Representation
• Event, Scene (time, space, causes, 

characters and goals)
• Hierarchical time scales

• Extended (coarse grained)
• Brief (fine grained)

• Constructing World Models
• Event Segmentation
• Goal Inference
• Event Model

Tversky, B., Zacks, J. M., & Hard, B. M. (2008). The structure of experience. In T. F. Shipley & J. M. Zacks (Eds.), Understanding events: From perception to action (pp. 

436–464). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195188370.003.0019

https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195188370.003.0019


Event Perception and Segmentation
Event Segmentation Theory (EST) 
proposes that perceptual systems 
spontaneously segment an activity 
into events as a side effect of trying 
to anticipate upcoming 
information.
• Event boundaries are associated 

with changes in time, space, 
causes, characters and goals

• Actions are hierarchically 
organized by goals and subgoals
• Coarse-grained events focus on 

objects, using more precise nouns and 
less precise verbs.

•  Fine-grained events focus on actions 
on those objects, using more precise 
verbs but specifying the objects less 
precisely.

Kurby CA, Zacks JM. Segmentation in the perception and memory of events. Trends Cogn Sci. 2008 Feb;12(2):72-9. doi: 10.1016/j.tics.2007.11.004. PMID: 18178125; 

PMCID: PMC2263140.



Human State Sensing / Goal Inference

Stiber, M., Taylor, R. H., & Huang, C. M. (2023, March). On using social signals to enable flexible error-aware HRI. 

In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (pp. 222-230).

Bremers, A., Pabst, A., Parreira, M. T., & Ju, W. (2023). Using Social Cues to Recognize Task Failures for HRI: 

Overview, State-of-the-Art, and Future Directions. arXiv preprint arXiv:2301.11972.

Monitoring human state (facial expressions, nodding etc.) can also help in 
predicting errors and misalignment.
➢ Enables flexible (non-task specific) error management framework

Human State & 
Intent (Latent)

Speech

Gaze

  Pose

Human States / Intent expressed multimodally
Speech • Gesture • Gaze • Touch
Pose • Proxemics• Facial cues

Gesture

   
Facial Cues

    Proxemics

Physiology

Robot infers human 
state:

• Fatigue 
• Cognitive 

load
• Anxiety
• Confusion
• Comfort
• Approval

Robot infers intent / 
goal:
• Object 
• Action
• Task
• Situation

The plank 
goes first

There are many 
planks, but he is 
pointing to one

Ambiguous verbal instructions, 
but pointing/gaze makes it 
clear

The large, 
rectangular 

plank goes first

Ah, there’s 
the large 

one

Hands and eyes are busy reading 
but verbal instruction is specific



Explicit World Model
Representation

Event Frame: Unpacking

Time {Time 1}

Space {Configuration 1:  
characters, objects}

Sub-Goal Identify and layout 
parts for assembly

States {Pre: Parts in box;
Post: Parts organised 
on the floor}

}

Event Frame: Assembling Furniture

Time Morning

Location Living Room

Goal Assemble Furniture

Characters Human_1, Robot_1

Event Frame: Reading Instructions

Time {Time 2}

Space {Configuration 2}

Sub-Goal Understand assembly 
procedure

States …

Event Frame: Assembling

Time {Time 3}

Space {Configuration 3}

Sub-Goal Assemble parts

States …

…



Implications for Robotic Architectures
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Purple-coloured annotations added to 

the architectural diagram from
Choi, D. & Langley, P. (2018). 

Evolution of the Icarus cognitive 
architecture. Cognitive Systems 

Research, 48, p.25 - 38.

• With the help of neuro-symbolic rule learning of relations and procedures, robotic 
architectures get richer vocabulary of how to describe states and how to change 
certain states into another.

• These rules constitute an explicit world model that the robotic agents can use to 
infer abstract states, form a common ground with another agent, select relevant 
goals, and execute for the chosen goals.



Call To Action – Capability Gaps

• Robust Perceptual Grounding
• Visual scene parsing
• Situation recognition
• Human state sensing/recognition

• Accessible Common Ground Representation
• Expressive (capture rich social, multimodal, and fluid nature of HRI) 
• Efficient (lightweight enough for real-time updating)

• Implementation in Embodied Cognitive Architecture
• Event perception and segmentation
• Human goal inference (Theory of Mind)
• Neuro-symbolic rule learning from continuous experience
• Common ground influence on robot's decision making



Thank you!



Architectures for Embodied Agents: A 
Synergy of Classic and Foundation Model 
Paradigms

Organised by:
Dongkyu Choi, Samsung Electronics
Pat Langley, Georgia Tech Research Institute
Jaeheung Park, Seoul National University
Kenneth Kwok, Agency for Science, Technology and Research
Sanjay Oruganti, Rensselaer Polytechnic Institute



NESYC: A NEURO-SYMBOLIC CONTINUAL LEARNER FOR 
COMPLEX EMBODIED TASKS IN OPEN DOMAINS

Choi,W.; Park, J.; Ahn, S.; Lee, D.; and Woo, H. In Press. “A Neuro-Symbolic Continual Learner for Complex Embodied Tasks in Open Domains.” In 2025 13th International 

Conference on Learning Representations (ICLR).



Knowledge Module Learning

Nguyen, T.-S.; Yang, H.; Neoh, T. Y.; Zhang, H.; Ee, Y. K.; and Fernando, B. 2025. “Neuro-

Symbolic Knowledge Reasoning for Procedural Video Question Answering with Knowledge 

Module Learning (KML).” ArXiv, abs/2503.14957.



Event Model - Representation

• Scripts and Frames



Event Model - Representation

• Situational Scene Graphs 



Event Model - Representation

Belief-Desire-Intention (BDI) Agent Model
• Belief: Agent's understanding of the world, 

including itself and other agents
• Desire: Agent's goals, preferences, and values
• Intentions: Agent's plans, strategies, and actions

Agent State expressed as
Beliefs-Desires-Intentions (BDI)

Michael Bratman

Mccann, H., & Bratman, M.E. (1991). Intention, Plans, and Practical Reason.
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