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Abstract

We propose a framework for early action recognition and
anticipation by correlating past features with the future us-
ing three novel similarity measures called Jaccard vector
similarity, Jaccard cross-correlation and Jaccard Frobenius
inner product over covariances. Using these combinations
of novel losses and using our framework, we obtain state-of-
the-art results for early action recognition in UCF101 and
JHMDB datasets by obtaining 91.7 % and 83.5 % accu-
racy respectively for an observation percentage of 20. Sim-
ilarly, we obtain state-of-the-art results for Epic-Kitchen55
and Breakfast datasets for action anticipation by obtaining
20.35 and 41.8 top-1 accuracy respectively.

1. Introduction
Action anticipation ability of humans is an evolution-

ary gift that allows us to perform daily tasks effectively,
efficiently and safely. This phenomena is known as men-
tal time travel [30]. Even if humans are good at predict-
ing the immediate future, how this happens internally in-
side our brain remains a mystery. In an era where Ar-
tificial Intelligence is growing, human action anticipation
has naturally become an important problem in Computer
Vision. Various forms of action prediction problems have
been studied in the literature such as early action recogni-
tion [5, 15, 17, 18, 25, 26, 28, 36], anticipation [4, 20, 23]
and activity forecasting [1, 14, 22]. The objective of Early
Action Recognition [17] (EAR) (also known as action pre-
diction) is to classify a given video from a partial obser-
vation of the action. In this case, the observed video and
the full video contain the same action and methods observe
about 10%-50% of the full video to recognize the action.
In contrast, Action Anticipation (AA) methods [4, 20] aim
at predicting a future action δt seconds before the future
action starts and the observed video contains an action dif-
ferent from the future action. In both cases, models observe
the first part of the video and predict the ongoing action or
the future action.

Humans have the natural ability to correlate past experi-

ences with what might happen in the future. For example,
when we see someone walking toward the door inside a cor-
ridor, we can say that person will open the door with a high
confidence. Perhaps the action of walking towards the door
correlates with the future action of ”opening the door” with
a high probability and humans may learn these associations
from a very young age. In this paper, we propose to solve
the problem of action anticipation and early prediction by
correlating past features with the future. To do this, we pro-
pose a new framework and three novel loss functions.

Our framework maximizes the correlation between ob-
served and the future video representations. By doing so, at
train time our model learns to encapsulate future action in-
formation given the observed video. At test time our model
exploits this correlation to infer future temporal information
and makes accurate action predictions. Similar ideas have
been explored before in the literature. However, what re-
mains unclear is at what abstraction one should exploit this
correlation between the future and past? We argue it is bet-
ter to exploit this correlation at the higher levels of the video
representation and also at class level. The second question
is how to maximize this correlation at higher levels of the
video representation?

In this paper, we show that commonly used techniques
such as minimizing the L2 distance or maximizing the
vector correlation or the cosine similarity between future
and observed video representations is not ideal. Although
conceptually the vector correlation makes sense, it is not
bounded. The cosine vector similarity seems a relevant
choice for this problem. However, when used for deep rep-
resentation learning, there are limitations to cosine similar-
ity. We discuss these limitations in detail in section 3.3.1.
Briefly, the cosine similarity between a vector z and kz
(where k is a scalar) is always 1.0 (or -1.0) irrespective of
the value of k. This property of cosine similarity could po-
tentially hurt the learned representation. Ideally, a vector
similarity measure should take into account both the mag-
nitude and angle between vectors and the similarity should
be bounded. Inspired by Jaccard Similarity overs sets, we
propose Jaccard Vector Similarity (JVS) which has good
properties when learning representations by maximizing the



vector similarities.
Furthermore, we show that Jaccard similarity can be ex-

tended to not only vectors, but also for matrices. Specif-
ically, in this paper we extend Frobenius Inner Product
(FIP) to work with covariance matrices and propose a new
similarity measure called Jaccard Frobenius Inner Product
(JFIP). We extract the covariance matrix of the observed and
future videos and make the observed covariance matrix con-
tains information about the future by maximizing JFIP be-
tween them. Unlike FIP over covariance matrices, the JFIP
similarity is bounded between -1 and 1 and smooth over
the space of covariance matrices. We also propose to ex-
ploit cross-correlations between observed and future video
representations and propose a new similarity measure based
on Jaccard similarity over cross-correlations called Jaccard
cross-correlation (JCC). By exploiting bounded similarity
measures such as JVS, JFIP and JCC, we correlate past with
the future for action anticipation and early recognition us-
ing a common framework. We use slightly different archi-
tectures for EAR and AA problems. We show the benefit of
Jaccard similarity measures to learn video representations
suitable for future prediction tasks in an end-to-end man-
ner. In a summary, our contributions are as follows:

(1) We propose a common framework for action antici-
pation and early action recognition by exploiting the corre-
lations between observed and future video representations.
We show some limitations of cosine similarity when used
for deep representation learning and propose a novel sim-
ilarity measure called Jaccard Vector Similarity. We ex-
perimentally show that JVS is better than cosine similar-
ity, vector correlation, and L2 loss for the task of correlat-
ing past features with the future for action anticipation and
early action recognition. (2) We further extend the Jaccard
Similarity for covariance matrices and cross-correlation.
We propose two novel similarity measures called Jaccard-
cross-correlation and Jaccard Frobenius Inner Product over
covariance matrices which performs better than standard
cross-correlation, Frobenius inner product, Frobenius norm
over covariance matrices, and Bregman divergence. We
show the impact of these novel loss functions for action an-
ticipation and early prediction on four standard datasets.

2. Related work
In early action recognition the objective is to classify on-

going action from partially observed action video. These
methods observe 10% - 50% of the video and then try to rec-
ognize the action [25, 15, 26]. These methods assume the
input is a well trimmed video containing a single human ac-
tion. Early action recognition models can be classified into
various groups. There are methods that aim to learn video
representations suitable for early action recognition by han-
dling uncertainty using new loss functions [26, 10, 18]. Sec-
ond group of methods generate features for the future and

then use classifiers to predict actions using generated fea-
tures [28, 32]. Third group of methods generate future
images (either RGB or motion images) and then classify
them into human actions using convolution neural networks
[37, 34, 24]. However, RGB image generation for the future
is a very challenging task, especially for a diverse video se-
quence. Similarly, some methods aim to generate future
motion images and then try to predict action for the fu-
ture [24]. Perhaps these methods may not be able to gen-
erate details of the scenes and actions and therefore not an
ideal solution for action anticipation and early action recog-
nition.

Our method is somewhat similar to those methods that
generate future features. However, we do not explicitly gen-
erate future features, rather we correlated future video rep-
resentations with the observed data so that we can encap-
sulate enough information about the future in our observed
video representation. Besides, we train our models end-to-
end to take advantage of novel loss functions. Somewhat
similar idea to ours is the work of [31] where they train two
separate action recognition and anticipation models. They
distill information from the recognition model to the antic-
ipation model using unlabeled data. In contrast, we do not
have two dedicated models for recognition and anticipation
and instead of model distillation, we directly make use of
future video representations to correlated the past observa-
tions with the future using a novel set of Jaccard similarity
losses over vectors, cross-correlations and covariance ma-
trices of past and the future features.

Authors in [20], use prediction and transitional models
for action anticipation. We also follow a similar idea for
action anticipation. However, our model makes an explicit
connection to the future features by exploiting correlations
between observed and future video representations making
both prediction and transitional models more effective. Au-
thors in [33] use a transformer like architecture to encode
observed video and then use progressive feature generation
models to generate future features and then classify them.
Interestingly, authors make use of L2 loss to minimize fea-
ture reconstruction error. Indeed, encoder-decoder type of
architecture is a natural choice for action anticipation and
shown to be very effective for action anticipation [4, 6].
Recently, an effective way to aggregate temporal informa-
tion using so-called recent and spanning features for action
anticipation is demonstrated in [27]. We believe the find-
ings of [27] is orthogonal to our work. Some other methods
forecast more than one action into the future after observing
around 10-50% of a long video [19, 1, 14, 22, 40, 21]. In
this paper, we only focus on short term action anticipation.
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Figure 1. High level visual illustration of early action prediction
architecture.

3. Method

3.1. Problem statement: early action recognition

The objective of early action recognition is to predict an
ongoing action as early as possible. Typically, methods ob-
serve p% of the action and then predict the category of on-
going action. Let us define the observed video sequence
which corresponds to p% of the action by Vo = 〈I1, · · · It〉
and the video sequence which corresponds to full action by
V = 〈I1, · · · , It, · · · , IT 〉 where Ij is the jth frame of the
video containing action label y. The objective is to predict
the action y of the video V only by processing the first part
of this video denoted by Vo, i.e. observed video.

3.2. Our architecture for early action prediction.

A visual illustration of our early action prediction model
is shown in Figure 1. We extract visual features from the
observed video Vo using an end-to-end trained feature sum-
marizing network (e.g. Resnet(2D+1D) or Resnet50+GRU)
to get feature vector zt. The zt feat summarizes the spatial
temporal information of the observed video Vo. Similarly,
we extract the feat z from the entire video V using the same
summarizing network.

At test time we classify the feature vector from the ob-
served video (i.e. zt) to get the action label ŷ. Because the
observed video Vo does not contain all information about
the full action, during training we transfer information from
the full video V to the observed feature vector zt. By doing
so, we aim to generate a video representation zt that entails
information about the future unseen video. To do that we
train our model by maximizing the similarity between zt
and z. However, directly maximizing the similarity is not
effective as obviously the zt and z are obtained from dif-
ferent sources of information. In-fact, z from the full video
contains more information and our objective is to transfer

maximum amount of information to the observed feature
vector zt from z. To do that we use a linear projection on
z to obtain zh and then maximize the similarity between
zh and zt. We experimentally validate different forms of
non-linear functions to map z → zh and found that linear
mapping is the best.

We maximize the similarity between zt and zh by func-
tion φ(zh, zt) that measures some notion of similarity be-
tween zh and zt. Therefore, during training, we minimize
the following objective function.

LCE(y, ŷ) + λexp(−φ(zh, zt)) (1)

Here LCE(y, ŷ) is the cross-entropy loss and λ is a scalar
hyper-parameter.

3.3. Suitable loss functions

It is important to select suitable loss function for
φ(zh, zt). Typically, natural choices would be to use co-
sine similarity or simply the vector correlation. However,
we argue that a combination of vector similarity, cross-
correlation and covariance measure are more suitable as
these measures provide a comprehensive way of maximiz-
ing similarity between zh and zt. Next, we present novel
similarity measures which are more suitable for the tasks.

3.3.1 Jaccard Vector Similarity Loss

We argue that measures such as cosine similarity between
vectors are not ideal when we want to learn representation
by maximizing the similarity between pairs of data points.
For example, the cosine similarity between a vector z and
kz would be 1 even if the scalar k is infinitely large. This
has an implication on the learning process as two vectors
that have very different magnitudes are similar with respect
to the cosine similarity due to small angle. On the other-
hand measures such as L2 distance are unbounded and
harder to optimize and usually do not generalize to the test-
ing data. To overcome this limitation of cosine-similarity,
we propose a novel vector similarity measure called Jac-
card Vector Similarity. Typically, the Jaccard similarity is
only defined over sets by computing the fraction of the car-
dinality of intersection set over the cardinality of the union
of sets. We extend this concept somewhat analogically over
vectors and define the Jaccard Vector Similarity as follows.

φ(zh, zt) =
2zh · zt

zh · zh + zt · zt
(2)

For a given pair of vectors z and kz (where k is a scalar),
we observe the following differences in cosine similarity
and the Jaccard Vector Similarity (JVS) as summarized in
Table 1. Illustration of the behavior of Jaccard Vector Sim-
ilarity is shown in Figure 2. In this figure, you observe the
behavior of Jaccard Vector Similarity for different k values.



Property Cosine Jaccard
k →∞ 1 0.
k → 0 Not defined 0.
k → −∞ -1 0.

Functional Form sign(K)× 1. 2k
k2+1

Table 1. Properties of Jaccard Vector Similarity for two vectors z
and kz where k is a scalar.

Figure 2. The behavior of Jaccard Vector Similarity (left) vs Co-
sine Similarity (right) for two vectors z and kz where k is a scalar.
The cosine similarity between z and kz will be +1.0 or -1.0 irre-
spective the value of k and cosine similarity is not smooth.

Both cosine and JVS is based on the vector correlation, i.e.
zh · zt. However the normalization of them is different.
Now imagine δk is a small vector and the cosine similar-
ity between z and k(z+ δk) will be closer to 1.0 irrespec-
tive of the values of scalar k, where (k > 0.). We believe
this behavior of cosine similarity is not ideal for learning
representations in the context of deep learning, especially
because it is not a smooth function and similarity does not
depend on the magnitude. In contrast, Jaccard Vector Simi-
larity considers both angle and the magnitude of two vectors
to determine the bounded similarity. Especially, the JVS is
fully differentiable and a smooth function over the entire
vector space.

We argue that JVS is a better option than cosine similar-
ity, especially, for deep representation learning methods and
we propose to use it for training our action prediction mod-
els where the term φ(zh, zt) in Equation 1 is obtained by
JVS. Therefore, we maximize the similarity between fea-
ture vectors derived from the observed and future videos
using JVS. This allows us to transfer information from full
video to the observed video during training. In other words,
we correlate future information with past observations to
make effective future predictions.

3.3.2 Jaccard Cross-Correlation Loss.

Furthermore, we extend the similarity maximization to
cross-correlations and covariances. In this case, the input to
similarity function φ(·, ·) is either a cross-correlation matrix
or a covariance matrix obtained from the batch data. For a
given batch of n videos, we obtain observed data matrix Zt

and the full feature matrix Z where each row in these ma-
trices are obtained from the corresponding feature vectors
(zt, z) of each video in the batch. As before, we project the

full video features z to zh by linear mapping and construct
matrix Zh.

Then the cross-correlation matrix of Zh and Zt is ob-
tained byE[ZT

h ×Zt] [7] whereE[] is the expectation. Then
we define the similarity loss based on the cross-correlation
matrices and the Jaccard similarity as follows:∥∥∥∥exp(−2 E[ZT

h × Zt]

E[ZT
h × Zh] + E[ZT

t × Zt]
)

∥∥∥∥
mean

(3)

where ||C||mean is the mean norm of the matrix define by
1
n2

∑n
i=1

∑n
j=1 Ci,j . We call this measure as the Jaccard

Cross-Correlation (JCC) loss. The objective of this JCC
loss is to maximize the cross-correlation between observed
and future data and therefore to transfer more (future) infor-
mation to the observed video representation.

3.3.3 JFIP: Jaccard Frobenius Inner Product Loss.

Finally, we also propose a new similarity measure by ex-
tending the Frobenius inner product using Jaccard similar-
ity. For this we use covariance information of observed and
future videos. Let us define the covariance matrix of Zh by
Ch and the covariance matrix of Zt is Ct. The new Jaccard
Frobenius Inner Product of covariance matrices is defined
as follows:

φ(Zh, Zt) =
2 〈Ch, Ct〉F

〈Ch, Ch〉F + 〈Ct, Ct〉F
(4)

where 〈Ca, Cb〉F denotes the Frobenius inner product be-
tween matrices Ca and Cb. Similar to Jaccard vector
similarity, the Jaccard Frobenius Inner Product (JFIP) has
bounded similarity and has a nice smoothness property
which is useful for deep representation learning tasks.
Specifically, the main idea of JFIP is to make sure that the
observed video representation contains information about
the second order statistics of the future video data. In other
words, we aim to transfer covariance information of the fu-
ture to the past representation.

We propose to make use of Jaccard vector similarity
(JVS), Jaccard cross-correlation (JCC) and Jaccard Frobe-
nius inner product (JFIP) for optimizing the representation
using the loss function in equation 1. While JVS pro-
vides a direct measure of similarity between observed and
full videos, JCC and JFIP losses use higher order statisti-
cal information between observed and full video features.
All these losses provide complementary information and
we argue that ”Jaccard” measures are bounded and smooth
and therefore effective in learning representation when we
maximize similarity. Therefore these are better than tradi-
tional measures such as vector correlation, cosine similarity,
L2 distance, traditional cross-correlation, Frobenius inner
product and Bregman divergence [8] over covariance matri-
ces. Once we define the similarity function, to transform



Observed Video: 𝑉𝑜 Gap:  𝛿𝑡 Future Video

Current Action

Summary 
Network

𝑧𝑡

𝑦𝑜

Summary 
Network

𝑧Projector 
Linear

𝑧ℎ

Classifier

𝑦𝑓

Maximize 
the 

similarityClassifier

Figure 3. High level visual illustration of action anticipation archi-
tecture.

them to a loss function, we use the negative exponential
exp(−φ()) function as shown in Table 2 when needed.

3.4. Action anticipation with Jaccard losses.

In this section we further extend our architecture for ac-
tion anticipation. In action anticipation the objective is to
predict an action δt seconds before action starts. Let us as-
sume that the length of the observed video is to seconds and
then the next action starts at to + δt seconds. As before,
let us denote the observed video by Vo and the future action
video by Vf . Let us also define the label of observe action
by yo and the label of the future action by yf . We predict
the next future action yf by processing the observed video
Vo which ends δt seconds before the action yf starts.

3.5. Architecture for action anticipation.

A high level illustration of our action anticipation archi-
tecture is shown in Figure 3. We obtain the feature repre-
sentation zt from the observed video and then classify it to
obtain the observe action ŷo using a linear softmax classi-
fier. We transform zt to zh using a linear projection. The
vector zh essentially simulates the feature representation for
the future action yf . In-fact, we classify zh using the same
action classifier as before to obtain ŷf .

During training, we also extract the actual feature repre-
sentation of the future video denoted by z and maximize the
similarity between z and zh using JVS, JCC and JFIP as be-
fore. If we denote the video summary network by g(), then
z = g(Vf ) and zt = g(Vo). Typically we limit the length
of Vo and Vf to be short clips of 2 seconds. The anticipa-
tion gap (δt) is usually set to 1 second. Now loss function
consists of two cross-entropy losses as follows:

LCE(yo, ŷo) + LCE(yf , ŷf ) + λexp(−φ(zh, z)) (5)

where LCE(yo, ŷo) is the cross-entropy loss for observed
action and LCE(yf , ŷf ) is the cross entropy loss for the fu-
ture action label. The term exp(−φ(zh, z)) is obtained by
JVS, JCC and JFIP.

It is intuitive to assume that there is a significant bias
when predicting next action if we know the previous action.
For example, if we observe action ”open door”, it is more
likely to see an future action such as ”turn on lights”. To
explore this bias in action transition space, we propose to
make use of a linear projection that allows us to predict the
next action from the observed action. Therefore, we also
predict the next action (denoted ˆyof ) by linearly projecting
the observed action score vector. Therefore, during training
we have the following multi-task training loss.

LCE(yo, ŷo)+LCE(yf , ˆyof )+LCE(yf , ŷf )+λexp(−φ(zh, z))
(6)

We optimize the above objective function for action antici-
pation. The loss term LCE(yo, ŷo) makes sure that the clas-
sifier in Figure 3 is well trained for observed actions. The
term LCE(yf , ˆyof ) makes sure that the future action predic-
tion obtained by linearly transforming the observed action
is accurate. The term λexp(−φ(zh, z) makes sure that zh
is highly correlated with the actual future action represen-
tation z. This correlation helps to predict both ˆyof and ŷf
accurately. At test time, we take the sum of scores ŷof and
ŷf to get the correct future action prediction score.

3.6. Alternative loss functions

Now we present some alternative loss functions that we
evaluate in our experiments to demonstrate the effective-
ness of JVS, JCC and JFIP loss. For this discussion let us
assume that observed video representation is zt and the fu-
ture representation is z. The objective of these loss func-
tions is to minimize the differences between zt and z or to
maximize the similarity. For batch wise measures such as
covariance and cross-correlation measures, we denote the
observed batch of video representation by matrix Zt where
each row represents a vector from a video. Similarly, Z is
the representation of the future video. The covariance ma-
trix of the observed batch obtained from Zt is denoted by
Ct and the covariance matrix obtained from Z is denoted
by Cz . In Table 2 we present all loss functions we compare
in our experiments.

4. Experiments

In this section we evaluate our early action prediction
and action anticipation models. First, we evaluate the im-
pact of novel loss functions for early action anticipation in
section 4.1 and then present action anticipation results in
section 4.2.



Name Loss Equation
Correlation (Corr.) exp(−zt · z)
Cosine exp(− zt·z

||zt||×||z|| )

L2 exp(||zt − z||)
Jaccard vector similarity (JVS) exp(−2 zt·z

zt·zt+z·z )

Cross-correlation measures
Cross-correlation (CC) ||exp(−E[ZT

t × Z])||mean

JCC
∥∥∥exp(−2 E[ZT×Zt]

E[ZT×Z]+E[ZT
t ×Zt]

)
∥∥∥
mean

Covariance measures
Frobenius norm (FN) exp(||Ct − Cz||F )
Bregman divergence (BD) [8] Trace{CtC

−1
z + CzC

−1
t } − d

Frobenius inner product (FIP) exp(−〈Cz, Ct〉F )
JFIP exp(− 2〈Cz,Ct〉F

〈Cz,Cz〉F+〈Ct,Ct〉F
)

Table 2. Different loss functions used in this paper.

4.1. Early action prediction results

We use UCF101 [29] and JHMDB [11] datasets to eval-
uate early action prediction. First, we evaluate the impact
of loss functions presented in Table 2. We use Resnet50 as
the frame level feature extractor and then use a GRU model
to summarize the temporal information of the observed and
future features to implement the architecture presented in
Figure 1. The last hidden state of GRU would generate zt
and z. We use Adam optimizer with a learning rate of 0.001
and batch size of 64 videos. Resnet50 model is pretrained
on the ImageNet dataset for image classification. We use
both RGB and optical flow frames as the input in a two-
stream architecture for JHMDB dataset. However, we use
only the RGB stream for the UCF101 dataset to complete all
ablation studies. We set λ to be 1.0 for all bounded losses
and 0.001 unbounded losses (such as for Frobenius norm
loss, L2 loss, Cross-correlation loss, Bregman divergence
and Frobenius inner product). Setting λ to larger values for
unbounded losses causes the network to stop learning. Ex-
perimentally, we evaluate a range of values for λ and found
that 0.001 is good for unbounded losses.

In early action prediction, we observe 10% or 20% of
the video and then predict the action of the video. Some
UCF101 videos are very long and therefore following prior
work, if the video is longer than 250 frames, we only ob-
serve a maximum of 50 frames. Our baseline model simply
classifies the video using observed video representation zt
using a linear classifier. This is equivalent to setting λ = 0
in equation 1. We report results for various loss functions
in Table 3.

As we can see from the results, our Jaccard Vector Sim-
ilarity (JVS) loss obtains better results than correlation, co-
sine similarity and L2 losses. Cosine similarity and L2
losses perform better than the baseline model indicating that
our architecture of early action anticipation is useful even
under these losses. Interestingly, JVS loss is 10.8% better
than Cosine loss on JHMDB dataset for observation per-
centage of 10% indicating the impact of this new bounded
and fully differentiable loss. Similar trends can be seen for

dataset JHMDB UCF101 (RGB)
observation (%) 10% 20% 20%
Baseline 49.0 50.4 66.4

Vector similarity measures
Corr. 47.8 51.3 66.4
Cosine 51.8 54.5 66.9
L2 50.4 51.5 67.5
JVS 62.6 64.7 72.3

Cross-correlation measures
Cross-correlation 49.2 49.8 66.0
JCC 60.3 66.1 70.2

Covariance measures
Frobinious norm 53.3 55.0 69.9
Bregman divergence 51.1 44.1 64.4
Frobenius inner product 53.4 60.5 66.2
JFIP 56.4 64.4 71.4
Table 3. Results using Resnext50 as the base model.

dataset JHMDB UCF101
Observation (%) 10% 20% 20%
Baseline 49.0 50.4 78.9
FN + L2 + Cosine 57.8 64.9 82.0
JVS + JCC + JFIP 64.3 69.1 85.8

Table 4. Combined losses using rgb+optical flow with Resnet50 as
the base model on JHMDB and UCF101 datasets.

UCF101. The main advantage of JVS is that it takes into ac-
count both the angle and the magnitudes of two vectors into
consideration while keeping good properties of cosine sim-
ilarity and makes sure the loss is differentiable at all points
in the space. These properties are very important when
we learn representations by comparing similarity between
two vectors using deep learning. JVS reports a massive im-
provement over the baseline model.

Similarly, when cross-correlation is used, the JCC loss
outperforms the classical cross-correlation. The best re-
sults for 20% observation on JHMDB dataset is obtained by
JCC loss (66.1%). The best results for covariance matrices-
based losses is obtained by JFIP outperforming Frobenius
norm loss, the Frobenius inner product loss and the Breg-
man divergence.

Next we evaluate the complementary nature of each of
these losses by combining these losses in a multi-task man-
ner. In Table 4, we combine all Jaccard losses and then
compare with traditional measures. We see that combina-
tion of Frobenius norm, L2 and cosine losses (FN + L2
+ Cosine) performs much better than individual loss per-
formances. This observation can be seen in both datasets.
These individual losses provide different properties into the
learned representation and it is interesting to see that they
are complementary. For this comparison we do not include
the Cross-correlation loss as it’s performance is poor. Inter-
estingly, combination of Jaccard (JVS + JCC + JFIP) losses
improves results of individual models by a significant mar-
gin and it outperforms (FN + L2 + Cosine) combination of
losses.



Method Accuracy
Baseline 61.9
MM-LSTM [26] 55.0
PCGAN [36] 67.4
RBF-RNN [28] 73.0
I3DKD [31] 75.9
RGN-Res-KF [39] 78.0
JVS + JCC + JFIP 82.0
FN + L2 + Cosine 76.9
JVS + JCC + JFIP+ FN + L2 + Cosine 83.5

Table 5. Combined models using rgb+optical flow,
Resnet18(2D+1D) as the base model. Comparing our re-
sults with state-of-the-art methods in the literature for observation
percentage of 20% on JHMDB dataset.

Method Accuracy
Baseline (Resnet50) 78.9
Baseline (Resnet18(2D+1D)) 87.1
MM-LSTM [26] 80.3
AA-GAN [5] 84.2
RGN-KF [39] 85.2
JVS + JCC + JFIP (Resnet50) 85.8
JVS + JCC + JFIP (Resnet18(2D+1D)) 91.7

Table 6. Combined model using rgb+optical flow,
Resnet18(2D+1D) as the base model. Comparing our re-
sults with state-of-the-art methods in the literature for observation
percentage of 20% on UCF101 dataset.

Now we compare our results with state-of-the-art early
action prediction models using effective Resnet18(2D+1D)
network where it is pre-trained on Kinetics [13] dataset
for action classification. We use both optical flow and rgb
stream to train our models end-to-end. Results are reported
in Table 5 for JHMDB and Table 6 for UCF101.

On JHMDB dataset our method obtains significant im-
provement over prior state-of-the-art methods, specially
over the recent methods (e.g. RGN-Res-KF [39] and
I3DKD [31]). Our (JVS + JCC + JFIP) model improves
baseline results from 61.9% to 82.0% while (FN + L2 +
Cosine) obtains only 76.9%. Interestingly, combination of
all six losses obtains 83.5%. Similar trend can be seen for
the UCF101 dataset. Our Resnet50 baseline obtains 78.9%
while our (JVS + JCC + JFIP) model obtains 85.8 outper-
forming prior state-of-the-art results even using Resnet50
model. When (Resnet18(2D+1D)) is used, we obtain 91.7%
accuracy which also improves the baseline results by 4.6%.
All these results can be attributed to the impact of novel
JVS, JCC and JFIP losses and the effect of end-to-end train-
ing with our early action prediction architecture.

4.2. Action anticipation results

We evaluate the action anticipation model using Break-
fast [16] and Epic-Kitchen55 [2] datasets. We follow the

Dataset Breakfast Epic-Kitchen
Modality FV (R(2D+1D)) (R(2D+1D))
Measure Accuracy Top 1 Top 5
Baseline 23.4 24.3 9.82 24.48
Eq.6 (λ = 0.0) 23.9 supp. 10.01 24.82

Vector similarity measures
Corr. 24.0 24.6 11.05 25.02
Cosine 24.7 24.8 10.59 25.56
L2 24.3 26.1 10.28 26.48
JVS 28.6 28.0 15.20 32.54

Cross-correlation measures
CC 24.2 25.1 10.44 24.48
JCC 28.6 28.1 14.12 32.16

Covariance measures
FN 20.4 21.0 10.21 23.87
BD 11.2 23.9 10.05 24.94
FIP 25.0 26.0 10.44 23.71
JFIP 30.3 30.9 13.89 33.31

Table 7. Action anticipation results using our loss functions and
architecture. We compare Jaccard losses (JVS, JCC, JFIP) against
other loss measures for action anticipation on Breakfast and Epic-
Kitchen55 datasets. (R(2D+1D)) model uses RGB stream only.

protocol of [20, 1] for action anticipation using all splits on
Breakfast dataset. Similarly, we use the validation set pro-
posed in [4] to evaluate the performance on Epic-Kitchen55
dataset. We use an observation window of two seconds (i.e.
the length of Vo) and a gap of one second (i.e. the length
of δt) by default (see Figure 3) for both datasets. We only
use the Resnet18(2D+1D) model as the video summarizing
network where we use the same training parameters as in
early action prediction experiments. We train action, noun
and verb predictors separately for Epic-55 dataset. Then we
obtain action predictions from verb and noun predictors as
well. These are averaged with the action predictor to get
the final action anticipation result. For more information
please see the supplementary material section 1. Following
prior work [27], we also evaluate using dense trajectories
and Fisher Vectors (FV) only for Breakfast dataset. De-
tails of the FV architecture is given in supplementary mate-
rial section 2. Now we demonstrate the effect of our action
anticipation architecture using Epic-Kitchen and Breakfast
datasets in Table 7 where we compare our novel loss func-
tions against standard loss measures.

We observe that all loss functions improve over the base-
line model. The baseline model directly predicts the future
action from the observed video. When we set λ = 0.0,
the results improves only slightly. The JVS loss performs
the best out of all vector similarity measures and the im-
provement obtained by JVS is significant. JFIP outperforms
all other covariance measures and JCC outperforms cross-
correlation loss. This trend can be seen for both Breakfast
and Epic-Kitchen datasets. The best top-1 action anticipa-



Method Top 1 Top 5
Baseline (Resnet18(2D+1D)) 10.44 25.63
RL [18] – 29.61
VN-CE [2] 5.79 17.31
SVM-TOP3 [3] 11.09 25.42
RU LSTM [4] – 35.32
FIA [38] 14.07 33.37
AVHN [12] 19.29 35.91
Our model (Resnet18(2D+1D)) 20.35 39.15

Table 8. Comparing our results with state-of-the-art methods in the
literature for temporal gap δt = 1.0 seconds on Epic-Kitchen55
dataset. We use rgb+optical flow, Resnet18(2D+1D) as the base
model. Our model uses a combination of JVS, JCC and JFIP.

Method Accuracy
Baseline (Resnet18(2D+1D)) 24.3
CNN of [1] 27.0
RNN of [1] 30.1
Predictive + Transitional (AR) [20] 32.3
TAB [27] (FV) 29.7
TAB [27] (I3D) 40.1
Our model (FV) 33.6
Our model (Resnet18(2D+1D)) 34.6
Our model (FV+Resnet18(2D+1D)) 41.8

Table 9. Comparing our results with state-of-the-art methods in the
literature for temporal gap δt = 1.0 seconds on Breakfast dataset.
Our model uses a combination of JVS, JCC and JFIP.

tion results are obtained by JVS loss while the best top-5
results are obtained by JFIP loss on Epic-Kitchen dataset.
Perhaps the JFIP is better at modeling the uncertainty than
the JVS loss. The JFIP also obtains the overall best results
in Breakfast dataset.

We compare our model that uses combination of (JVS,
JCC, and JFIP) losses with the state-of-the-art methods for
Epic-Kitchen55 and Breakfast datasets in Tables 8 and 9
respectively for action anticipation task1.

For Breakfast dataset, we use rgb based
Resnet18(2D+1D) and Fisher vectors. For Epic-Kitchen55
dataset, we use rgb, optical flow and object streams.
Objects are detected using Mask-RCNN [9] model and
spatial features are extracted using respective regions and
pooled by taking the average of those features. In this
case, the feature extractor is a ResNeXt-50-32x4d [35]
model. Specially, this object feature stream allows us to
identify nouns accurately. All three streams are trained
separately and then fused at test time by taking the average
of prediction scores.

As can be seen from the results in Table 8, our method
obtains state-of-the-art results on Epic-Kitchen55 dataset.

1By the time of the submission, the evaluation server on Epic-
Kitchen55 test set was not available and therefore we report results only
on the validation set and compare with papers that use the same protocol.

Specially, it is important to note that our top-5 accuracy is
considerably better than other methods. Our model outper-
forms the baseline model which also uses a three stream
approach (rgb+optical-flow+object) by a large margin.

We can see a similar trend in the Breakfast dataset as
shown in results in Table 9. As before the improvement over
the baseline model is quite significant. Our method outper-
forms recent methods such as [1, 20, 27] while obtaining
improvement over these prior state-of-the-art models on the
Breakfast dataset. Specifically, we do not use action seg-
mentation methods as done in [27]. It should be noted that
with action segmentation, the recent method in [27] obtains
47.0 % on the Breakfast dataset. However, when Fisher
Vector and I3D is used without segmentation, our method
outperforms [27]. Our method also performs better than
[27] when we use Fisher Vectors only (29.7 vs 33.6).

We have demonstrated state-of-the-art action anticipa-
tion results on two different kinds of datasets (Epic-Kitchen
and Breakfast). While Epic-Kitchen is an ego-centric action
analysis dataset, Breakfast is a third person video capture
dataset. As can be seen from the comprehensive set of ex-
periments done in Tables 7, 8 and 9, our model and new loss
functions are quite effective in both types of video data for
action anticipation.

Ablation: Please see the supplementary material for addi-
tional experiments on the impact of loss functions and archi-
tecture. Specifically, we evaluate the impact of L2 + Cosine
similarity against the JVS loss. Furthermore, we evaluate
the impact of exp(−φ(zh, z)) of equation 6 and observa-
tion branch on action anticipation.

5. Conclusion

We presented a framework for early action recognition
and action anticipation by correlating the past with the fu-
ture representations using three effective and novel loss
functions. The proposed Jaccard Vector Similarity is con-
sistently better than vector correlation, L2 distance and co-
sine similarity for learning representations with our frame-
work. Similarly, novel Jaccard Cross-correlation and Jac-
card Frobenius Inner product losses are also more effec-
tive than compared higher order losses such as Frobenius
norm, Frobenius Inner product and considered Bregmen Di-
vergence. These Jaccard losses are smooth, fully differen-
tiable and bounded. They are good for representation learn-
ing tasks. These new Jaccard losses can be useful for other
applications in deep learning as well, and in the future, we
aim to investigate both theoretical and application aspects
of these measures.
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