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Abstract Conventional face hallucination methods heav-

ily rely on accurate alignment of low-resolution (LR)

faces before upsampling them. Misalignment often leads

to deficient results and unnatural artifacts for large up-

scaling factors. However, due to the diverse range of

poses and different facial expressions, aligning an LR

input image, in particular when it is tiny, is severely

difficult. In addition, when the resolutions of LR input

images vary, previous deep neural network based face

hallucination methods require the interocular distances

of input face images to be similar to the ones in the

training datasets. Downsampling LR input faces to a

required resolution will lose high-frequency information

of the original input images. This may lead to subopti-

mal super-resolution performance for the state-of-the-

art face hallucination networks. To overcome these chal-
lenges, we present an end-to-end multiscale transforma-

tive discriminative neural network (MTDN) devised for

super-resolving unaligned and very small face images of

different resolutions ranging from 16×16 to 32×32 pix-

els in a unified framework. Our proposed network em-

beds spatial transformation layers to allow local recep-

tive fields to line-up with similar spatial supports, thus

obtaining a better mapping between LR and HR facial

patterns. Furthermore, we incorporate a class-specific

loss designed to classify upright realistic faces in our

objective through a successive discriminative network

to improve the alignment and upsampling performance
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with semantic information. Extensive experiments on

a large face dataset show that the proposed method

significantly outperforms the state-of-the-art.
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1 Introduction

Face images provide vital information for visual per-

ception and identity analysis. Nonetheless, when the

resolution of the face image is very small (e.g. in typi-

cal surveillance videos), there is little information that

can be inferred from it. Very low-resolution (LR) face

images not only degrade the performance of the recog-

nition systems but also impede human interpretation.
This challenge motivates the reconstruction of high-

resolution (HR) images from given LR counterparts,

known as face hallucination, and has attracted increas-

ing interest in recent years.

Previous face hallucination methods based on holis-

tic appearance models (Liu et al, 2001; Baker and Kanade,

2002; Wang and Tang, 2005; Liu et al, 2007; Hennings-

Yeomans et al, 2008; Ma et al, 2010; Yang et al, 2010;

Li et al, 2014; Arandjelović, 2014; Kolouri and Rohde,

2015) demand LR faces to be precisely aligned before-

hand. However, aligning LR faces to appearance mod-

els is not a straightforward task itself, and more of-

ten, it requires expert feedback when the input image

is small. Regarding pose and expression variations nat-

urally exist in LR face images, aligning LR faces by

state-of-the-art automatic alignment techniques (Zhu

and Ramanan, 2012; Bulat and Tzimiropoulos, 2017)

which usually assume facial landmarks are visible and

detectable would be even more difficult. As a result,

the performance of face hallucination degrades severely.
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(a) LR (b) HR (c) Aligned LR (d) NN

(e) Bicubic (f) VDSR (g) SRGAN (h) CBN

(i) LF (j) HF (k) Ours− (l) Ours

Fig. 1 Comparison of our method with the CNN based
super-resolution. (a) The input 24 × 24 LR image. (b) The
original 128 × 128 HR image. (c) Aligned LR image of (a).
The resolution of the aligned LR image is 16×16 pixels since
STN0 only outputs a fixed resolution for all images. (d) The
corresponding HR version of the nearest neighbor (NN) of (c)
in the training set. (e) Bicubic interpolation of (c). (f) The im-
age generated by a CNN based generic super-resolution, i.e.,
VDSR (Kim et al, 2016a). We retrain VDSR with face im-
ages to better capture LR facial patterns in super-resolution.
(g) The image upsampled by a GAN based generic super-
resolution method, i.e., SRGAN (Ledig et al, 2016). Here, SR-
GAN is also fine-tuned on face images. (h) The image super-
resolved by a state-of-the-art face hallucination method, i.e.,
CBN (Zhu et al, 2016a). (i) The low-frequency component
of (a). (j) The high-frequency component of (a). (k) The up-
sampled face by our previous method (Yu and Porikli, 2017b),
which only uses the image (i) as input. (l) The result of our
MTDN.

Such a broad spectrum of pose and expression varia-

tions also makes learning a comprehensive appearance

model even harder. For instance, Principal Component

Analysis (PCA) based schemes become critically inef-

fective to learn a reliable face model while aiming to

capture different in- and out-of-plane rotations, scale

changes, translational shifts, and facial expressions. As

a result, these methods lead to unavoidable artifacts

when LR faces are misaligned or depict different poses

and facial expressions from the base appearance model.

Moreover, once appearance models are learned, input

LR faces at different resolutions need to be downscaled

to fit the input size of the learned models. By doing so,

some high-frequency information of LR faces will be lost

and different LR faces tend to be indistinguishable at a

lower resolution. Thus, the downscaling operation may

result in suboptimal super-resolution performance.

Rather than learning holistic appearance models,

many methods upsample facial components by transfer-

ring references from an HR training dataset and then

blending them into an HR version (Tappen and Liu,

2012; Yang et al, 2013, 2017). Although these methods

do not need LR face images to be aligned in advance

or to resize input images to a fixed resolution, they ex-

pect the resolution of input faces to be sufficient enough

for detecting the facial landmarks and parts. When the

resolution is very low, they fail to localize the compo-

nents accurately, thus producing non-realistic faces. In

other words, the facial component based methods are

unsuitable to upsample very low-resolution faces.

By better exploring the information available in the

natural structure of face images, appearance similari-

ties between individuals and emerging large-scale face

datasets (Huang et al, 2007; Liu et al, 2015), it becomes

possible to derive competent models to reconstruct au-

thentic 4×∼8× magnified HR face images. Deep neural

networks, in particular convolutional neural networks

(CNN), are inherently suitable for learning from large-

scale datasets. Very recently, CNN based generic patch

super-resolution methods have been proposed (Dong

et al, 2016; Kim et al, 2016a; Ledig et al, 2016) with-

out focusing on any image class. A straightforward re-

training (fine-tuning) of the networks, i.e., VDSR (Kim

et al, 2016a) and SRGAN (Ledig et al, 2016) with face

images cannot produce realistic and visually pleasant

results, as shown in Fig. 1(f) and Fig. 1(g), because

these networks cannot address misalignments of LR in-

puts inherently. Misalignments of LR faces lead to the

degradation of the super-resolution performance.

Recently, deep neural network based face hallucina-

tion methods have been proposed, and achieve state-

of-the-art performance (Yu and Porikli, 2016, 2017a,b,

2018; Zhu et al, 2016a; Huang et al, 2017). However,

those networks are only designed to super-resolve fixed-

sized LR face images. When the input images are larger

than the desired input size of the networks, images are

required to be downsampled to fit the input size of the

networks. After downsampling, some high-frequency com-

ponents are lost. Thus, those deep learning based meth-

ods cannot fully exploit all the information of input

images and output suboptimal results.

In this paper, we present a new multiscale transfor-

mative discriminative neural network (MTDN) to over-

come the above issues. Our proposed network is able

to super-resolve a range of small and unaligned face

images (i.e., from 16×16 to 32×32 pixels) to HR im-

ages of 128×128 pixels. In particular, when the reso-

lution of input images is 16×16 pixels, we upsample

LR faces by a remarkable upscaling factor 8×, where

we reconstruct 64 pixels for each single pixel of an in-
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put LR image. Unlike previous works (Yu and Porikli,

2016, 2017a,b), when the resolutions of input images

are larger than the input size of the networks, i.e.,

16×16 pixels, our network can preserve all the infor-

mation of input face images. Specifically, our MTDN

develops two branches to receive an downscaled LR in-

put image as well as its residuals. In this fashion, our

MTDN is able to exploit the residuals from the down-

scaled images for super-resolution. As seen in Fig. 1(j),

the high-frequency residual component can be regarded

as an external attention mechanism and lets the net-

work focus on learning the missing high-frequency parts

in the upsampled HR face images. In order to retain the

global structure of faces while being able to reconstruct

instance specific details, we use whole face images to

train our networks.

Our network consists of two components: an up-

sampling network that comprises deconvolutional and

spatial transformation network (Jaderberg et al, 2015)

layers, and a discriminative network. The upsampling

network is designed to progressively improve the res-

olution of the latent feature maps at each deconvolu-

tional layer. We do not assume the LR face is aligned

in advance. Instead, we compensate for any misalign-

ment and changes through the spatial transformation

network layers that are embedded into the upsampling

network. In order to avoid the loss of information caused

by downsampling LR face images, we separate LR im-

ages into two branches, i.e., a low-frequency branch and

a high-frequency branch. For instance, we downsample

an LR image of 24×24 pixels to 16×16 pixels to obtain

the low-frequency image as well as upsample its resid-

ual image (i.e., an image is subtracted from the original

LR image by the resized low-frequency image) to 32×32

pixels to achieve the high-frequency image. Then, we

extract features from these two branches and then com-

bine the feature maps for further super-resolution with-

out losing information of inputs. One can use the pixel-

wise intensity similarity between the estimated and the

ground-truth HR face images as the objective function

in the training stage. However, when the upscaling fac-

tor becomes larger, employing only the pixel-wise inten-

sity similarity causes over-smoothed outputs. In order

to force the upsampled faces to share facial features sim-

ilar to their ground-truth counterparts, we employ the

perceptual loss (Johnson et al, 2016). Since face halluci-

nation is an under-determined problem, there would be

one-to-many mappings between image intensities and

features. Thus, the upsampled HR faces may not be

sharp and realistic-looking enough. To make the upsam-

pled HR faces realistic, we incorporate class similarity

information that is provided by a discriminative net-

work. We back-propagate the discriminative errors to

the upsampling network. Our end-to-end solution al-

lows fusing the pixel-wise, feature-wise and class-wise

information in a manner robust to spatial transforma-

tions and obtaining a super-resolved output with much

richer details.

Overall, our main contributions have four aspects:

– We present a novel end-to-end multiscale transfor-

mative discriminative network (MTDN) to super-

resolve very low-resolution face images to HR face

images of 128×128 pixels, where the upscaling fac-

tor ranges from 4× to 8×.

– We propose a unified framework which super-resolves

LR faces at different resolutions, i.e., from 16×16

to 32×32 pixels, and outputs aligned upscaled HR

faces by a single deep neural network.

– In order to accept different sizes of LR input face

images, we firstly divide an input image into a low-

frequency component and a high-frequency residual

one, and then design a two-branch network to re-

ceive these two components for upsampling. In this

manner, we do not need to discard the residuals of

the downsample LR faces so as to fit the input size

of deep neural networks, thus avoiding losing infor-

mation of inputs.

– For tiny input images where landmark based meth-

ods inherently fail, our method is able to align and

hallucinate an unaligned LR face image without re-

quiring precise alignment in advance, which makes

our method practical.

This paper is an extension of our previous confer-

ence papers (Yu and Porikli, 2016, 2017a,b). In this

paper, we propose a new unified framework to super-

resolve LR faces at different resolutions. Since our pre-

vious methods need to downsample LR faces at dif-

ferent resolutions to a fixed resolution, this downsam-

pling operation lose some high-frequency details of the

LR inputs, i.e., residual images. Thus, they may lead

to suboptimal super-resolution results, as shown in our

experimental part. Different from our previous works,

the proposed network can preserve all the information

of LR faces by our newly proposed multiscale network,

thus achieving better super-resolution performance. In

addition, we also conduct more comprehensive qualita-

tive and quantitative experiments and discussions on

each component of our proposed network.

2 Related Work

Super-resolution can be classified into two categories:

generic super-resolution methods and class-specific super-

resolution methods. When upsampling LR images, generic
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methods employ priors that ubiquitously exist in nat-

ural images without considering any image class infor-

mation. Class-specific methods aim to exploit statistical

information of objects in a certain class and they usu-

ally attain better results than generic methods, e.g., the

task of super-resolving LR face images.

Generic single image super-resolution methods gen-

erally have three types: interpolation based methods,

image statistics based methods and learning-based meth-

ods. Interpolation based methods such as linear and

non-linear upsampling are simple and computationally

efficient, but they may produce overly smooth edges

and fail to generate HR details as the upscaling factor

increases. Image statistics based methods employ nat-

ural image priors to enhance the details of upsampled

HR images, such as image gradients are sparse and fol-

low heavy-tailed distributions (Tappen et al, 2003), but

these methods are also limited to smaller magnification

factors (Lin and Shum, 2006).

Learning-based methods demonstrate their poten-

tials to exceed this limitation of the maximum upscal-

ing factor by learning a mapping from a large num-

ber of LR/HR pairs (Lin et al, 2008). Glasner et al

(2009); Freedman and Fattal (2010); Singh et al (2014)

and Huang et al (2015) exploit self-similarity of patches

in an input image to generate HR patches. Freeman

et al (2002) and Hong Chang et al (2004) construct

LR and HR patch pairs from a training dataset, and

then infer high-frequency details by searching the cor-

responding HR patch of the nearest neighbor of an in-

put LR patch. Yang et al (2010) employ sparse repre-

sentation to construct the corresponding LR and HR

dictionaries and then reconstruct HR output images by

the sparse coding coefficients inferred from LR images.

Gu et al (2015) apply convolutional sparse coding in-

stead of patch-based sparse coding to reconstruct HR

images.

Deep learning based super-resolution methods have

been also proposed. Dong et al (2016) incorporate con-

volutional neural networks to learn a mapping function

between LR and HR patches from a large-scale dataset.

Motivated by this idea, the follow-up works (Kim et al,

2016a; Ledig et al, 2016; Kim et al, 2016b; Shi et al,

2016; Lai et al, 2017; Tai et al, 2017) try to explore

deeper network architectures to improve super-resolution

performance. Since many different HR patches may cor-

respond to one LR patch, output images may suffer

from artifacts at the intensity edges. In order to reduce

the ambiguity between the LR and HR patches, Bruna

et al (2016) explore the statistical information learned

from a deep convolutional network to reduce ambigu-

ity between LR and HR patches. Johnson et al (2016)

propose a perceptual loss to constrain the feature simi-

larity by a pre-trained deep neural network. Ledig et al

(2016) employ the framework of generative adversarial

networks (GAN) (Goodfellow et al, 2014) to enhance

image details by combining an image intensity loss and

an adversarial loss. Since those generic super-resolution

methods do not take class-specific information into ac-

count, they still suffer over-smoothed results when in-

put sizes are tiny and magnification factors are large.

Class-specific super-resolution methods further ex-

ploit the statistical information in the image categories,

thus leading to better performance. When the class

is faces, they are also called face hallucination meth-

ods (Baker and Kanade, 2000; Liu et al, 2001; Baker

and Kanade, 2002).

The seminal work (Baker and Kanade, 2000, 2002)

builds the relationship between facial HR and LR patches

using Bayesian formulation such that high-frequency

details can be transferred from the dataset for face hal-

lucination. It can generate face images with richer de-

tails. However, artifacts also appear due to the possible

inconsistency of the transferred HR patches. Wang and

Tang (2005) apply PCA to LR face images, and then

hallucinate HR face images by an Eigen-transformation

of LR images. Although their method is able to mag-

nify LR images by a large scaling factor, the output HR

images suffer from ghosting artifacts when the HR im-

ages in the exemplar dataset are not precisely aligned.

Liu et al (2007) enforce linear constraints for HR face

images using a subspace learned from the training set

via PCA, and a patch-based Markov Random Field is

proposed to reconstruct the high-frequency details in

the HR face images. To mitigate artifacts caused by

misalignments, a bilateral filtering is used as a post-

processing step. Kolouri and Rohde (2015) employ opti-

mal transport in combination with subspace learning to

morph an HR image from the LR input. Their method

still requires that face images in the dataset are pre-

cisely aligned and the test LR images have the same

poses and facial expressions as the exemplar HR face

images. Instead of imposing global constraints, Ma et al

(2010) super-resolve local HR patches by a weighted

average of exemplar HR patches and the weights are

learned from the corresponding LR patches. Rather than

hallucinating HR patches in terms of image intensities,

Li et al (2014) resort to sparse representation on the

local regions of faces. However, blocky artifacts may

appear as magnification factors become large.

To handle various poses and expressions, Tappen

and Liu (2012) integrate SIFT flow (Liu et al, 2011)

to align facial components in LR images. Their method

performs competently when the training face images

are highly similar to the test face image in terms of

identity, pose, and expression. Yang et al (2013) and
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Yang et al (2017) first localize facial components, and

then upsample each component by matching gradients

with respect to the similar HR facial components in the

exemplar dataset. However, these methods rely on accu-

rate facial landmark points that are usually unavailable

when the image size is very small. More comprehensive

literature review of early face hallucination works can

be referred to the work of Wang et al (2014).

Deep learning based face hallucination methods are

proposed to fully exploit the face structure and priors

from emerging large-scale face datasets (Liu et al, 2015;

Huang et al, 2007; Yang et al, 2016). Zhou and Fan

(2015) propose a convolutional neural network (CNN)

to extract facial features and recover facial details from

the extracted features. Yu and Porikli (2018) combine

deconvolutional and convolutional layers to upsample

LR face images, but they resort a post-processing step (Yu

et al, 2014) to improve the visual quality of the super-

resolved faces. Later, Yu and Porikli (2016) explore a

discriminative generative network to super-resolve aligned

LR face images in an end-to-end manner while Huang

et al (2017) estimate wavelet coefficients for a face up-

sampled by a generative adversarial network and then

reconstruct the HR image from the estimated coeffi-

cients. Xu et al (2017) employ a multi-class adversar-

ial loss in the framework of generative adversarial net-

works to super-resolve LR blurry face and text images.

Dahl et al (2017) exploit an autoregressive generative

model (Van Den Oord et al, 2016) to hallucinate pre-

aligned LR face images. In order to mitigate the ambi-

guity of the mappings between LR and HR faces, Yu

et al (2018b, 2019a) embed high-level semantic informa-

tion, i.e., face attributes, into the procedure of face hal-

lucination. To relax the requirement of face alignment,

Bulat and Tzimiropoulos (2018) present a constraint

that the landmarks of the upsampled faces should be

close to the landmarks detected in their ground-truth

images. Since ground-truth landmarks are not provided

in the training stage and erroneous localization of land-

marks may lead to distorted upsampled face images,

their results are only restricted to 64×64 pixels and fa-

cial details are not sharp enough. Zhu et al (2016a) de-

velop a cascade bi-network to super-resolve unaligned

LR faces, where facial components are localized first

and then upsampled. Chen et al (2018) present a two-

stage network, where low-frequency components of LR

face are first super-resolved and then face priors (i.e.,

facial component locations) are also employed to en-

rich facial details. Their methods may produce ghost-

ing artifacts when the facial component localization is

erroneous. To reduce the difficulty of estimating facial

landmarks from unaligned LR images, Yu et al (2018a)

predict facial landmarks from intermediate aligned fea-

ture maps by upsampling and aligning LR input im-

ages. Considering LR face images may be affected by

different degeneration factors in real world cases, Bu-

lat et al (2018) present a network to learn not only

the mappings between LR and HR face images but

also the real-world degeneration process. Towards the

same goal, our previous works (Yu and Porikli, 2017a,b;

Yu et al, 2018b, 2019b) embed multiple spatial trans-

former networks (Jaderberg et al, 2015) into the upsam-

pling networks. However, their networks are trained on

a fixed input resolution, and thus LR faces at different

resolutions have to be resized (i.e., downsampling) to

meet the input resolution of the networks. Therefore,

these methods may lose information of input images

and introduce extra ambiguity due to the downscaling

operation.

3 Proposed Method: MTDN

3.1 Background

Our face hallucination method is motivated by the gen-

erative adversarial networks (Goodfellow et al, 2014)

since they can generate an face image from random

noise represented by a fairly low-dimensional vector.

Specifically, the generative model G takes a noise vec-

tor z from a distribution Pnoise(z) as an input and then

outputs an image x̂. The discriminative model D takes

an image stochastically chosen from either the gener-

ated image x̂ or the real image x drawn from the train-

ing dataset with a distribution Pdata(x) as an input. D
is trained to output a scalar probability, which is large

for real images and small for generated images from

G. The generative model G is learned to maximize the

probability of D making a mistake. Thus a minmax ob-

jective is used to train these two models simultaneously,

min
G

max
D

Ex∼Pdata(x)logD(x)+Ez∼Pnoise(z)log(1−D(G(z))).

This equation encourages G to fit Pdata(x) so as to fool

D with its generated samples x̂. However, we cannot

directly employ the above equation for the face halluci-

nation task since GAN takes a fixed size noise vector as

input to learn the distribution on the training dataset.

In contrast, the input for our face super-resolution task

is an LR face image, and its resolution is not fixed ei-

ther. LR faces also undergo rotations, translations and

scale changes.

In this paper, we propose a transformative discrim-

inative neural network (MTDN) which achieves the im-

age alignment and super-resolution simultaneously. Fur-

thermore, our MTDN accepts LR input images in var-

ious sizes without losing image information. The entire

pipeline is shown in Fig. 2.
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Fig. 2 Our MTDN consists of two parts: an upsampling network (in the red frame) and a discriminative network (in the blue
frame).

3.2 Network Architecture

Our MTDN consists of two parts: a multiscale trans-

formative upsampling network that combines autoen-

coder, spatial transformation network layers, upsam-

pling layers and residual block layers, and a discrimi-

native network that is composed of convolutional lay-

ers, max-pooling layers, and fully-connected layers. The

multiscale transformative upsampling network is de-

signed for receiving and super-resolving LR images at

different resolutions while the discriminative network is

developed to force the super-resolved faces to be realis-

tic.

3.2.1 Multiscale Transformative Upsampling Network

Reception for LR Images in a Multiscale Man-

ner: State-of-the-art CNN based super-resolution net-

works (Yu and Porikli, 2016, 2017a,b; Zhu et al, 2016a;

Bulat and Tzimiropoulos, 2018; Chen et al, 2018) only

accept LR inputs in a fixed resolution, i.e., 16×16 pix-

els. When the resolutions of LR images are larger than

the desired resolution, those methods need to downsam-

ple input images. However, downsampling input images

may result in the loss of high-frequency details of LR

inputs as well as more ambiguous mappings between

LR and HR face images in super-resolution. In addi-

tion, we assume that the resolutions of LR images are

smaller than 32×32 pixels. Otherwise, LR images can

provide enough resolution for human observation and

computer analysis. Hence, we only focus on LR images

whose resolutions are smaller than 32×32 pixels in this

paper.

Inspired by the Laplacian pyramid, we decompose

an image into two components: a low-frequency part

and a high-frequency part. We downsample an input

image to 16×16 pixels as our low-frequency part, as

illustrated in Fig. 1(i). The high-frequency part is ob-

tained by subtracting the input image by the interpo-

lated low-frequency components. Then, we upsample

the high-frequency component to 32×32 pixels, as visi-

ble in Fig. 1(j). In this way, our transformative upsam-

pling network can receive LR face images at different

resolutions while preserving high-frequency residual de-

tails of the inputs for super-resolution.

In order to combine the information of the high-

frequency and low-frequency branches together, we ex-

tract feature maps from the images of those two branches

and then concatenate the feature maps for further super-

resolution. Specifically, we firstly employ an autoen-

coder with skip connections to extract features from

the low-frequency component and then upsample the

feature maps by a deconvolutional layer. After the de-

convolutional layer, the resolution of the low-frequency

branch has been increased as the same as the resolu-

tion of the high-frequency branch. Rather than directly

combining the high-frequency residual component with

the feature maps of the low-frequency component, we

employ two cascaded residual blocks to extract features

from the high-frequency component as well. Then, we
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(a) HR

(b) LR faces of different resolutions

(c) Our results of (b)

(d) HR

(e) LR faces of different resolutions

(f) Our results of (e)

Fig. 3 Illustrations of our results with respect to the different resolutions of LR input images. (a)(d) Ground-truth HR face
images. (b)(e) unaligned LR face images. From left to right, the resolutions of the images are 16×16, 24×24 and 32×32. (c)
Our results of (b). From left to right, the corresponding PSNRs are 22.79 dB, 23.59 dB and 24.63 dB. (f) Our results of (e).
From left to right, the corresponding PSNRs are 17.80 dB, 19.96 dB and 21.94 dB.

concatenate the feature maps extracted from the high-

frequency residual component with the upsampled fea-

ture maps of the low-frequency component and then

employ a residual block to fuse the concatenated fea-

ture maps.

As shown in Fig. 3, our network is able to super-

resolve LR face images at different resolutions. Note

that, we do not need to fine-tune our network on images

of different sizes. As expected, the PSNRs of our upsam-

pled results become higher as the resolutions of LR faces

increase. This indicates our network exploits all the in-

formation in LR input images for super-resolution.

Upsampling Layers: After obtaining the concate-

nated features maps of input images, we further super-

resolve the feature maps by the deconvolutional lay-

ers and residual blocks. The deconvolutional layer, also
known back-convolutional layer, can be made of a cas-

cade of an upsampling layer and a convolutional layer,

or a convolutional layer with a fractional stride (Zeiler

et al, 2010; Zeiler and Fergus, 2014). Therefore, the res-

olution of the output of the deconvolutional layers is

larger than the resolution of its input. To reduce po-

tential blocky artifacts caused by deconvolutional lay-

ers (Yu and Porikli, 2018) as well as increase the ca-

pacity of the network, we cascade a residual block after

each deconvolutional layer as our upsampling layer.

Spatial Transformation Layers: The spatial trans-

formation network (STN) is proposed by Jaderberg et al

(2015). It can estimate the motion parameters of im-

ages, and warp images to the canonical view. In our

architecture, the spatial transformation network layers

are represented as the green boxes in Fig. 2. These lay-

ers contain three modules: a localization module, a grid

generator module, and a sampler. The localization mod-

ule consists of a number of hidden layers and outputs

the transformation parameters of an input relative to

the canonical view. The grid generator module creates

a sampling grid according to the estimated parameters.

Finally, the sampler module maps the input onto the

generated grid by bilinear interpolation.

Since we focus on in-plane rotations, translations,

and scale changes without requiring a 3D face model,

we employ the similarity transformation for face align-

ment. Although STNs can warp images, it is not straight-

forward to use them directly to align very LR face im-

ages. As shown in Fig. 1(c), directly applying an STN

to LR images causes distortion artifacts due to the dif-

ficulty of spatial transformation estimation on very LR

faces. There are several factors needed to be consid-

ered: (i) After the alignment of LR images, facial pat-

terns are blurred due to the resampling of the aligned

faces by bilinear interpolation. (ii) Since the resolution

is very low and a wide range of poses exists, estimat-

ing spatial transformations on such small face images

may lead to alignment errors. (iii) Due to the blur and

alignment errors, the upsampling network may fail to

generate realistic HR faces. (iv) If STNs are employed

to the two branches separately, the estimated transfor-

mation parameters of these two branches may be differ-

ent. This will result in misalignments between the low-

frequency component and the high-frequency residual

components. As a result of the misalignments, distor-

tion artifacts or ghosting artifacts may appear in the

final results. Therefore, we employ STNs to align the

concatenated feature maps. In this way, we can align

the low-frequency and high-frequency parts simultane-

ously.

Instead of using a single STN to align LR face im-

ages, we employ multiple STN layers to line up the fea-

ture maps. Using multiple layers significantly reduces

the load on each spatial transformation network and

further reduces the errors of misalignments. In addi-
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tion, resampling feature maps by multiple STN layers

prevents from damaging or blurring input LR facial pat-

terns. Since STN layers and the upsampling layers are

interwoven together (rather than being two individual

networks), the upsampling network can learn to elimi-

nate the undesired effects of misalignment in the train-

ing stage.

3.2.2 Discriminative Network

In generic super-resolution (Kim et al, 2016a,b), only

the `2 regression loss, also known as Euclidean distance

loss, is employed to constrain the similarity between the

upsampled HR images and their original HR ground-

truth versions. However, as reported in our previous

work (Yu and Porikli, 2016), deconvolutional layers su-

pervised by a `2 loss tend to produce over-smoothed

results. As seen in Fig. 4(f), the hallucinated faces are

not sharp enough because the common parts learned

by the upsampling network are averaged from similar

components shared by different individuals. Thus, there

is a quality gap between the real face images and the

hallucinated faces. To bridge this gap, we inject class

information. We integrate a discriminative network to

distinguish whether the generated image is classified as

an upright real face image or not. A similar idea is em-

ployed in the generative adversarial networks (Goodfel-

low et al, 2014; Denton et al, 2015; Radford et al, 2015),

which are designed to generate a new face. The archi-

tecture of the discriminative network is shown in the

blue frame of Fig. 2. It consists of convolutional, max-

pooling, fully-connected and non-linear transformation

layers. We employ a binary cross-entropy as the loss

function to distinguish whether the input HR faces are

sampled from super-resolved or real images. We back-

propagate the discriminative error to revise the coeffi-

cients of the multiscale transformative upsampling net-

work (for simplicity, we also refer to it as the upsam-

pling network), which enforces the facial parts learned

by the deconvolutional layers to be as sharp and authen-

tic as real face images. Furthermore, the use of class in-

formation also facilitates the performance of the STN

layers for face alignment since only upright faces are

classified as valid faces. Therefore, our discriminative

network also determines whether the faces are upright

or not. As shown in Fig. 4(h), with the help of the dis-

criminative information, the hallucinated face embod-

ies more authentic, much sharper and better aligned

details.

3.3 Training Details of MTDN

We construct LR and HR face image pairs {li, hi} as our

training dataset, where hi represents the aligned HR

face images (only eyes are aligned), and li is the syn-

thesized LR face images downsampled from hi. Notice

that, different from our previous works, the resolutions

of input LR images li are different. As mentioned in

Sec. 3.2.1, the input LR faces li are further decomposed

into two components: the low-frequency component lLi
of size 16×16 pixels and the high-frequency residual

component lHi of size 32×32 pixels.

In training our MTDN, we not only employ the con-

ventional pixel-wise intensity similarity, known as pixel-

wise `2 loss, but also the feature-wise similarity, known

as perceptual loss (Johnson et al, 2016). The percep-

tual loss is able to enforce the upsampled facial char-

acteristics to resemble their ground-truth counterparts.

Even though pixel-wise and feature-wise similarity are

applied in training our network, learning a mapping

between LR and HR face images is still an ill-posed

problem. Our network will tend to output blurry re-

sults to lower the training losses. Thus, in the testing

stage, the upsampling network generates blurry faces.

Similar to our previous works (Yu and Porikli, 2016,

2017a), the adversarial loss is also employed to attain

visually appealing HR face images.

3.3.1 Pixel-wise Intensity Similarity Loss

We enforce the generated HR face ĥi to be similar to

its corresponding ground-truth hi in terms of image in-

tensities. Thus we employ a pixel-wise `2 regression loss

Lpix to impose the appearance similarity constraint, ex-

pressed as:

Lpix = E(ĥi,hi)∼p(ĥ,h)‖ĥi − hi‖
2
F

= E(li,hi)∼p(l,h)‖Ut(l
L
i , l

H
i )− hi‖2F ,

(1)

where t and U are the parameters and the output of the

upsampling network, p(ĥ, h) represents the joint distri-

bution of the frontalized HR faces and their correspond-

ing frontal HR ground-truths, p(l, h) indicates the joint

distribution of the LR and HR face images in the train-

ing dataset, and the LR input li is decomposed into lLi
and lHi before fed into the upsampling network. Here,

we do not distinguish the parameters of the upsampling

layers and the STN layers because all the parameters

are learned simultaneously. We employ t to represent

all the parameters in our multiscale transformative up-

sampling network.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4 Illustrations of different losses for super-resolution. (a) The input 16× 16 LR images. (b) The original 128× 128 HR
images. (c) The aligned LR images. (d) The upsampled faces by SRGAN (Ledig et al, 2016). Here, SRGAN is applied to
the aligned LR faces. Since SRGAN is trained on generic images patches, we re-train SRGAN on whole face images. (e) The
face images super-resolved by our previous method (Yu and Porikli, 2017b). (f) The super-resolved faces by Lpix. (g) The
super-resolved faces by Lpix +Lfeat. (h) The super-resolved faces by Lpix +Lfeat +LU . Here, we omit the trade-off weights
for simplicity.

3.3.2 Feature-wise Similarity Loss

As illustrated in Fig. 4(f), the pixel-wise `2 loss leads

to over-smoothed super-resolved results. Therefore, we

employ a feature-wise similarity loss to force the super-

resolved HR faces to share the same facial features as

their ground-truth counterparts. The feature-wise loss

Lfeat measures Euclidean distance between the fea-

ture maps of super-resolved and ground-truth HR faces

which are extracted by a deep neural network, written

as:

Lfeat = E(ĥi,hi)∼p(ĥ,h)‖Φ(ĥi)− Φ(hi)‖2F
= E(li,hi)∼p(l,h)‖Φ(Ut(lLi , lHi ))− Φ(hi)‖2F ,

(2)

where Φ(·) denotes feature maps extracted by the ReLU32

layer in VGG-19 (Simonyan and Zisserman, 2014), which

gives good empirical performance in our experiments.

3.3.3 Class-wise Discriminative Loss

In order to achieve visually appealing results, we in-

fuse class-specific discriminative information into our

upsampling network by exploiting a discriminative net-

work, similar to our previous works (Yu and Porikli,

2016, 2017a,b). Since our goal is to output realistic HR

faces, the upsampled face images should be able to fool

the discriminative network. In other words, the upsam-

pling network makes the discriminative network fail to

distinguish generated faces from real ones. To do so,

we enforce the super-resolved HR frontal faces to lie on

the manifold of real HR face images. The discrimina-

tive network is used to classify real and super-resolved

faces, and thus its objective function is written as:

LD = −E(ĥi,hi)∼p(ĥ,h)

[
logDd(hi) + log(1−Dd(ĥi))

]
= −Ehi∼p(h) logDd(hi)− Eĥi∼p(ĥ) log(1−Dd(ĥi))

= −Ehi∼p(h) logDd(hi)

−Eli∼p(l) log(1−Dd(Ut(lLi , lHi ))),

(3)

where d represents the parameters of the discriminative

network, p(l), p(h) and p(ĥ) indicate the distributions

of the LR, HR ground-truth and upsampled faces re-

spectively, and Dd(hi) and Dd(ĥi) are the outputs of

the discriminative network. To make the discriminative
network distinguish hallucinated faces from real ones,

we minimize the loss LD and update the parameters d.

Meanwhile, our upsampling network aims to fool the

discriminative network. It needs to generate realistic

HR face images and make the discriminative network

classify the super-resolved faces as real faces. There-

fore, the objective function of our upsampling network

is written as:

LU = −Eĥi∼p(ĥ) log(D(ĥi))

= −Eli∼p(l) log(D(Ut(lLi , lHi ))).
(4)

By minimizing the loss LU , we update the parameters

t and thus the discriminative network will be prone to

categorize the upsampled faces as real ones. These two

discriminative losses in Eqn. 3 and Eqn. 4 are used to

update our upsampling and discriminative networks re-

spectively in an alternating fashion.

All the layers in our MTDN are differentiable and

thus RMSprop (Hinton, 2012) is employed to update
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the parameters t and d. We update the parameters d

by minimizing the loss LD as follows:

∆i+1 = γ∆i + (1− γ)(
∂LD
∂d

)2,

di+1 = di − r ∂LD
∂d

1√
∆i+1 + ε

,
(5)

where r and γ represent the learning rate and the decay

rate respectively, i indicates the index of the iterations,

∆ is an auxiliary variable, and ε is set to 10−8 to avoid

division by zero.

Multiple losses, i.e., Lpix, Lfeat, and LU , are used

for learning the parameters of our upsampling network

and the object function is expressed as:

LT = Lpix + ηLfeat + λLU , (6)

where η and λ are the trade-off weights. We employ

lower weights on the feature-wise and discriminative

losses because we aim at super-resolving HR faces rather

than generating random faces. Thus, λ and η are both

set to 0.01. Then, the parameters of our upsampling

network t are updated by the gradient descent as fol-

lows:

∆i+1 = γ∆i + (1− γ)(
∂LT
∂t

)2,

ti+1 = ti − r ∂LT
∂t

1√
∆i+1 + ε

.
(7)

As the iteration progresses, the output faces will

be more similar to real faces. Therefore, we gradually

reduce the impact of the discriminative network by de-

creasing λ,

λj = max{λ · 0.995j , λ/2}, (8)

where j is the index of the epochs. Equation 8 not only

increases the impact of the appearance similarity term

but also preserves the class-specific discriminative infor-

mation in the training phase. The training procedure of

our MTDN is illustrated in Algorithm 1.

3.4 Hallucinating a Very LR Face Image

The discriminative network is only used for training of

the upsampling network. In the testing phase, we first

decompose an LR image into a low-frequency compo-

nent image and its high-frequency residual image and

then feed them into the upsampling network to obtain a

super-resolved HR face. Because the ground-truth HR

face images are upright in the training stage of the en-

tire network, the output of the upsampling network will

be an upright face image. As a result, our method does

not require alignment of the very low-resolution images

Algorithm 1 Minibatch stochastic gradient descent

training of MTDN
Input: minibatch size N , LR and HR face image pairs
{li, hi}, maximum number of iterations K.

1: while Iter < K do
2: Choose one minibatch of LR and HR image pairs

{li, hi}, i = 1, . . . , N .
3: Decompose LR images into the low-frequency and

high-frequency components {lLi , lHi }.
4: Generate one minibatch of HR face images ĥi from

{lLi , lHi }, i = 1, . . . , N , where ĥi = Ut(lLi , lHi ).
5: Update the parameters of the discriminative network

Dd by using Eqn. 3 and Eqn. 5.
6: Update the parameters of the multiscale transforma-

tive upsampling network Ut by using Eqn. 6 and
Eqn. 7.

7: Update the trade-off weight λ by using Eqn. 8.
8: end while
Output: MTDN.

in advance. Our network provides an end-to-end map-

ping from an unaligned LR face image to an upright

HR version, which mitigates potential artifacts caused

by misalignments and facilitates achieving high-quality

super-resolved HR face images.

Moreover, our two-branch architecture network is

able to upsample LR input images to HR images of

size 128×128 pixels by a upscaling factor ranging from

4× to 8×. For example, our MTDN super-resolves an

LR image by 8× when zeros are fed into the high-

frequency branch. In other words, our low-frequency

branch focuses on super-resolving images by a upscaling

factor of 8× while our high-frequency residual branch

extracts complementary information from input images

for super-resolution. In this fashion, we can upsample

LR faces by different magnification factors in a uniform

framework.

3.5 Flexiblity of Halluciatining Faces with Different

Interocular Distances

Since previous methods, such as FSRNet Chen et al

(2018) and CBN Zhu et al (2016b), require the inte-

rocular distances of input LR faces to be similar, they

may fail to super-resolve faces when the interocular dis-

tances of input faces are different from their training

ones, as seen in Fig. 5. On the contrary, we employ

STN layers to align LR faces in different sizes to the

pre-defined upright position, and thus the interocular

distances of LR faces are also rectified to similar dis-

tances by the STN layers. Therefore, we do not suffer

from artifacts when input LR faces undergo different

interocular distances. As indicated in Fig. 5, Fig. 6 and

Fig. 7, our method is able to super-resolve LR faces

from 16×16 to 32×32 pixels.
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3.6 Implementation Details

In Fig. 2, the STN layers are constructed by convo-

lutional and ReLU layers (Conv+ReLU), max-pooling

layers with a stride 2 (MP2) and fully connected layers

(FC). In particular, STN1 layer is cascaded by: MP2,

Conv+ReLU (with the filter size: 128×20×5×5), MP2,

Conv+ReLU (with the filter size: 20×20×5×5), FC+ReLU

(from 80 to 20 dimensions) and FC (from 20 to 4 dimen-

sions). STN2 is cascaded by: MP2, Conv+ReLU (with

the filter size: 64×128×5×5), MP2, Conv+ReLU (with

the filter size: 128×20×5×5), MP2, Conv+ReLU (with

the filter size: 20×20×3×3), FC+ReLU (from 180 to 20

dimensions) and FC (from 20 to 4 dimensions). We do

not use zero-padding in the convolution operations.

In order to merge the low-frequency images with the

information extracted from the high-frequency branch,

we employ an autoencoder with skip connections. The

encoder is composed of convolutional layers with a stride

of 2 and zero-paddings. The decoder consists of decon-

volutional layers with a stride of 2 and zero-paddings

as well. The feature maps from the encoder and de-

coder are concatenated by skip connections. The resid-

ual block is composed of a convolutional layer with a

kernel size 3×3, batch normalization, ReLU, a convo-

lutional layer with a kernel size 1×1 and a high-pass

connection.

In the following experimental part, some algorithms

require the alignments of LR inputs (Ma et al, 2010;

Ledig et al, 2016; Kim et al, 2016b). Thus, we use

STN0 to align the LR inputs images (i.e., 16×16 pix-

els) for those methods. The only difference between

STN0 and STN1 is that the first MP2 operation in

STN1 is removed in STN0 and the input channel is

3. Since some algorithms can super-resolve unaligned

LR faces, we use an STN network to align the up-

sampled HR face images, marked as STNHR. STNHR

is constructed by: Conv+ReLU (with the filter size:

3×16×5×5), MP2, Conv+ReLU (with the filter size:

16×32×3×3), MP2, Conv+ReLU (with the filter size:

32×64×3×3), MP2, Conv+ReLU (with the filter size:

64×128×3×3), MP2, Conv+ReLU (with the filter size:

128×20×5×5), FC+ReLU (from 80 to 20 dimensions)

and FC (from 20 to 4 dimensions). All the training de-

tails, codes and pre-trained models will be released.

4 Experiments

In this section, we compare our method with the state-

of-the-art methods (Ma et al, 2010; Kim et al, 2016a;

Ledig et al, 2016; Zhu et al, 2016b; Yu and Porikli,

2016, 2017a,b; Chen et al, 2018; Yu et al, 2018b,a)

qualitatively and quantitatively. Kim et al (2016a) em-

ploy very deep CNN to upsample images. Ledig et al

(2016) use the generative adversarial framework to en-

hance super-resolved details. Ma et al (2010) exploit

position-patches in the dataset to reconstruct HR im-

ages. Zhu et al (2016b) develop a deep CNN to local-

ize facial components and then super-resolve them in a

cascaded manner. Yu and Porikli (2016) not only em-

ploy a pixel-wise similarity loss to train a deconvolu-

tional network but also present a discriminative loss

to enforce the upsampled HR faces to be realistic. Yu

and Porikli (2017a) propose a single-scale face halluci-

nation method, which also employs STN layers and de-

convolutional layers for super-resolution. Yu and Porikli

(2017b) develop a decoder-encoder-decoder network ar-

chitecture to suppress noise in LR face images while up-

sampling. Chen et al (2018) exploit facial priors (i.e.,

facial landmarks) to enrich upsampled face details. Yu

et al (2018b) embed facial attributes into the procedure

of face hallucination to reduce the inherent ambiguity of

super-resolution with a large upscaling factor. Yu et al

(2018a) first estimate facial component structure from

the intermediate aligned feature maps and then hallu-

cinated facial details based on the estimated locations

of facial components.

4.1 Dataset

Our network is trained on the Celebrity Face Attributes

(CelebA) dataset (Liu et al, 2015). There are more than

200K face images in this dataset, and the images cover

different pose variations and facial expressions. In train-

ing our network, we disregard these variations without

grouping the face images into different pose and facial

expression subcategories.

When generating the LR and HR face pairs, we crop

the aligned HR face images from the CelebA dataset,

and then resize them to 128×128 pixels as HR im-

ages. We manually transform the HR images including

2D translations, rotations and scale changes while con-

straining the faces in the image region, and then down-

sample the HR images to generate their corresponding

LR images, where the resolutions of LR images are also

randomly set between 16 to 32 pixels. We use 70%, 10%

and 20% of LR and HR image pairs for training, vali-

dation and testing, respectively.

4.2 Experimental Setup

Since our method is able to super-resolve an image with

a substantial upscaling factor of 8×, for the methods

that do not provide 8× (Kim et al, 2016a; Ledig et al,
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o)

Fig. 5 Comparisons with the state-of-the-art methods on the input images of size 16×16 pixels. The results are obtained in the
scenario of first aligning LR faces and then super-resolving them. (a) Unaligned LR inputs. (b) Aligned LR faces. (c) Bicubic
interpolation. (d) Kim et al.’s method (Kim et al, 2016a) (VDSR). (e) Ledig et al.’s method (Ledig et al, 2016) (SRGAN). (f)
Ma et al.’s method (Ma et al, 2010). (g) Zhu et al.’s method (Zhu et al, 2016a) (CBN). (h) Chen et al.’s method (Chen et al,
2018) (FSRNet). (i) Yu and Porikli’s method (Yu and Porikli, 2016) (URDGN). (j) Yu and Porikli’s method (Yu and Porikli,
2017a) (TDN). (k) Yu and Porikli’s method (Yu and Porikli, 2017b) (TDAE). (l) Yu et al.’s method (Yu et al, 2018b). (m)
Yu et al.’s method (Yu et al, 2018a). (n) Our method (MTDN). (o) Original HR images.

2016), we retrain their network on face images with a magnification factor 8×. Furthermore, the resolutions
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o)

Fig. 6 Comparisons with the state-of-the-art methods on the input images of size 24×24 pixels. The results are obtained in the
scenario of first aligning LR faces and then super-resolving them. (a) Unaligned LR inputs. (b) Aligned LR faces. (c) Bicubic
interpolation. (d) Kim et al.’s method (Kim et al, 2016a) (VDSR). (e) Ledig et al.’s method (Ledig et al, 2016) (SRGAN). (f)
Ma et al.’s method (Ma et al, 2010). (g) Zhu et al.’s method (Zhu et al, 2016a) (CBN). (h) Chen et al.’s method (Chen et al,
2018) (FSRNet). (i) Yu and Porikli’s method (Yu and Porikli, 2016) (URDGN). (j) Yu and Porikli’s method (Yu and Porikli,
2017a) (TDN). (k) Yu and Porikli’s method (Yu and Porikli, 2017b) (TDAE). (l) Yu et al.’s method (Yu et al, 2018b). (m)
Yu et al.’s method (Yu et al, 2018a). (n) Our method (MTDN). (o) Original HR images.

of LR inputs are various, i.e., 16×16∼32×32 pixels, but STNs can only accept an image in a fixed resolution
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o)

Fig. 7 Comparisons with the state-of-the-art methods on the input images of size 32×32 pixels. The results are obtained in the
scenario of first aligning LR faces and then super-resolving them. (a) Unaligned LR inputs. (b) Aligned LR faces. (c) Bicubic
interpolation. (d) Kim et al.’s method (Kim et al, 2016a) (VDSR). (e) Ledig et al.’s method (Ledig et al, 2016) (SRGAN). (f)
Ma et al.’s method (Ma et al, 2010). (g) Zhu et al.’s method (Zhu et al, 2016a) (CBN). (h) Chen et al.’s method (Chen et al,
2018) (FSRNet). (i) Yu and Porikli’s method (Yu and Porikli, 2016) (URDGN). (j) Yu and Porikli’s method (Yu and Porikli,
2017a) (TDN). (k) Yu and Porikli’s method (Yu and Porikli, 2017b) (TDAE). (l) Yu et al.’s method (Yu et al, 2018b). (m)
Yu et al.’s method (Yu et al, 2018a). (n) Our method (MTDN). (o) Original HR images.

due to the network architecture of its localization mod- ule. Considering approaches (Zhu et al, 2016b; Yu and
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8 Comparisons with the state-of-the-art methods on the input images of size 16×16 pixels. The results are obtained in
the scenario of first upsampling LR faces and then aligning the super-resolved faces by STNHR. (a) Unaligned LR inputs.
(b) Bicubic interpolation. (c) Kim et al.’s method (Kim et al, 2016a) (VDSR). (d) Ledig et al.’s method (Ledig et al, 2016)
(SRGAN). (e) Zhu et al.’s method (Zhu et al, 2016a) (CBN). (f) Chen et al.’s method (Chen et al, 2018) (FSRNet). (g) Yu and
Porikli’s method (Yu and Porikli, 2017a) (TDN). (h) Yu and Porikli’s method (Yu and Porikli, 2017b) (TDAE). (i) Yu et al.’s
method (Yu et al, 2018b). (j) Yu et al.’s method (Yu et al, 2018a). (k) Our method (MTDN). (l) Original HR images.

Porikli, 2017b; Chen et al, 2018; Yu et al, 2018b,a) only

accept the input resolution of 16×16 pixels, the input

images are resized to 16×16 pixels to meet the require-

ments. Since the methods of Ma et al (2010) and Yu
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9 Comparisons with the state-of-the-art methods on the input images of size 16×16 pixels. The results are obtained
in the scenario of first upsampling LR faces and then aligning the super-resolved faces by Bulat et al.’s method (Bulat and
Tzimiropoulos, 2017). (a) Unaligned LR inputs. (b) Bicubic interpolation. (c) Kim et al.’s method (Kim et al, 2016a) (VDSR).
(d) Ledig et al.’s method (Ledig et al, 2016) (SRGAN). (e) Zhu et al.’s method (Zhu et al, 2016a) (CBN). (f) Chen et al.’s
method (Chen et al, 2018) (FSRNet). (g) Yu and Porikli’s method (Yu and Porikli, 2017a) (TDN). (h) Yu and Porikli’s
method (Yu and Porikli, 2017b) (TDAE). (i) Yu et al.’s method (Yu et al, 2018b). (j) Yu et al.’s method (Yu et al, 2018a).
(k) Our method (MTDN). (l) Original HR images.

and Porikli (2016) require LR faces to be aligned be- fore super-resolution while some networks (Kim et al,
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2016a; Ledig et al, 2016; Chen et al, 2018) can super-

resolve unaligned LR images, we propose two scenarios

to compare with the state-of-the-art methods. In the

first scenario, we first employ an STN network (i.e.,

STN0) to align LR input images and then super-resolve

aligned LR faces by the state-of-the-art methods. In the

second scenario, we first upsample unaligned LR input

faces by the state-of-the-art approaches and then use

an alignment method to transform the upsampled HR

faces to the upright position. Since our method exploits

STN layers to align feature maps, we employ an STN

network (i.e., STNHR) to align the upsampled HR face

images. Moreover, we also employ a state-of-the-art fa-

cial landmark based alignment method (Bulat and Tz-

imiropoulos, 2017) to align upsampled HR faces. Due

to the misalignments of LR input faces, the aligned and

upsampled HR faces cannot contain all the regions in

the ground-truth images, and the unmatching regions

may lead to inaccurate quantitative evaluation. Thus,

we employ a mask to remove unmatching regions for

quantitative comparisons.

4.3 Qualitative Comparisons with the State-of-the-Art

As shown in Fig. 5(c) and Fig. 8(b), traditional upsam-

pling methods, i.e., bicubic interpolation, cannot hal-

lucinate authentic facial details. Since the resolution of

inputs is very small, little information is contained in

the input images. Simply interpolating input LR images

cannot recover extra high-frequency details. As seen in

Fig. 5(c), Fig. 6(c) and Fig. 7(c), the images upsampled

by bicubic interpolation have some skew effects rather

than laying in the upright view. This also indicates that

aligning input images by STN0 suffers from misalign-

ments because it is difficult to estimate transformation

parameters accurately from images in such a small size.

As shown in Fig. 8(b) and Fig. 9(b), STNHR and the

landmark based face alignment algorithm (Bulat and

Tzimiropoulos, 2017) fail to align upsampled HR faces

to the upright position since the hallucinated faces are

too blurry. On the contrary, we apply multiple STNs

on the upsampled feature maps, which improves the

alignment of the LR inputs. Therefore, our method out-

puts well-aligned faces. Moreover, with the help of our

discriminative network, our method can achieve much

sharper results.

Kim et al (2016a) propose a very deep convolutional

neural network based general purpose super-resolution

method, dubbed VDSR. Since VDSR is trained on nat-

ural image patches, it may be not suitable to super-

resolve face images. Furthermore, VDSR does not pro-

vide a magnification factor of 8×. Thus, we fine-tune

VDSR on both aligned and unaligned LR/HR face im-

age pairs with an upscaling factor of 8×. However, VDSR

is only composed of convolutional layers, and cannot

generate aligned HR face images. Hence, STN0 is em-

ployed to align LR faces before super-resolution in the

first scenario, while STNHR and Bulat et al.’s method (Bu-

lat and Tzimiropoulos, 2017) are used to align upsam-

pled HR ones in the second scenario. As shown in Fig. 5(d),

Fig. 8(c) and Fig. 9(c), VDSR fails to produce realistic

facial details in both scenarios. This indicates that only

using a pixel-wise loss as supervision leads to overly

smoothed super-resolved results.

Ledig et al (2016) develop a generic super-resolution

method, known as SRGAN. SRGAN employs the frame-

work of generative adversarial networks (Goodfellow

et al, 2014; Radford et al, 2015) to enhance the visual

quality. It is trained by using not only a pixel-wise `2
loss but also an adversarial loss. Similar to VDSR, orig-

inal SRGAN is also trained on image patches, and thus

it is hard to capture the global structure of face images.

Therefore, we also retrain SRGAN on both aligned and

unaligned LR/HR face image pairs. As seen in Fig. 5(e),

Fig. 6(e) and Fig. 7(e), SRGAN captures LR facial pat-

terns and achieves sharper upsampled results compared

to VDSR, but misalignments in LR faces cause severe

distortions and artifacts in the final hallucinated faces.

As visible in Fig. 8(d) and Fig. 9(d), although SR-

GAN is able to generate unaligned LR facial details, the

aligned HR faces still undergo obvious skew effects. This

implies that directly combining a face super-resolution

method and a face alignment method cannot yield sat-

isfying results.

Ma et al (2010) exploit position patches to halluci-

nate HR faces. Thus their method requires the LR in-

puts to be precisely aligned with the reference images in

the training dataset. As seen in Fig. 5(f), Fig. 6(f) and

Fig. 7(f), as the upscaling factor increases, the corre-

spondences between LR and HR patches become more

inconsistent. As a result, this method suffers from obvi-

ous blocky artifacts around the boundaries of different

patches. In addition, when there are obvious alignment

errors in the aligned LR faces or large poses exist, their

method will output mixed and blurry facial components

in their results. Since Ma et al (2010) require the input

faces to be aligned in advance, we do not compare with

their method in the second scenario.

Zhu et al (2016a) present a deep cascaded bi-branch

network for face hallucination, named CBN, where one

branch first localizes facial components, then aligns and

upsamples LR facial components while the other branch

is used to upsample global face profiles. However, due to

the inaccurate localization of facial components in both

scenarios, CBN may produce severe artifacts as seen in
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Table 1 Quantitative comparisons on the entire test dataset

SR Methods
A+SR SR+ASTN SR+ALM

PSNR SSIM FLLE PSNR SSIM FLLE PSNR SSIM FLLE

Bicubic 22.14 0.75 56.32 19.21 0.68 51.25 17.30 0.64 58.96

VDSR 23.28 0.76 8.61 21.64 0.73 10.34 20.81 0.70 12.88

SRGAN 22.24 0.76 3.66 22.95 0.79 3.44 22.30 0.75 5.42

CBN 20.98 0.72 5.48 20.94 0.72 4.73 19.57 0.67 6.89

FSRNet 20.53 0.72 28.48 19.44 0.70 16.68 19.30 0.69 19.81

Ma et al (2010) 22.06 0.74 4.48 – – – – – –

URDGN 23.24 0.75 4.54 – – – – – –

PSNR SSIM FLLE

TDN 23.32 0.75 4.03

TDAE 23.53 0.76 3.94

TDAE32 23.96 0.78 3.00

Yu et al (2018b) 23.89 0.79 2.56

Yu et al (2018a) 24.28 0.79 2.35

IBSR 24.26 0.78 3.53

Ours 25.02 0.80 2.32

Table 2 Quantitative comparisons on the frontal faces

SR Methods PSNR SSIM FLLE

Bicubic 24.49 0.67 36.07

VDSR 24.68 0.69 12.88

SRGAN 26.90 0.76 1.96

Ma et al (2010) 26.07 0.79 3.42

CBN 22.62 0.65 6.89

FSRNet 22.54 0.78 8.59

URDGN 26.04 0.72 2.11

TDN 23.68 0.76 3.22

TDAE 24.04 0.78 3.12

Yu et al (2018b) 25.02 0.81 2.32

Yu et al (2018a) 24.71 0.80 2.30

Ours 25.56 0.81 2.19

Ours† 28.19 0.83 1.48

Fig. 5(g), Fig. 6(g), Fig. 7(g), Fig. 8(e) and Fig. 9(e). In

contrast, our method estimates the 2D deformations of

LR faces and aligns them by multiple STNs in the pro-

cedure of super-resolution, where misalignments from

the previous STN layer can be eliminated by the lat-

ter STN layer. Therefore, our results do not suffer the

ghosting artifacts as shown in Fig. 5(n), Fig. 6(n) and

Fig. 7(n). Note that, the facial component localization

branch in CBN requires the input resolution to be fixed,

i.e.16×16 pixels. Thus, if the resolutions of input im-

ages are larger than 16×16 pixels, CBN needs to down-

sample input images first. In that case, CBN may lose

high-frequency information of inputs and achieves sub-

optimal hallucination results.

Chen et al (2018) present a network to super-resolve

HR faces in two stages by exploiting face priors, named

FSRNet. FSRNet firstly super-resolves the low-frequency

part of LR input faces by its first-stage network and

then exploits the face structure of the upsampled faces

as face priors to enrich facial details by its second-stage

network. Since FSRNet does not align upsampled HR

face images, we compare with FSRNet in the two sce-

narios. We use the pre-trained model released by Chen

et al (2018) to super-resolve LR faces. Because align-

ing LR faces by STN0 may introduce extra blurriness

and skew artifacts, FSRNet fail to localize facial com-

ponents from upsampled overly-smoothed HR faces, as

seen in Fig. 5(h), Fig. 6(h) and Fig. 7(h). In addition,

since unaligned LR faces undergo different 2D trans-

formations, the interocular distances of the testing face

images are different from the ones for training FSRNet.

FSRNet may fail to localize facial landmarks. As shown

in Fig. 8(f) and Fig. 9(f), FSRNet generates overly-

smoothed faces due to the erroneous localization of fa-

cial components in LR faces. This implies that FSRNet

might be overfitted to super-resolve face images with a

certain interocular distance.

Yu and Porikli (2016) develop a discriminative gen-

erative network, known as URDGN, to upsample very

low-resolution face images. Their method uses deconvo-

lutional layers to upsample LR faces and a discrimina-

tive network to force the generated faces to be realistic.

URDGN is trained on aligned LR/HR face pairs at a

fixed scale. Thus, we resize input images to the required
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resolution for URDGN and compare with URDGN in

the first scenario. As visible in Fig. 5(i), Fig. 6(i) and

Fig. 7(i), URDGN suffers severe artifacts when LR fa-

cial patterns are distorted by the face alignment net-

work STN0. Moreover, URDGN is only composed of

three deconvolutional layers and two convolutional lay-

ers for upsampling and thus this shallow network archi-

tecture may hinder the face hallucination performance.

By increasing the network capacity as well as embed-

ding STN layers, our MTDN not only obtains aligned

HR face images but also achieves superior super-resolution

performance to URDGN, as seen in Fig. 5, Fig. 6 and

Fig. 7.

To super-resolve unaligned LR face images, Yu and

Porikli (2017a) embed spatial transformer networks (Jader-

berg et al, 2015) as intermediate layers into an up-

sampling network, as well as exploit a discriminative

network to enforce the upsampling network to produce

sharper results. Since STNs are used to align feature

maps of LR input images, their transformative discrim-

inative network (TDN) is able to generate upright HR

face images. Thus, we do not need to align the super-

resolved HR images or the input LR images. Similar

to URDGN, TDN also employs a relative shallow net-

work architecture. Thus, the super-resolution perfor-

mance of TDN tends to saturate. As seen in Fig. 6(j),

Fig. 7(j) and Fig. 8(g), ringing artifacts and distortions

appear in the upsampled results of TDN. In contrast,

due to the larger network capacity, our MTDN attains

much sharper and clearer HR face images, as shown in

Fig. 5(n), Fig. 6(n) and Fig. 8(k).

Yu and Porikli (2017b) design a transformative dis-

criminative autoencoder, called TDAE, to upsample

noisy and unaligned LR face images. However, TDAE

only upsamples LR images in a fixed resolution, and

it has to downsample LR images to a lower-resolution

when the resolutions of input images are larger than

the required resolution, i.e., 16×16 pixels. Therefore,

TDAE will lose details of input images and may gener-

ate inaccurate facial characteristics, such as gender re-

versal as visible in the second row of Fig. 5(k) and the

third row of Fig. 6(k). Note that, we apply TDAE to the

unaligned LR face images directly for super-resolution.

Furthermore, benefiting from the feature-wise loss, our

MTDN is able to hallucinate facial characteristics akin

to the ground-truth HR faces. Furthermore, TDAE is

trained mainly on near-frontal face images. It does not

super-resolves LR faces in large poses well. In contrast,

we enlarge the training dataset with more examples

and more challenging poses to train our MTDN. There-

fore, our network attains better super-resolution perfor-

mance.

Yu et al (2018b) embed high-level semantic informa-

tion into face hallucination by designing a conditional

generative discriminative network. Their method can

significantly reduce the ambiguity of super-resolution

when the facial attribute information of an input face

image is provided. Since all the other methods do not

use any high-level information for face hallucination, we

feed “neutral attributes” (i.e., 0.5) to their network for

super-resolving LR face images. Due to the employment

of STN layers in their network, the network accepts LR

images at a fixed resolution and aligns LR inputs while

hallucinating them. As seen in the first and third rows of

Fig. 5(l), the results of Yu et al (2018b) exhibit different

facial attributes from their corresponding ground-truth

ones when the input attributes are inaccurate. This also

implies that their performance highly relies on the ac-

curacy of the input facial attributes, which may not

always be available in practice.

Yu et al (2018a) develop a facial component heatmap

guided upsampling network. Unlike the methods (Chen

et al, 2018; Bulat and Tzimiropoulos, 2018), this method

aligns feature maps by STN layers and then estimates

the facial components from the intermediate aligned

feature maps instead of the coarsely upsampled HR

face images. Similar to TDN and TDAE, their method

does not need to apply face alignment to the LR in-

put images. Due to the usage of STN layers in the up-

sampling network, Yu et al (2018b) also need to resize

input images before super-resolution, thus losing some

high-frequency details of input images. Although their

method is able to super-resolve LR faces in very large

poses with the help of the facial component localization

module, it may fail to super-resolve HR faces authen-

tically when it estimates facial landmarks incorrectly.

The inaccurate facial component estimation degrades

the final super-resolution performance, as shown in the

first row of Fig. 5(m) and the fourth row of Fig. 8(j).

As shown in Fig. 5(n), Fig. 6(n), Fig. 7(n), Fig. 8(k)

and Fig. 9(k), our method reconstructs authentic facial

details and the reconstructed faces have different poses

and facial expressions. Since our method applies mul-

tiple STNs on feature maps to align face images, we

can achieve better alignment results without damag-

ing input LR facial patterns. Furthermore, our method

does not warp input images directly, so there are no

blank regions in our results. Since our network is able

to receive LR images at different resolutions without

discarding residual images, our method can exploit in-

formation better than the other methods. Notice that,

we only use a single network to super-resolve all the LR

face images in various resolutions.
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4.4 Quantitative Comparisons with the

State-of-the-Art

We report the quantitative comparison results using

the average Peak Single-to-Noise Ratio (PSNR), Struc-

tural SIMilarity scores (SSIM) as well as average Facial

Landmark Localization Error (FLLE) on the entire test

dataset in Tab. 1. FLLE measures the Euclidean dis-

tance between the estimated facial landmarks and the

ground-truth ones. We employ a state-of-the-art face

alignment method (Bulat and Tzimiropoulos, 2017) to

detect 68 point facial landmarks. Note that, in the test

dataset the resolutions of LR input face images ranges

from 16×16 to 32×32. We use all the methods to up-

sample LR face images to the HR images of size 128×128

pixels and then compare the upsampled HR faces with

their corresponding ground-truths. As mentioned in Sec. 4.2,

the state-of-the-art methods need to downsample input

images to 16×16 pixels for super-resolution.

In Tab. 1, we compare with the state-of-the-art meth-

ods in the two possible scenarios quantitatively. The

first scenario, i.e., LR face alignment followed by super-

resolution, is marked as A+SR. In the second scenario,

we first upsample LR input images by the state-of-the-

art methods and then align the upsampled HR faces by

a face alignment method. For the second scenario, we

employ two alignment methods (i.e., STN-based and

landmark-based alignment methods) to align upsam-

pled HR faces and report these two possible combina-

tions. We employ STNHR to align super-resolved HR

faces and this combination is named as SR+ASTN . The

other combination using a facial landmark-based align-

ing method (Bulat and Tzimiropoulos, 2017) is marked
as SR+ALM .

As indicated in Tab. 1, our MTDN attains the best

PSNR and SSIM results and outperforms the second

best with a large margin of 0.74 dB in PSNR. Al-

though (Yu et al, 2018a) interweave STN layers and

deconvolutional layers as well as exploit face structure

to upsample unaligned face images, their method only

accepts input images in a fixed resolution, i.e.16×16

pixels, and thus achieves the second best performance.

This indicates that our previous works lose important

high-frequency information of LR images in the down-

sampling operation. As indicated in Tab. 1, by using

the multi-scale strategy and the two-branch architec-

ture network, we can preserve all the information of

the LR inputs in super-resolution and thus obtain su-

perior performance to our previous work Yu and Porikli

(2017b). Futhermore, Tab. 1 demonstrates that it is dif-

ficult to obtain well-aligned hallucinated faces by either

aligning LR faces before super-resolution or aligning

upsampled HR face images. In contrast, we can achieve

lower face alignment errors by embedding multiple STN

layers into our upsampling networks. This also implies

that the necessity of using STN layers.

4.5 Comparisons with the State-of-the-Art on Aligned

Faces

To further demonstrate the effectiveness of our meth-

ods, we compare with the state-of-the-art algorithms

when the LR input faces are aligned in different reso-

lutions in Fig. 10 and Fig. 11. Similar to the procedure

of generating unaligned face dataset, we construct 10K

aligned LR/HR face pairs in different resolutions (i.e.,

from 16×16 to 32×32 pixels) for testing.

As illustrated in Fig. 10 and Fig. 11, our method

achieves visually appealing results and authentic fa-

cial details which are akin to the ground-truth ones.

Furthermore, we also demonstrate the quantitative re-

sults in comparisons to the state-of-the-art methods in

Tab. 2. Since several works (Yu and Porikli, 2017a,b; Yu

et al, 2018b,a) and our MTDN employ STN layers, STN

layers will try to align input LR images even though the

input faces are aligned. Thus, STN layers may deform

(such as, rescale, translate and rotate) input images and

lead to inferior quantitative results as seen in Tab. 2.

Thus, we remove the STN layers from our MTDN to

super-resolve aligned LR faces. As shown in Tab. 2,

the results of our MTDN, marked as Ours†, achieves

the best quantitative performance. Our method out-

performs the second best method SRGAN by a large

margin of 1.29 dB in PSNR.

5 Abalation Study

5.1 Impacts of Residual Branch

As indicated by the quantitative result of TDAE in

Tab. 1, the downsampling operation leads to subop-

timal super-resolution performance. Since our MTDN

also employs extra residual blocks, the improvement of

the performance may be caused by the increased ca-

pacity of the network. In order to evaluate the impacts

of the high-frequency residual branch, similar to our

previous methods (Yu and Porikli, 2016, 2017b), we

only employ one branch, i.e., the low-frequency branch,

to upsample LR input face images. Note that, we do

not need to re-train our MTDN network. As shown in

Tab. 6, the performance of only using low-frequency

branch is marked by noHF, and its performance de-

grades 1.30 dB in PSNR. It indicates that the high-

frequency residual information extracted from the in-

put images contains useful clues for super-resolution.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n)

Fig. 10 Comparisons with the state-of-the-art methods on the aligned input images of size 16×16 pixels. (a) Unaligned
LR inputs. (b) Bicubic interpolation. (c) Kim et al.’s method (Kim et al, 2016a) (VDSR). (d) Ledig et al.’s method (Ledig
et al, 2016) (SRGAN). (e) Ma et al.’s method (Ma et al, 2010). (f) Zhu et al.’s method (Zhu et al, 2016a) (CBN). (g)
Chen et al.’s method (Chen et al, 2018) (FSRNet). (h) Yu and Porikli’s method (Yu and Porikli, 2016) (URDGN). (i) Yu and
Porikli’s method (Yu and Porikli, 2017a) (TDN). (j) Yu and Porikli’s method (Yu and Porikli, 2017b) (TDAE). (k) Yu et al.’s
method (Yu et al, 2018b). (l) Yu et al.’s method (Yu et al, 2018a). (m) Our method (MTDN). (n) Original HR images.

Thus, providing more high-frequency details improves

face super-resolution performance.

5.2 Effects of Different Losses

As mentioned in Sec. 3.3, there are three different losses

employed to train our network, i.e., pixel-wise and feature-
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n)

Fig. 11 Comparisons with the state-of-the-art methods on the aligned input images of size 32×32 pixels. (a) Unaligned
LR inputs. (b) Bicubic interpolation. (c) Kim et al.’s method (Kim et al, 2016a) (VDSR). (d) Ledig et al.’s method (Ledig
et al, 2016) (SRGAN). (e) Ma et al.’s method (Ma et al, 2010). (f) Zhu et al.’s method (Zhu et al, 2016a) (CBN). (g)
Chen et al.’s method (Chen et al, 2018) (FSRNet). (h) Yu and Porikli’s method (Yu and Porikli, 2016) (URDGN). (i) Yu and
Porikli’s method (Yu and Porikli, 2017a) (TDN). (j) Yu and Porikli’s method (Yu and Porikli, 2017b) (TDAE). (k) Yu et al.’s
method (Yu et al, 2018b). (l) Yu et al.’s method (Yu et al, 2018a). (m) Our method (MTDN). (n) Original HR images.

wise `2 losses and a class-wise discriminative loss. Pixel-

wise `2 loss is used to constrain the appearance similar-

ity. As reported in our previous work (Yu and Porikli,

2016) and as indicated in Tab. 4, the upsampling net-
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Table 3 Quantitative evaluations on different STN layers

STNs STN1 STN2 Ours

PSNR 24.29 24.69 25.02

SSIM 0.79 0.80 0.80

Table 4 Quantitative evaluations on different losses

Losses Lpix Lpix+feat Lpix+U LT

PSNR 25.35 24.93 24.69 25.02

SSIM 0.81 0.81 0.79 0.80

Table 5 Quantitative evaluations on different input resolu-
tions

Resolutions 16×16 24×24 32×32

PSNR 23.93 25.30 25.40

SSIM 0.78 0.81 0.81

Table 6 Quantitative evaluations on different components
in our MTDN

Modules NoAE NoSkip NoHF Ours

PSNR 23.87 24.64 23.72 25.02

SSIM 0.79 0.80 0.78 0.80

Table 7 Face recognition performance on different input res-
olutions

Resolution HR LR 16×16 24×24 32×32

Accuracy 95.68% 77.27% 84.53% 89.68% 92.30%

work which is trained only by a pixel-wise `2 loss to

super-resolve LR faces obtains the highest PSNR but

produces over-smoothed results as shown in Fig. 4(f).

The feature-wise loss is able to make the super-

resolved results sharper without suffering over smooth-

ness because it forces the high-order moments of up-

sampled faces, i.e., feature maps of faces, to be similar

to their ground-truths. In addition, we also incorpo-

rate a class-wise discriminative loss to force the upsam-

pling network to generate realistic faces. Since the class-

specific loss is not used to measure the similarity be-

tween two images, too large discriminative loss will dis-

tort our super-resolution performance. Therefore, there

is a trade-off between the upsampling and discrimina-

(a) (b) (c) (d) (e)

Fig. 12 Comparisons of different variants of our network.
(a) The input 16 × 16 LR images. (b) The original 128 ×
128 HR images. (c) Results of the network without using the
autoencoder. (d) Results of IBSR. (e) Our results.

tive networks and we gradually decrease the influence

of the discriminative network as iterations progress.

Because PSNR is designed to measure the similar-

ity of appearance intensities but does not reflect visual

quality of reconstructed images, using the feature-wise

and class-wise losses decreases the PSNR, as seen in

Tab. 4 but improves the visual quality significantly, as

visible in Fig. 4.

5.3 Impacts of Multiple STN Layers

As illustrated in Fig. 2, we employ two STN layers

to align feature maps in our network. Our previous

works (Yu and Porikli, 2017a,b) only use one branch to

upsample LR faces and they align feature maps at the

resolution of 16×16 pixels. However, our MTDN has

two branches and the resolutions of these two-branch

inputs are different. Therefore, we apply STN layers af-

ter the concatenation layer, where the resolution of the

feature maps is 32×32 pixels. In this manner, all feature

maps can be aligned simultaneously. As mentioned in

Jaderberg et al (2015), using multiple STNs can achieve

more accurate alignment. Due to the GPU memory lim-

itation, we cannot use an STN layer to align the feature

maps of size 128×128 pixels. Hence, we only employ

two STN layers to the feature maps of size 32×32 and

64×64 pixels in our network. As shown in Tab. 3, we

demonstrate the contributions of different STN layers

to the final performance. Note that, for the cases STN1

and STN2 in Tab. 3, a network is trained by only em-

ploying one STN layer. Table 3 also indicates that using

multiple STN layers can improve face alignment, thus

obtaining better face hallucination performance.
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5.4 Effects of Autoencoder in Low-frequency Branch

Different from our previous works (Yu and Porikli, 2016,

2017a, 2018), our MTDN does not super-resolve LR

faces directly by deconvolutional layers. Since our method

needs to fuse two branch images together, we first ex-

tract feature maps from the two branch input images

separately. In order to make the resolutions of the fea-

ture maps from the two branches compatible, we up-

sample the feature maps of the low-frequency branch to

32×32 pixels. In particular, we exploit an autoencoder

with skip connections to extract features and then up-

sample features by a deconvolutional layer in the low-

frequency branch while residual blocks are applied to

extract features from the high-frequency branch. Since

the resolution of the low-frequency branch is very small,

the autoencoder does not require much GPU memory

but increases the capacity of our network.

We replace the autoencoder with a convolutional

layer and use a deconvolutional layer to upsample the

LR feature maps in the low-frequency branch, and we

represent this variant as noAE in Tab. 6. As demon-

strated in Tab. 6, the performance of noAE degrades

1.15 dB compared to our MTDN. Therefore, by increas-

ing the network capacity, i.e., the employment of the

autoencoder, our MTDN achieves better quantitative

super-resolution performance. Furthermore, the upsam-

pled faces also achieve better visual quality by using

the autoencoder, as shown in Fig. 12. It also demon-

strates that our autoencoder can extract feature maps

better than a single convolutional layer. Since skip con-

nections are employed in the autoencoder, we can also

preserve the spatial information from the encoder to

the decoder. Removal of the skip connections in our

network, marked as NoSkip, causes 0.38 dB degrada-

tion in PSNR, as shown in Tab. 6. However, we do not

observe significant deterioration in visual quality.

5.5 PSNR and SSIM at Different Input Resolutions

Since our test dataset consists of LR face images at dif-

ferent resolutions, it cannot reflect the performance of

our network as the input resolutions increase. Hence, we

generate another test dataset where each HR face image

corresponds to three different LR image versions, i.e.,

16×16, 24×24 and 32×32 pixels. We group and super-

resolve input LR images according to their resolutions

and then measure the performance of our network in

each group. As indicated in Tab. 5, our network gener-

ates better super-resolved results in terms of PSNR as

the input resolution increases. It implies our proposed

two-branch network can fully exploit input information

when more information is provided in LR input images.

5.6 Interpolation before Super-resolution

There is another option for preserving all the informa-

tion in the LR input images: we can first resize the dif-

ferent LR image sizes to 32×32 pixels by bicubic inter-

polation and then super-resolve the interpolated images

by deconvolutional layers and residual blocks similar to

the ones as illustrated in Fig. 2. We name this super-

resolution approach as IBSR. As reported in previous

generic super-resolution methods (Kim et al, 2016a;

Ledig et al, 2016), using convolutional and deconvolu-

tional layers can achieve better super-resolution perfor-

mance than traditional interpolation methods, e.g.bicubic

interpolation. Therefore, we use an autoencoder and a

deconvolutional layer to upsample low-frequency part

as well as residual blocks to extract features from high-

frequency residuals. After obtaining the feature maps

from the low-frequency and high-frequency branches,

we fuse those feature maps by a residual block. In this

fashion, we achieve 128 channel features maps of size

32×32 for further super-resolution rather than only 3

channel interpolated images in IBSR. Thus, our net-

work architecture achieves better performance qualita-

tively and quantitatively, as demonstrated in Fig. 12(d)

and Tab. 1.

Since IBSR increases the depth of the low-frequency

branch of our network to receive LR face images of

32×32 pixels as inputs, the capacity of IBSR is larger

than our low-frequency branch in terms of the number

of network layers and parameters. As seen in Tab. 1,

our network still outperforms IBSR by a margin of 0.76

dB. This implies that the main contribution to the fi-

nal performance comes from the high-frequency resid-

ual branch in our network. Therefore, exploiting the
high-frequency residuals explicitly improves the super-

resolution performance significantly.

5.7 Two-Branch Architecture Versus TDAE

In order to investigate the necessity of our two-branch

architecture modification, we retrain TDAE with in-

put images of size 32×32 pixels, marked as TDAE32.

Then, we resize input images in different resolutions to

32×32 pixels by bicubic interpolation. Since TDAE is

originally designed to receive LR face images of 16×16

pixels, we replace its first deconvolutional layer with

a convolutional layer to accept input images of size

32×32 pixels. In this way, TDAE32 does not lose any

information of inputs. However, since TDAE32 is com-

posed of three separate sequential networks, the input

of each network is a 3-channel image rather than feature

maps from the previous network. Therefore, the bottle-

necks of TDAE may restrict the super-resolution per-
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formance. On the contrary, our network employs an au-

toencoder with skip connections to extract more infor-

mative features from LR face images and the extracted

128-channel feature maps are upsampled by the follow-

ing layers. As indicated in Tab. 1, our network outper-

forms TDAE32 by a margin of 1.06 dB. Therefore, our

two-branch architecture facilitates the procedure of face

hallucination.

5.8 Identity Preservation by MTDN

We employ a state-of-the-art pre-trained face recogni-

tion network (Liu et al, 2017), named SphereFaceNet,

to conduct the standard face recognition tests on our

hallucinated HR faces. Following the standard divisions

of the training and test datasets in the LFW bench-

mark (Huang et al, 2007), we generate LR and HR im-

age pairs and report the standard LFW face verification

performance in Tab. 7. Furthermore, we also employ

two baselines in the experiments, the face recognition

performance on original HR faces as well as aggres-

sively downsampled LR faces (i.e.16×16 pixels). The

face recognition performance on original HR faces is

marked as HR, and the performance on LR faces is

marked as LR. For the second baseline of face recog-

nition on LR faces, LR faces are firstly upsampled by

bicubic interpolation and then fed into SphereFaceNet

to meet the image resolution requirement of SphereFaceNet.

As seen in Tab. 7, our method improves the face recog-

nition performance on LR faces. Thus, our generated

HR face images preserve the identity information with

respect to their corresponding ground-truth ones. In

addition, as the resolutions of LR inputs increase, our

method achieves better face recognition performance.

This indicates that our MTDN is able to exploit all the

information in the LR face images.

6 Discussions

6.1 Robustness to LR faces in Large Poses

In Fig. 13, we illustrate that our method is able to

super-resolve LR faces in large poses. Since the input

LR faces in large poses are unaligned and also con-

tain self-occlusions, it is challenging to align as well

as super-resolve them, as seen in the third and fourth

rows of Fig. 9. As shown in Fig. 13, our MTDN is able

to align and upsample LR faces in different large poses

effectively and the upsampled faces are similar to their

corresponding HR ground-truths. This indicates that

our method is robust to upsample LR faces in different

views.

(a) (b) (c) (d) (e)

Fig. 13 Illustration of upsampling LR faces in large poses
by our MTDN. From top to bottom: the original 128 × 128
HR images, the input 16× 16 LR images and our results.

(a) (b) (c) (d) (e)

Fig. 14 Failure cases. From top to bottom: the original 128×
128 HR images, the input 16×16 LR images and our results.

6.2 Real World Cases

Since it is easy to obtain real-world LR face images but

very difficult to attain their corresponding HR images,

we use bicubic downsampling to mimic the degradation

process. Although our network is trained on CelebA

dataset, our model can also super-resolve real-world LR

face images effectively, as seen in Fig. 15. In Fig. 15, we

randomly choose LR face images from 16×16 pixels to

32×32 pixels in WiderFace dataset (Yang et al, 2016)

where LR faces are captured in the wild. As visible in

real-world LR faces, the mosaic artifacts and noise are

obvious, which can degrade the super-resolution per-

formance. We believe with proper data augmentation

our network is able to super-resolve real-world LR faces

even better.
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Fig. 15 Real-world cases. The top row: real-world LR faces captured in the wild. The bottom row: our super-resolved results.

6.3 Limitations

Although our MTDN is able to hallucinate LR faces

in different views, it may suffer severe artifacts when

LR facial patterns are indistinguishable as shown in

Fig. 14(a). Furthermore, since some facial expressions in

large views do not have enough samples in the training

dataset, our network fails to learn the mappings as seen

in Fig. 14(b). As visible in Fig. 14(c) and Fig. 14(d),

when the input resolutions are even smaller, i.e., 8×8

pixels, our network may not recognize the LR facial

patterns accurately and thus generates blurry results.

Note that, we do not retrain our MTDN on LR im-

ages of size 8×8 pixels. Since STN layers as an atten-

tion mechanism focus on aligning facial features and

deconvolutional layers aim at super-resolving them in-

stead of features of generic objects, our MTDN is not

designed to upsample generic objects. Figure 14(e) il-

lustrates that the occluded regions in the image are not

well super-resolved.

7 Conclusion

We present a novel and capable multiscale transforma-

tive discriminative network to super-resolve very small

LR face images. By designing a two-branch input neu-

ral network, our network can upsample LR images in

various resolutions without discarding the residuals of

resized input images. In this manner, our method is able

to utilize all the information from inputs for face super-

resolution. Furthermore, our algorithm can increase the

input LR image size significantly, e.g. 8×, and recon-

struct much richer facial details. Since our method does

not require any alignments of LR faces and learns an

end-to-end mapping between LR and HR face images, it

preserves well the global structure of faces and is more

practical.
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