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Abstract. Collection of real world annotations for training semantic
segmentation models is an expensive process. Unsupervised domain adap-
tation (UDA) tries to solve this problem by studying how more accessible
data such as synthetic data can be used to train and adapt models to real
world images without requiring their annotations. Recent UDA methods
applies self-learning by training on pixel-wise classification loss using a
student and teacher network. In this paper, we propose the addition of
a consistency regularization term to semi-supervised UDA by modelling
the inter-pixel relationship between elements in networks’ output. We
demonstrate the effectiveness of the proposed consistency regularization
term by applying it to the state-of-the-art DAFormer framework and im-
proving mIoU19 performance on the GTA5 to Cityscapes benchmark by
0.8 and mIou16 performance on the SYNTHIA to Cityscapes benchmark
by 1.2.

1 Introduction

Semantic segmentation is a task which requires a lot of pixel level annota-
tions and obtaining these annotations is expensive and time consuming. To
overcome this issue, one solution is to obtain annotations from synthetic data
such as Games (e.g. GTA5) and train models on these synthetic data for se-
mantic segmentation. However, the problem is that even if modern synthetic
data is near photo realistic, still there is a distribution mismatch between the
synthetic data and real images. One solution is to develop models that can
overcome this distribution mismatch between models that are trained on syn-
thetic data and real data which is the topic of unsupervised domain adaptation
(UDA) [7,8,13,10,22,2,29,9].

UDA for semantic segmentation has made significant progress in recent years.
One of the most recent method called DAFormer [16] obtained massive improve-
ment over prior methods by using a Transformer architecture and self-training.
However one of the challenges in self-training is that generated pseudo labels
can be wrong and that may result in poor transfer of information from source
domain to the target domain. Therefore, it is needed to further regularize the
self-training learning process.



2 Kian Boon Koh and Basura Fernando

In this work, we present a new consistency regularization method based on
correlation between pixel-wise class predictions. We enforce two models (teacher
and student) to have similar inter-pixel similarity structure and by doing so we
regularize the self-training process. This helps to improve the generalization of
the student network as well as the teacher network allowing better transfer of
information from the source domain to the target domain. We demonstrate its
effectiveness by applying it to DAFormer and improving mIoU19 performance
on the GTA5 to Cityscapes benchmark by 0.8 and mIou16 performance on the
SYNTHIA to Cityscapes benchmark by 1.2. Implementation of our proposed
method is available at our GitHub repository3.

2 Related Work

2.1 Unsupervised Domain Adaptation

Domain adaptation is a field of techniques that aims to solve the domain shift
problem, when data distributions experience change between datasets. UDA is
a subset of the domain adaptation field that aims to utilize a labeled source do-
main to learn a model that performs well on an unlabeled target domain. Recent
UDA methods can be grouped into either adversarial training or self-supervised
learning (SSL) approaches. Adversarial training methods aim to reduce source
and target distribution mismatch by aligning distributions at either the pixel
[14,11,3] or intermediate feature level [30,15] using a generative adversarial net-
work (GAN).

SSL methods allow models to be trained directly on the target domain by
generating pseudo labels from the target domain. Recent advances focuses on
improving the quality of pseudo labels using various approaches, such as us-
ing representative prototypes [37] or using more complex, Transformer-based
network architecture [16]. It is also possible for methods to adopt a hybrid ap-
proach and use both adversarial training and SSL. Li et al. does so in their
bidirectional learning framework [18]. Adversarial training is first used to obtain
an image-to-image translation model and a segmentation model. Target domain
pseudo labels are then generated from high confidence predictions, which are
then subsequently used to fine tune the segmentation model. The improved seg-
mentation model can then be used in the first adversarial stage to form a close
loop.

2.2 Semantic Segmentation

Early methods on semantic segmentation problems were largely based on Fully
Convolutional Network (FCN) [26], which typically follows an encoder-decoder
architecture [1,24]. Further improvements were made by using dilated convolu-
tions to overcome the loss of spatial resolution [34], and pyramid pooling [38,4] to
enhance capturing of contextual information. Recent success of attention-based

3 https://github.com/kw01sg/CRDA

https://github.com/kw01sg/CRDA
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Transformers [31] in natural language processing has seen adaptations of Trans-
formers for image segmentation [19,33] that were able to obtain state-of-the-art
results.

2.3 Consistency Regularization

Consistency regularization is a regularization technique used to encourage net-
works to make consistent predictions that are invariant to perturbations. Tar-
vainen and Valpola improved model performance on the image classification
problem by using a student and teacher network pair in their Mean Teacher
model [28], where the weights of the teacher network are an exponential moving
average (EMA) of the student network. Consistent predictions between the two
networks are then promoted by optimizing a consistency loss between their pre-
dictions. Interpolation consistency training by Verma et al. [32] combines mixup
[36] and the Mean Teacher model [28] to implement consistency regularization.
During training, unlabelled samples are interpolated to create an augmented
sample. Predictions by the student network on the augmented sample are then
optimized to be consistent with interpolated predictions by the teacher network
on the original non-interpolated samples. Kim et al. [17] uses cosine similarity
in their consistency regularization method for semantic segmentation. They pro-
pose a structured consistency loss that optimizes predictions to be consistent in
not only pixel-wise classification, but also inter-pixel relationship.

3 Our Method

Given source domain images xS ∈ XS with their annotations (labels) yS ∈ YS

and target domain images xT ∈ XT without annotations (labels), we want to
learn a network h that can correctly predict the annotations for target imagesXT

denoted by ŶT . Typically, there is a mismatch in the joint probability distribu-
tions of source domain data P (XS , YS) and the target domain data P (XT , YT ).
Due to this mismatch or the gap between source and target domains, an image
segmentation model h that is trained on the source data usually results in a low
performance on target images. One common solution to address this issue is to
use self-training as also done in the prior works such as DAFormer [16]. However,
semi-supervised self-training methods could easily over-fit to source distribution
and could generate inconsistent or wrong pseudo labels for the target domain
images. To overcome this limitation, we propose the addition of consistency reg-
ularization to the DAFormer [16] framework during model training to further
improve model performance. Next, we explain the overall training framework.

3.1 Overall Training

Overall training of the network is composed of three components: supervised
training using source images, self-training using target images, and consistency
regularization. Total loss Ltotal is given as

Ltotal = LS + LT + λcLC (1)
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where LS is supervised cross entropy loss using source images, LT is self-trained
cross entropy loss using pseudo labels, LC is our consistency regularization term,
and λc is a parameter we use to weigh LC . The following sections will present
each of the losses in detail.

Supervised Training Supervised training on the source domain is conducted
using cross entropy loss for semantic segmentation. For a source image xS and
its annotation yS , LS can be defined as

LS(xS , yS) = − 1

HW

H×W∑
j=1

C∑
c=1

y
(j,c)
S log h(xS)

(j,c) (2)

where C is the number of classes and H and W are the height and width of the

segmentation output. The notation y
(j,c)
S denotes the presence of class c at pixel

location j (1 if present and 0 if not). Similarly, h(xS)
(j,c) denotes the predicted

score for class c at pixel location j using model h for image xS .

Self-Training Self-training uses a teacher network f(;ϕ) to produce pseudo
labels on which the student network h(; θ) will be trained on. For a target image
xT , its pseudo label pT is formally defined as

p
(j,c)
T = Jc = argmax

c′
f(xT ;ϕ)

(j,c′)K (3)

where J·K denotes the Iverson bracket.

We follow the Mean Teacher model [28] where the weights of the teacher
network f(;ϕ) are the EMA of the weights of the student network h(; θ) after
each training step t. The EMA weights used by the teacher model at training
step t is formally defined as

ϕt+1 = αϕt + (1− α)θt (4)

where ϕt+1 is the EMA of successive weights and α is a smoothing coefficient hy-
perparameter. It should also be noted that no gradients will be backpropagated
into the teacher network from the student network.

A confidence estimate for the pseudo labels, defined as the ratio of pixels
with maximum softmax probability exceeding a pre-defined threshold τ , is also
used in the self-training loss. For a target image xT , its confidence estimate qT
is formally defined as

qT =

∑H×W
j=1 [maxc′ f(xT ;ϕ)

j,c′ > τ ]

HW
(5)

Self-training loss of the student network LT for a target image xT can thus
be defined as
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LT (xT ) = − 1

HW

H×W∑
j=1

C∑
c=1

qT × p
(j,c)
T × log h(xT ; θ)

(j,c) (6)

We follow DAFormer’s [16] method of using non-augmented target images
for the teacher network f to generate pseudo labels and augmented targeted
images to train the student network h using Equation 6. We also follow their
usage of color jitter, Gaussian blur, and ClassMix [21] as data augmentations in
our training process.

Consistency Regularization As mentioned in Mean Teacher [28], cross en-
tropy loss in Equation 6 between predictions of the student model and pseudo
labels (which are predictions from the teacher model) can be considered as a
form of consistency regularization. However, different from classification prob-
lems, semantic segmentation problems have a property where pixel-wise class
predictions are correlated with each other. Thus, we propose to further enhance
consistency regularization by focusing on this inter-pixel relationship. Inspired
by the method of Kim et al. [17], we use the inter-pixel cosine similarity of net-
works’ predictions on target images to regularize the model. Formally, we define
the similarity between pixel i and j class predictions on a target image xT as

ai,j =
pT
i pj

∥pi∥ ·
∥∥pj

∥∥ (7)

where ai,j represents the cosine similarity between the prediction vector of the
ith pixel and the prediction vector of the j th pixel. Note that the similarity
between the probability vector pi and pj can also be computed using Kullback-
Leibler (KL) divergence and cross entropy. We investigate these options in Sec-
tion 4.3. The consistency regularization term, LC can then be defined as the
mean squared error (MSE) between the student network’s similarity matrix and
the teacher network’s similarity matrix

LC =
1

(HW )2

H×W∑
i=1

H×W∑
j=1

∥∥asi,j − ati,j
∥∥2 (8)

where asi,j is the similarity obtained from the student network and ati,j is the
similarity obtained from the teacher network. We also follow the method of Kim
et al. [17] to restrict the number of pixels used in the calculation of similarity
matrices by performing a random sample of Npair pixels for comparison. Thus,
the consistency regularization in Equation 8 is updated to the following equation

LC =
1

(Npair)2

Npair∑
i=1

Npair∑
j=1

∥∥asi,j − ati,j
∥∥2 (9)

This term LC is particularly useful for domain adaptation as it helps to
minimize the divergence between the source representation and the target repre-
sentation by enforcing a structural consistency in the image segmentation task.
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4 Experiments

4.1 Implementation Details

Datasets We use the Cityscapes street scenes dataset [6] as our target domain.
Cityscapes contains 2975 training and 500 validation images with resolution
of 2048×1024, and is labelled with 19 classes. For our source domain, we use
the synthetic datasets GTA5 [23] and SYNTHIA [25]. GTA5 contains 24,966
images with resolution of 1914×1052, and is labelled with the same 19 classes
as Cityscapes. For compatibility, we use a variant of SYNTHIA that is labelled
with 16 of the 19 Cityscapes classes. It contains 9,400 images with resolution
of 1280×760. Following DAFormer [16], we resize images from Cityscapes to
1024×512 pixels and images from GTA5 to 1280×720 pixels before training.

Network Architecture Our implementation is based on DAFormer [16]. Pre-
vious UDA methods mostly used DeepLabV2 [5] or FCN8s [26] network archi-
tecture with ResNet [12] or VGG [27] backbone as their segmentation model.
DAFormer proposes an updated UDA network architecture based on Transform-
ers that was able to achieve state-of-the-art performance. They hypothesized
that self-attention is more effective than convolutions in fostering the learning
of domain-invariant features.

Training We follow DAFormer [16] and train the network with AdamW [20],
a learning rate of ηbase = 6 × 10−5 for the encoder and 6 × 10−4 for the de-
coder, a weight decay of 0.01, linear learning rate warmup with twarm = 1500,
and linear decay. Images are randomly cropped to 512 × 512 and trained for
40,000 iterations on a batch size of 2 on a NVIDIA GeForce RTX 3090. We
also adopt DAFormer’s training strategy of rare class sampling and thing-class
ImageNet feature distance to further improve results. For hyperparameters used
in self-training, we follow DAFormer and set α = 0.99 and τ = 0.968. For hy-
perparameters used in consistency regularization, we set Npair = 512, λc = 1.0
when calculating similarity using cosine similarity and λc = 0.8 × 10−3 when
calculating similarity using KL divergence.

4.2 Results

Table 1. Comparison with other UDA methods on GTA5 to Cityscapes. Results for
DAFormer and our method using cosine similarity are averaged over 6 random runs,
while results for our method using KL Divergence are averaged over 3 random runs

Method Road Sidewalk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU19

BDL 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
ProDA 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAFormer 95.5 68.9 89.3 53.2 49.3 47.8 55.5 61.2 89.5 47.7 91.6 71.1 43.3 91.3 67.5 77.6 65.5 53.6 61.2 67.4
Ours (Cosine) 95.5 69.2 89.5 52.1 49.6 48.9 55.2 62.1 89.8 49.0 91.1 71.7 45.1 91.7 70.0 77.6 65.2 56.6 62.8 68.0
Ours (KL) 96.1 71.6 89.5 53.2 48.6 49.5 54.7 61.1 90.0 49.4 91.7 70.7 44.0 91.6 70.0 78.1 68.9 55.1 62.9 68.2
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Table 2. Comparison with other UDA methods on SYNTHIA to Cityscapes. Results
for DAFormer and our method using cosine similarity are averaged over 6 random runs,
while results for our method using KL Divergence are averaged over 3 random runs

Method Road Sidewalk Build. Wall Fence Pole Tr.Light Sign Veget. Sky Person Rider Car Bus M.bike Bike mIoU16 mIoU13

BDL 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
ProDA 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 40.5 55.5 62.0
DAFormer 80.5 37.6 87.9 40.3 9.1 49.9 55.0 51.8 85.9 88.4 73.7 47.3 87.1 58.1 53.0 61.0 60.4 66.7
Ours (Cosine) 86.3 44.2 88.3 39.2 7.5 49.2 54.7 54.7 87.2 90.7 73.8 47.3 87.4 55.9 53.7 60.7 61.3 68.1
Ours (KL) 89.0 49.6 88.1 40.3 7.3 49.2 53.5 52.1 87.0 88.0 73.8 46.4 87.1 58.7 53.9 61.7 61.6 68.4

Image DAFormer Ours Ground Truth

Fig. 1. Qualitative results comparing predictions on validation data of Cityscapes.
From left: input image, predictions by DAFormer, predictions by our method, and the
ground truth. The last row provides an example where DAFormer performed better
compared to our method as it was able to correctly predict the sidewalks
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We compare the results of our method against other state-of-the-art UDA
segmentation methods such as BDL [18], ProDA [37] and DAFormer [16]. In table
1, we present our experimental results on the GTA5 to Cityscapes problem. It
can be observed that our method improved UDA performance from an mIoU19
of 67.4 to 68.0 when cosine similarity is used in Equation 7 and 68.2 when KL
divergence is used. Table 2 shows our experimental results on the SYNTHIA
to Cityscapes problem. Similarly, our method improved performance from an
mIoU16 of 60.4 to 61.3 with cosine similarity and 61.6 with KL divergence.

We also observed that our method was able to make notable improvements on
the ”Road” and ”Sidewalk” categories. This is especially so on the SYNTHIA to
Cityscapes problem, where we improved UDA performance on ”Road” from 80.5
to 89.0 and ”Sidewalk” from 37.6 to 49.6. We further verify this improvement
in our qualitative analysis presented in Figure 1, where we observed that our
method had better recognition on the ”Sidewalk” and ”Road” categories. We
attribute this improvement to our method’s effectiveness in generating more
accurate pseudo labels. We present pseudo labels generated during the training
process in Figure 2, where we observed more accurate pseudo labels for the
”Road” and ”Sidewalk” categories.

Target Image DAFormer Ours

Fig. 2. Qualitative results on pseudo labels generated from the training data of
Cityscapes. From left: target image, pseudo labels generated by DAFormer, and pseudo
labels generated by our method using cosine similarity
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It should be noted that experimental results obtained using the DAFormer
method in Tables 1 and 2 were obtained by averaging 6 random runs using the of-
ficial DAFormer implementation4. Even though we were unable to reproduce the
exact numbers published in the DAFormer paper, we believe our experimental
results for DAFormer are comparable.

4.3 Ablation Study

Table 3. Influence of Npair on UDA performance. Results for all experiments were
averaged over 3 random runs except for Npair = 512, which was an average over 6 runs

Npair 4 16 64 256 512 1024

mIoU16 61.4 60.8 61.4 61.1 61.3 60.6

Number of Pixels Sampled We conducted additional experiments on SYN-
THIA to Cityscapes to observe the effect of Npair (from Equation 9) on model
performance. Theoretically, sampling more pixels for similarity calculation (i.e.
a larger Npair) allows us to have a more complete model of the inter-pixel rela-
tionship between predictions. However, empirical results in table 3 suggests that
Npair does not have significant influence on UDA performance. We observe that
very small samples, such as Npair = 4, were able to obtain comparable results
with larger sample sizes.

Additional experiments using Npair = 4 were conducted to observe the lo-
cations of sampled pixels. Visualization of our ablation study is presented in
Figure 3. We found that after 40,000 training iterations, sampled pixels cov-
ered approximately 45.73% of the 512×512 images the network was trained on
despite the small sampling size. This suggests that if a reasonable image cover-
age can be obtained during the training process, a small Npair is sufficient to
model the inter-pixel relationship between predictions, allowing us to minimize
computational cost of our consistency regularization method. The influence of
sampling coverage and sampling distribution on the effectiveness of consistency
regularization is an interesting study that can be explored in the future.

Proximity of Sampled Pixels Kim et al. adopted cutmix augmentation [35] in
their consistency regularization method [17] to limit sampled pixel pairs to within
a local region. They theorized that pixel pairs that are in close proximity to each
other have high correlation, and hence have more effect on UDA performance.
We tested this theory on SYNTHIA to Cityscapes by performing Nbox crops and
sampling Npair pixels from each crop. This localizes sampled pixels and restricts

4 https://github.com/lhoyer/DAFormer

https://github.com/lhoyer/DAFormer
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(a) (b) (c) (d)

Fig. 3. Visualization of pixels sampled in experiments using Npair = 4. (a) Target
image cropped to 512×512; (b), (c) and (d) visualizes sampled pixels in three separate
runs

them to have closer proximity. Sampled pixels are then used to compute inter-
pixel similarity to obtain a Nbox ×Npair ×Npair similarity matrix which is used
for loss calculation in Equation 8. We present the experimental results in Table 4

Table 4. Influence of Nbox and Npair on UDA performance. Total number of sampled
pixels i.e. Nbox ×Npair is kept at 512 for a fair comparison

Crop Size Nbox Npair mIoU16

256 32 16 61.2
128 32 16 61.1
64 32 16 60.2

where three different crop sizes were varied to restrict the proximity of sampled
pixels. We did not observe an improvement in UDA performance compared to
results presented in Table 2, suggesting that proximity of sampled pixels perhaps
may not be that influential for consistency regularization.

Measuring Inter-Pixel Similarity In Section 3.1, we adopted the method of
Kim et al. to use cosine similarity in the measure of inter-pixel similarity [17]. In
this section, we conducted additional experiments on SYNTHIA to Cityscapes to
observe the influence different methods of measuring inter-pixel similarity have
on UDA performance.

Table 5. Comparison of UDA performance using different methods to calculate inter-
pixel similarity. We also provide the optimal λc obtained using hyperparameter tuning

Method λc mIoU16

Cosine Similarity 1.0 61.3
Cross Entropy 1.0× 10−3 61.2
KL Divergence 0.8× 10−3 61.6
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We tested the usage of cross entropy and KL divergence to measure inter-pixel
similarity instead of cosine similarity in Equation 7. Results from our empirical
experiments are presented in Table 5. We observed that all three methods pro-
vided comparable results with each other, with KL divergence providing slightly
better results.

5 Conclusion

In this work we presented a new consistency regularization method for UDA
based on relationships between pixel-wise class predictions from semantic seg-
mentation models. Using this technique we were able to improve the perfor-
mance of the state-of-the-art DAFormer method. We also observed that even
with smaller number of sampled pixel pairs Npair, this regularization method
was still able to be effective. Therefore, with minimal computational cost, we
are able to improve the results of self-training methods for unsupervised domain
adaptation.
Acknowledgment This research is supported by the Centre for Frontier AI
Research (CFAR) and Robotics-HTPO seed fund C211518008.

References

1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 39, 2481–2495 (2017)

2. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for
domain adaptation. Advances in neural information processing systems 19 (2006)

3. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsuper-
vised pixel-level domain adaptation with generative adversarial networks. CoRR
abs/1612.05424 (2016)

4. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE Transactions on Pattern Analysis & Machine Intelligence
40(04), 834–848 (apr 2018). https://doi.org/10.1109/TPAMI.2017.2699184

5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: Seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence
PP (06 2016). https://doi.org/10.1109/TPAMI.2017.2699184

6. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

7. Fernando, B., Aljundi, R., Emonet, R., Habrard, A., Sebban, M., Tuytelaars,
T.: Unsupervised Domain Adaptation Based on Subspace Alignment, pp. 81–94.
Springer International Publishing, Cham (2017)

8. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual do-
main adaptation using subspace alignment. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2960–2967 (2013)

https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184


12 Kian Boon Koh and Basura Fernando

9. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Subspace alignment for
domain adaptation. CoRR abs/1409.5241 (2014), http://arxiv.org/abs/1409.
5241

10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: International conference on machine learning. pp. 1180–1189. PMLR (2015)

11. Gong, R., Li, W., Chen, Y., Van Gool, L.: Dlow: Domain flow for
adaptation and generalization. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 2472–2481 (2019).
https://doi.org/10.1109/CVPR.2019.00258

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

13. Herath, S., Harandi, M., Fernando, B., Nock, R.: Min-max statistical alignment
for transfer learning. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 9288–9297 (2019)

14. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A., Darrell,
T.: CyCADA: Cycle-consistent adversarial domain adaptation. In: Dy, J., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 80, pp. 1989–1998. PMLR (10–15
Jul 2018), https://proceedings.mlr.press/v80/hoffman18a.html

15. Hoffman, J., Wang, D., Yu, F., Darrell, T.: Fcns in the wild: Pixel-level adversarial
and constraint-based adaptation (2016)

16. Hoyer, L., Dai, D., Gool, L.V.: Daformer: Improving network architectures
and training strategies for domain-adaptive semantic segmentation. CoRR
abs/2111.14887 (2021), https://arxiv.org/abs/2111.14887

17. Kim, J., Jang, J., Park, H.: Structured consistency loss for semi-supervised seman-
tic segmentation. CoRR abs/2001.04647 (2020), https://arxiv.org/abs/2001.
04647

18. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adap-
tation of semantic segmentation. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 6929–6938 (2019).
https://doi.org/10.1109/CVPR.2019.00710

19. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

20. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2019), https://openreview.net/forum?
id=Bkg6RiCqY7

21. Olsson, V., Tranheden, W., Pinto, J., Svensson, L.: Classmix: Segmentation-
based data augmentation for semi-supervised learning. In: 2021 IEEE Winter
Conference on Applications of Computer Vision (WACV). pp. 1368–1377 (2021).
https://doi.org/10.1109/WACV48630.2021.00141

22. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer
component analysis. IEEE transactions on neural networks 22(2), 199–210 (2010)

23. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth from
computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) European
Conference on Computer Vision (ECCV). LNCS, vol. 9906, pp. 102–118. Springer
International Publishing (2016)

24. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.

http://arxiv.org/abs/1409.5241
http://arxiv.org/abs/1409.5241
https://doi.org/10.1109/CVPR.2019.00258
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.mlr.press/v80/hoffman18a.html
https://arxiv.org/abs/2111.14887
https://arxiv.org/abs/2001.04647
https://arxiv.org/abs/2001.04647
https://doi.org/10.1109/CVPR.2019.00710
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/WACV48630.2021.00141


Consistency Regularization for Domain Adaptation 13

(eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015. pp. 234–241. Springer International Publishing, Cham (2015)

25. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban
scenes. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352

26. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv 1409.1556 (09 2014)

28. Tarvainen, A., Valpola, H.: Weight-averaged consistency targets improve semi-
supervised deep learning results. CoRR abs/1703.01780 (2017)

29. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 7167–7176 (2017)

30. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. CoRR abs/1702.05464 (2017)

31. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(eds.) Advances in Neural Information Processing Systems. vol. 30. Curran
Associates, Inc. (2017), https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

32. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation con-
sistency training for semi-supervised learning. In: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19. pp.
3635–3641. International Joint Conferences on Artificial Intelligence Organization
(7 2019). https://doi.org/10.24963/ijcai.2019/504, https://doi.org/10.24963/

ijcai.2019/504

33. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer:
Simple and efficient design for semantic segmentation with transformers. arXiv
preprint arXiv:2105.15203 (2021)

34. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:
ICLR (2016)

35. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) (October 2019)

36. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: International Conference on Learning Representations (2018),
https://openreview.net/forum?id=r1Ddp1-Rb

37. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo
label denoising and target structure learning for domain adaptive semantic segmen-
tation. arXiv preprint arXiv:2101.10979 (2021)

38. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
6230–6239 (2017). https://doi.org/10.1109/CVPR.2017.660

https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1109/TPAMI.2016.2572683
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.24963/ijcai.2019/504
https://doi.org/10.24963/ijcai.2019/504
https://doi.org/10.24963/ijcai.2019/504
https://openreview.net/forum?id=r1Ddp1-Rb
https://doi.org/10.1109/CVPR.2017.660

	Consistency Regularization for Domain Adaptation

