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Abstract

In this paper we raise two important question,“1. Is temporal information beneficial in recognizing actions from still images? 2. Do
we know how to take the maximum advantage from them?”. To answer these question we propose a novel transfer learning problem,
Temporal To Still Image Learning (i.e., T2SIL) where we learn to derive temporal information from still images. Thereafter, we
use a two-stream model where still image action predictions are fused with derived temporal predictions. In T2SIL, the knowledge
transferring occurs from temporal representations of videos (e.g., Optical-flow, Dynamic Image representations) to still action
images. Along with the T2SIL we propose a new action still image action dataset and a video dataset sharing the same set of
classes. We explore three well established transfer learning frameworks (i.e., GANs, Embedding learning and Teacher Student
Networks (TSNs)) in place of the temporal knowledge transfer method. The use of derived temporal information from our TSN
and Embedding learning improves still image action recognition.

Keywords: still image action recognition, two-stream, optical-flow, dynamic-images

1. Introduction

Action classification from videos [1, 2] is a well-established,
yet extremely challenging problem in computer vision. A re-
lated, less explored and arguably more difficult problem is to
predict human actions from still images with applications rang-
ing from sports analysis to situation recognition [3], autonomous
driving [4], and event recognition [5]. The list of related sub-
problems includes predicting human object interactions [6], pose
recognition [7], still image motion estimation [8] and Gait recog-
nition [9] to name a few.

Human actions are spatial-temporal events and biological
evidences suggest that mammalian brain has a dedicated sec-
tion for understanding time evolution of object positions [10].
In computer vision, a similar observation can be made. In par-
ticular, deep models that explicitly incorporate temporal infor-
mation towards their decisions form state-of-the-art solutions in
video action recognition [2].

As humans, we naturally have the ability to deduce motion
information from still images. For example, we can explain
the motion of the three basket-ball actions shown in Fig. 1.
The motion cues seem to provide us with extra information,
leading to more accurate labeling of actions. Nonetheless, this
knowledge about “temporal” information do not come free with
still images. One conjecture here is that humans transfer the
knowledge about temporal information by relating still images
to prior experience (e.g., a basketball game watched on TV).
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Based on the above discussions, we postulate that still im-
age action recognition can also benefit from temporal informa-
tion. In shaping the postulate, the following observations came
handy;

1. Complementary property of temporal information. The
idea behind two-stream video action recognition [2] is to
improve video action recognition by fusing predictions
on appearance and temporal representations of videos.
To give the reader a figure, the performance of the in-
dividual video frame model and the optical flow model is
reported as 73.0% and 83.7%, respectively on the UCF-
101 [11]. By a mere averaging of the predictions of the
two models, an accuracy of 86.9% is attained. We expect
a model exploiting temporal information can benefit from
such complementary information to improve still image
action predictions.

2. Reduce pose ambiguity. Human actions may be repre-
sented as a temporal collection of human poses. An still
image action appearing with any such pose may cause
ambiguities at recognition time. Temporal representa-
tions compress information of the evolution of the pose
sequences. For example, a pose history pattern [12] can
be observed with dynamic images (see Fig. 5). By prop-
erly employing temporal information, one can expect a
lesser level of ambiguity from pose variations.

3. Potential to recognize objects of interest. Motion helps
to emphasize visual elements connected with the action.
For instance, in Fig. 5, the motion boundaries of the ob-
jects in motion are emphasized by the dynamic images.
Similarly, the Optical-flow field images can capture dis-
tinct patterns near moving objects. The idea is to recog-
nize such elements in an still action image by means of
knowledge transferring (e.g., by learning feature corre-
lations). In principle this avoids the need for additional
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Figure 1: Three basketball actions with similar appearance information. We humans however can easily deduce the corresponding motion information.

human/body-part annotated data to reject noisy background Newtonian motions study of Mottaghi ez al. [8], and frame pre-

information as done in the state of the art deep solu-
tions [13].

To verify our postulate, i.e., if temporal information can
help in recognizing actions from still images, we propose a new
transfer learning problem where temporal information (e.g., deep
features of motion representations, class predictions of motion
representations) is transferred to still action images. We call
this transfer learning problem Temporal To Still Image Learn-
ing or T2SIL. For T2SIL, we introduce a new still image action
recognition dataset. This is because, the existing still image ac-
tion datasets and their protocols [14, 3, 15] do not facilitate our
purpose empirically. Our new dataset constitutes of two parts,
the still image actions and the corresponding video actions, pro-
viding us with the required temporal information to formulate
the problem as a knowledge transfer one. Furthermore, we pro-
pose three established end-to-end learning paradigms to verify
our postulate empirically. This includes 1. Adversarial learning
2. transfer learning by deep embedding, and 3. transfer learn-
ing by Teacher Student Network(TSN) distillation. Our study
suggests;

1- Actions speak louder than Images.. Out of the proposed
three solutions, we observe improvements can be obtained with
the deep embedding and TSN solutions. As surprising as it may
sound, the adversarial paradigm is not able to transfer temporal
information properly for the task in hand, demonstrating the
difficulty of the problem considered in this paper (i.e., T2SIL).
For these reasons we answer our first question in the abstract as
“Probably Yes”.

2- Well begun is half done.. As we will show later, the effect
of employing temporal information in T2SIL is far less if ac-
tion recognition from videos (e.g., two-stream paradigm [2]) is
taken into account. Since the transfer learning solutions used to
solve T2SIL show state of the art performances in related prob-
lems (e.g., Zero-Shot Learning [16], Domain adaptation [17],
Model distillation [18]), we believe that our paper introduces
a new, extremely challenging problem in computer vision. We
think that the proposed problem demands attention of a wider
community. Hence, we answer with “Possibly No” to our sec-
ond question in the abstract.

We emphasize that Solving T2SIL is beneficial to some
other problems. One prime example is motion prediction from
still images (e.g., Optical-flow prediction of Walker et al. [19],

diction of Xue er al. [20]). To conclude the introduction, we
list our contributions below

1. We propose to use temporal information to improve still
image action recognition.

2. We formulate this problem as a novel transfer learning
problem.

3. We propose a new still image action dataset with a corre-
sponding video dataset to evaluate T2SIL.

4. We propose three transfer learning solutions and show
while adversarial feature generation is not helpful for T2SIL,
improvements can be attained with deep embedding learn-
ing and TSN frameworks.

2. Related work

In this section, we first discuss state of the art still image
action recognition solutions. We also highlight the differences
of T2SIL from early-action and motion prediction problems.
Then we briefly review various forms of knowledge transfer
from related problems.

Still image action recognition

State of the art solutions for still image action recognition
use deep convolutional networks in conjunction with object/human
detectors to filter out noisy information [21, 22, 23, 13]. The
part based models of Sharma et al. [21], Rosenfeld et al. [22]
and Zhao et al. [23] use object parts as visual attributes to de-
scribe the actions in a still image. Gkioxari ef al. [13], use con-
textual information from surrounding regions of the detected
human and show that the contextual information are comple-
mentary to the action predictions (and hence beneficial).All afore-
mentioned methods exploit different forms of appearance cues
from the images, whereas, we propose a different path that ex-
ploits temporal knowledge to improve still image action recog-
nition. Therefore, in principle the above methods can benefit
from our postulate as well.

A somehow relevant study is the work of Chen et al. [24]
where video frames are used to fill missing poses in still image
training data (i.e., dataset augmentation). Although this solu-
tion uses information from videos as in our case, it disregards
valuable temporal information and targets a different problem.



Early action recognition and prediction

Early action recognition and prediction [25, 26] from videos
are too temporally constrained problems similar to ours. The
task in early action recognition is to recognize an action by
observing few frames as possible. Action prediction is where
the first few frames are used to predict the action class and the
occurrence of a future peak-pose [25]. However, the proposed
T2SIL is distinct to these problem from 1. still action images do
not have corresponding temporal representations at train time,
and 2. at inference time we are only available with a single ac-
tion image (i.e., no temporal information) instead of few video
frames.

Motion prediction
Motion prediction studies ways of producing motion repre-

sentations given image inputs. Predicted Optical-flow of Walker et

al. [19] and anticipated Dynamic-images of Rodriguez et al. [27]
are such work predicting motion representations. However, our
work is distinct to them as we study using temporal informa-
tion to improve the recognition of still image actions. In other
words, we study the transfer of discriminative temporal infor-
mation useful for recognition.

Knowledge Transfer

As will be shown shortly, the problem of interest in our pa-
per can be formulated as a knowledge transfer problem. As
such, it is natural to make use of methods targeting knowledge
transfer to address T2SIL. We identify three dominating school
of thoughts when knowledge transfer solutions are considered.

1. Adversarial Learning.

Feature matching by adversarial learning is the core idea
behind various state of the art Domain adaptation(DA) solu-
tions [28]. Furthermore, feature Generative Adversarial Net-
works(GANs) has shown remarkable success in Zero-Shot Learn-
ing(ZSL) [16]. The motive behind using feature GANs for
T2SIL is to train a model that could generate the corresponding
temporal features for a given still image instance. The temporal
features are thereafter used to obtain class predictions, mimick-
ing the temporal stream in two-stream networks [2].

2. Deep Embedding.

Embedding learning is proven to be a method of choice
when one needs to transfer properties of one space to another(e.g.,
ZSL [29], DA [17], Cross modal similarity learning [30]). In
such solutions, distances between the similar class embeddings
are reduced while dissimilar class embeddings are repulsed.
Current trend achieves this by minimizing a loss defined on
triplets [31] and will be our choice in this paper as well. This is
because triplets allow local regions of the embedding space to
be adjusted with better flexibility.

3. Teacher-Student Paradigm.

Feature generation and embedding learning are two solu-
tions where the correspondences between the data are deemed
at the feature level. A distinct approach to this is to transfer
the classifier’s perception across data forms. Teacher Student
Networks(TSNs) is a framework that can be used for this pur-
pose. TSNs were originally proposed for distilling the infor-
mation from complex models to simpler ones [32]. However,
TSNs have been successfully used in a variety of applications
(e.g.,data security [33]) and more importantly, a closely related
problem, cross modal supervision transferring [18].

Cross Modal Supervision Transfer(CMST) [18] is the study

of transferring supervised knowledge across different image modal-

ities (e.g., thermal images, optical-flow, depth images, LIDAR
point clouds). The proposed T2SIL can be considered as a dif-
ficult end of CMST for two reasons. 1. still action images do
not contain paired temporal representations to be exploited (un-
like for example RGB-depth, video frame-optical flow). The
only association available is the class label, which is relatively
weaker. 2. for a given still image action, there can be many
correct temporal realizations. This is not the case with other
modality pairs. As such, we can expect a successful solution
for T2SIL might have usage for CMST problems as well.

3. Formulating T2SIL

We aim to improve still image action recognition by trans-
ferring relevant temporal information of videos to still images.
Per definition, in still image action recognition, labels for still
image human actions are available. In addition to that, we pro-
pose to make use of abundantly available video level human
action annotation. To this end, during the training process, we
use labeled video data in conjunction with the still image human
actions to develop more accurate and robust still-image action
models. In doing so, we use two forms of temporal representa-
tions, namely optical-flow [2] and “dynamic images” [34]. Op-
tical flow provides movement information of two consecutive
frames while “dynamic images” summarise the motion infor-
mation of several frames into a single image using “rank pool-
ing” [35] principle. Note that human actions of still images
are also stored as RGB images and our goal is to improve still
image action recognition by transferring relevant temporal in-
formation of videos using optical-flow and dynamic images.

Our Assumptions.

The proposed T2SIL is formulated around the following
two closely related assumptions.
Assumption 1 : Despite being different, the two joint dis-
tributions P(X;, Y) and P(X;, Y) carry a latent relationship.
Here, X; is a random variable representing still image ac-
tion data® and X, is random variable representing temporal
representations of video action data. The class labels are
given by the random variable Y.

OThe still/video action data in concern could be of the form of deep features,
images, softmax scores efc..



Both the motion (i.e., the temporal information) and the
poses (i.e., the appearance) of a given human action is con-
strained by the same generator bounds (e.g., the restrictions in
the limb movements, object interactions). As a result we could
visually observe close similarities between state of the art tem-
poral representations (e.g., motion boundaries of optical-flow,
dynamic-images as in Fig. 5) and still action images. We con-
sider such similarities as indicators for the existence of a latent
relationship between the temporal and the appearance data.
Assumption 2: Learning the conditional generation of tem-
poral information from still data (i.e., P(X;|X;)) of a given
action class is feasible.

To support this second assumption we refer to the capabil-
ity of human cognition to predict the motion when given a still
action pose (see our discussion connected with Fig.1 in the in-
troduction). Furthermore, given the existence of a relationship
between appearance and temporal data in actions (see Assump-
tion 1), this second assumption basically describes the existence
of a transfer learning solution that can uncover such a complex
relationship.

Our Notation.

We use bold capital letters to denote matrices (e.g., X) and
bold lower-case letters to denote column vectors (e.g., x). The
notation || - ||, is used to denote the L2 norm of a vector and
[-]+ denotes the term max(0,-). We use f(-;6) : R" — R?
to denote a mapping function with parameters § from R™ to
RP. Let the training samples from the still images and temporal
representations be {x7,y?}? , x! € X* and {x;,y’j}j’:l, xi e X',
respectively. We use the small-scripts “s” and “#” to denote still
image and temporal domains. Here, n; and n, are the number of
labeled training instances available from each domain. In our
experimental setup we consider the case where y?, y; €C =
{1,2,3,---,c}, i.e., where both the still image and temporal data
have matching classes.

3.1. T2SIL with Adversarial Learning

In this part, we discuss our GAN [36] solution for T2SIL
(see Fig. 2 for a conceptual diagram). A GAN consists of a
generator function, f, and a discriminator, D that compete in a
two player min-max optimization. In the context of our prob-
lem, f, tries to generate temporal features while D attempts to
discriminate the generated temporal features from the real tem-
poral representations from videos. Similarly, our idea is to gen-
erate a temporal representation, x’ € X' c R/ for a given still
image instance, x* € X* c R*. In particular, we define the gen-
erator function, f, : X* x Z — X’ to take a still image input, x*
and a random Gaussian noise z € Z C R? to formulate the gen-
erated temporal feature distribution. The discriminator model
accepts the generated features and real temporal features as its
inputs.

The parameters of the proposed feature generation GAN is
learned by optimizing the objective,

rrfl)in rr})ax Lgan = Ellog D(x")] + E[log(1 — D(¥"))], (1)

with ¥ = f,(x*,z). Here, the parameters 6, and 6, param-
eterizes the models f, and D, respectively. As elaborated in
Fig. 2 we realize the generator and the discriminator models
with multi-layer perceptions. Nevertheless, optimization of the
loss in equation (1) does not guarantee that the generated fea-
tures are discriminative. Since our goal here is to use classifier
predictions from the generated temporal features, we propose
to make use of a multi-class classification loss along the model,

Laux = _EJ'E’ [log P()/Wt, 0aux)]~ (2)

Here, y is the class label of the input still image to the gener-
ator. Hence, P(y|¥'; 8,.,) denotes the probability of the gener-
ated temporal features being correctly classified by an auxiliary
classifier, fo(-; Oux) : RY — RIC. The discriminative loss over
generated samples also helps reducing the mode collapsing of
GANSs [36]. The auxiliary classifier parameters, 6,,, are in fact
pre-trained with real temporal instances {x", y’}?’:l and will be
kept constant during training the GAN. The motive behind this
is to avoid parameters 6,,, being misdirected with poor quality
generated features by the GAN (especially at the beginning of
the training). With the described adversarial and the auxiliary
classifier loss, our final training objective reads as,

min max Lgg, + ALy 3)
0, 0,
Here, A is a parameter to control the discriminative nature of
the generated samples.

3.1.1. Inference protocol with T2SIL Adversarial Learning

At inference time our objective is to label a given still ac-
tion image (i.e., deep features, x* € R’ from a given still action
image). For this we incorporate the auxiliary classifier’s (i.e.,
Jaux(+ Oaux)) softmax predictions for an input f,(x*) (see Fig. 2
for the block diagram). We shall call these predictions as the
derived temporal predictions. Additionally, we use the softmax
predictions from a deep model trained using only still action
images. This still image deep model is equivalent to the spatial
stream of two-stream networks [2]. Thereafter, we follow the
two-streamed prediction fusion by averaging the derived tem-
poral predictions and the still image model predictions.

3.2. T2SIL with Deep Embedding

The idea behind deep embedding learning is to pull simi-
lar class instances closer in the embedding space and push dis-
similar class instances apart [31]. In knowledge transfer, deep
embedding is used either 1. to learn a shared latent space con-
taining instances from all modalities [30] or 2. to embed in-
stances from one modality in the other [37]. The latter method
is particularly used when one needs to preserve the properties
(e.g., inter class similarities) of a modality during the knowl-
edge transferring.

In this paper we are interested in transferring the properties
of temporal representations of actions to still action instances.
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Hence, we learn an embedding f.(x}) of a still image action
instance, x! € R® to the fixed temporal representations space
(see Fig. 3 for a conceptual diagram). We realize the embed-
ding function f, : R® — R’ with a multi-layer perceptron. We
define the distance between a still image embedding f.(x}) and
a temporal embedding, xj. as djj = ||fe(x)) - x’jllz.

Our goal is to bring still image embeddings closer to the
co-class temporal embeddings while pushing away from differ-
ently labeled temporal embeddings. Formally we achieve this
by minimizing a triplets loss,

D Luip,xl,x}) = [df - dy + al. @)
ijk
Here, we use the superscript “+” and “-” to denote positive

and negative pairs, respectively. That is, for a given x7, dl.*j =
Il fe(x?) - x’j||2 where y; = y;. Similarly, d; = [Ife(x}) — x}I2
where y; # y;. The parameter « is a tunable margin kept fixed
during training. To keep the triplets loss computation feasible
and to improve convergence we use the semi-hard negative min-
ing heuristic [31] to form the triplets. To be specific, for a given
xf and x?, we sample the nearest dissimilar class instance to
Je(x}) satisfying d;; > d; as x].

3.2.1. Inference protocol with Deep Embeddings
At inference time we first obtain a temporally meaningful

embedding for a given still action image (i.e., deep features,
x* € R* from a given still action image). For this we use the
learned embedding projection model, f,(-) to the fixed temporal
space. The still image embedding in the temporal space is la-
beled using a classifier, fi(-,6;) : R — RIC (see Fig. 3 for the
schematic). This temporal embedding classifier is trained dis-
cretely to our embedding model at training time. Thereafter,
similarly to our adversarial solution we average the softmax
scores of the temporal embedding classifier and the still im-
age deep model. The still image deep model is trained only
using still action images and acts similar to the spatial stream
of two-stream networks.

3.3. T2SIL with Teacher-Student Networks

The Teacher-Student Network (TSN) is a transfer learning
solution listed under deep model distillation. The foremost use
of TSN distillation is to boil down a lager network (referred
to as the Teacher model) into a network with less number of
parameter (i.e., the Student model) [32]. Our idea here is to
use TSN distillation to train a student model, fi;, : R® — RICI,
that takes a still image, x; as the input but outputs the response
of the teacher model, fi.;, : R — R, The teacher model
fien 1s trained on temporal representations. By doing this, we
transfer the perception of a temporal representation to a still
image input.

For the sake of discussion, consider the outputs of the mod-
els fy, and fi., to be softmax scores. We use the parameters 6,
and 6,., to parameterize the student and teacher models, respec-
tively (see Fig. 4 for a schematic.). As in a typical TSN, we pre-
train the teacher model with labeled temporal representations,
{x’j,y’j}”f and keep them fixed during the model distillation.

j=1
The student model parameters, 6, are learned by minimizing,

Ny

min " H(fin(), fu(x) ®)



Here, H is the cross-entropy loss given by,

C]

H(y,y) ==y log yP, ©6)
k=1

for y;, y ;€ RI€l. Note that the (x} ,x;) pairs for minimization
in equation (5) should be selected such that they represent the
same action class.

3.3.1. Inference protocol for the TSN solution

At inference time we formulate a two-stream framework us-
ing the trained student network and a deep network trained us-
ing only still action images. For a given still action test image,
x* the student model’s softmax prediction, f,,(x*) acts as the
temporal prediction. Formally, we refer to this as the derived
temporal prediction. We obtain the final softmax prediction by
averaging this derived temporal prediction with the still image
deep network’s (i.e., spatial stream) softmax prediction.

4. The Shared Still-Video Action Classes dataset

In this section, we discuss the details of the data we have
gathered to verify our postulate. Our new still image action
dataset consists of 12,347 still images representing 40 action
classes. We coin this dataset SSVAC-40-Still. Along with this
we also gather the corresponding video dataset called SSVAC-
40-Videos with labeled video human actions. Both still and
video collections have the same set of classes.

4.1. Composition of SSVAC-40 dataset

Each action class of SSVAC-40-Still dataset contains at least
190 still action images. We created SSVAC-40-Still dataset
by collecting images from popular still image collections such
as Stanford40 [14], MPII [15], imSitu [3], ImageNet [38] and
from the web (see Fig. 6 for details). The dataset in particular
contains human actions with face and hand (e.g., brushing teeth,
clap, wave), indoor ball games (e.g., basket ball, basket ball
dunk, dribble, volley ball spiking) , athletics (e.g., high jump,
long jump, pole vault), indoor gymnastics (e.g., balance beam,
parallel bars, pommel horse, uneven bars, trampoline jumping),
boats and water (e.g., kayaking, rowing, surfing).

SSVAC-40-Video data consists of videos from HMDB-51 [39]

and UCF-101 [11]. Out of the total 40 classes, 9 classes are
in common with the HMDB-51 dataset (e.g., wave, walk, run,
dribble) while the rest are from the UCF-101 dataset (e.g., bal-
ance beam, brushing teeth, fencing, kayaking). We use optical-
flow and dynamic images [34] as motion representations of the
videos.

Dynamic image extraction: We use window size of 10 and a
stride of 6 to create dynamic images. Following [34], we extract
six dynamic images from the middle part of the video.

Optical-flow extraction: In all our experiments, we use the
Optical-flow field images from [40]. To have a similar tempo-
ral extent as dynamic images, we use the mid 60 optical-flow
frames of each video for training our models. Optical-flow in-
puts for networks compose of stacks of 10 consecutive optical
flow frames.

4.2. Train test splits for SSVAC-40 dataset.

SSVAC-40-Still : We make use of the provided standard train
and test splits from Stanford40 [14] and MPII [15] datasets.
Instances from MPII dataset are only included in the training
and validation sets as there are no publicly available test an-
notations. Images from imSitu and ImageNet are divided into
train-val-test sets randomly. We manually check all images to
minimize label inconsistencies and to remove multiple action
occurrences in an image. Our dataset contains 6,821 training
still action images, 728 validation images and 4,798 testing still
action images (see Fig. 5 for samples).

SSVAC-40-Videos : We use the training set of UCF-101 (split1)
and HMDB-51 (splitl) and select only those videos contain-
ing action classes of SSVAC-40-Still dataset. The data consists
3520 train videos and 1412 test videos. Note that when train-
ing our temporal feature extraction models, we use test video
samples from UCF-101 and HMDB-51 to validate our tempo-
ral CNN models (see Fig. 5 for samples).

5. Experiments

In this section, we discuss our results from the proposed
experiments on SSVAC-40 data. We will first discuss two base-
line experiments that we conduct on SSVAC-40-Still data. The
first baseline uses data from the training set of the still action
images and reports performance on validation and testing set of
the still image collection. The second one uses video frames
as additional training data (i.e., data augmentation). For both
baseline experiments, we use SGD optimizer with a momen-
tum and a batch size of 128. We tune hyper-parameters of our
experiments (e.g., learning rate, learning rate decay interval,
batch normalization decay) to obtain the best validation set per-
formance.

As pre-processing, we use random crops of size 224 x 224
and horizontal flips of the still action images. We scale the im-
ages to have a length of 256 on its minimum dimension prior
to cropping. At test time we use center-crops. As we use Ima-
geNet pretrained models, we center the images using the mean
RGB images of ImageNet data [38]. For dynamic images we
use the same pre-processing approach. For Optical-flow, we
center the fields using 128 as the mean. We maintain a consis-
tent cropping/flipping for the Optical-flow stack.

Baseline 1: Resnet-50 [41] has shown excellent performances
in image classification. For this reason we consider Resnet-50
as a baseline for SSVAC-40-Still action recognition. The model
parameters are initialized with pre-trained weights on ImageNet
data [38]. We will refer to this model as Resnet-Still.

Baseline 2: We also evaluate our models by augmenting still
image data with video frames from SSVAC-40-Video. We first
perform key-frame mining to find a set of informative frames
from each video using x-means clustering [42]. A Resnet-50
model fine-tuned on UCF-101 video frames is used for feature
extraction for clustering. These cluster centers are used as infor-
mative instances from each video (e.g., key poses of an action).
The frames nearest to the cluster centers (we allow a maximum
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of 5 clusters) are used as the key-frames. This results in around
15,000 new training samples from the videos. We compare the
performances of the data augmentation experiment with the still
image baseline in Table 1.

It is interesting to see that the data augmentation baseline
gives lower performance compared to Resnet-Still model. One
reason for this might be the domain shift presented in video
data. For instance, still action images usually tend to be rich
in context and center the subjects compared to video frames.
Hence, naive data augmentation does not guarantee to improve
the performance. This is analogous to the degrading of the far-
get domain performance with source + target training in Do-
main adaptation [43].

5.1. T2SIL transfer learning experiments

Moving on to our solutions, we consider optical-flow and
dynamic images [34] as video temporal representations. On
video action recognition both these forms of temporal represen-
tations are exploited by the state of the art solutions. Another
benefit is brought with their physical construction being similar
to images. This allows us to use state of the art deep networks
for feature extraction.

For temporal feature extraction, we train two separate Resnet-
50 models with optical-flow and dynamic images from the SSVAC-
40-Videos data. We train these two models for the best perfor-
mance on the corresponding test data as our ultimate solution
is not evaluated on video data. In the remaining sections we
will refer to these two models as Resnet-Opt. and Resnet-Dyn.
when needed.

5.1.1. T2SIL with Adversarial Learning.

We realize our feature generator and the discriminator mod-
els with multi-layer perceptrons. Instead of feeding Gaussian
noise explicitly to the generator, we use dropouts and Gaussian
noise layers within the generator network. We give detailed de-
scriptions of the models in section 6. We use still image features
from Resnet-Still as input to the generator network. GANs tend
to work better with compact features [44]. Hence, as shown
in Fig. 2 we use an additional dimensionality reduction model
with tanh activations. This model takes pool5 features as input
from the temporal Resnet model (i.e., Resnet-Dyn. or Resnet-
Opt. depending on the experiment). This dimensionality re-
duction module is pre-trained along with the auxiliary classifier
and held fixed during the GAN training. We use RMSProp op-
timizer for training the GAN. We tune the dimensionality of the
features for each data modality and the optimizer learning rate
to obtain the best accuracy on the validation data.

We use the auxiliary classifier to obtain the class predictions
on generated temporal features from still image inputs. These
predictions are analogous to the temporal stream predictions in
two-stream networks [2]. As such and in order to fuse pre-
dictions from the temporal and spatial streams, we average the
softmax scores from the auxiliary classifier and the Resnet-Still
predictions.



Table 1: Baseline experiments and temporal feature extraction model performances on SSVAC-40 data.

Model name Train test data Accuracy%
Trained on Val/Teston | Val | Test
o still images still images
Still image (6821) (728/4798) 88.2 | 84.2
. still+frame images | still images
Aug. Still+Frame (6821+15077) (728/4798) 87.5 | 82.7

5.1.2. T2SIL with Deep Embeddings.

We realize the embedding function with a multi-layer per-
ceptron. Features from the dimensionality reduction module
(see Fig. 3) with tanh activations are used for temporal embed-
dings. We give detailed descriptions of the models in section 6.
We train a separate classifier to label embedded features of still
images. The fused prediction for a given still image instance
is obtained by averaging the softmax scores from this classifier
and the Resnet-Still.

Remark 1 (Fixing the still image embedding space). An alter-

native to having a fixed temporal embedding space is to instead
map temporal instances to the still image embedding space.
Thereafter, a classifier is trained on both sets of embeddings in
the still feature space. However, in our preliminary experiments
we find this approach to be not as good as fixing the temporal
space.

5.1.3. T2SIL with Teacher-Student Networks.

The proposed TSN solution uses two separate Resnet-50
networks (see Fig. 4) as the teacher and the student. We ini-
tialize the student network with the weights from Resnet-Still.
The teacher model is initialized with the corresponding tem-
poral Resnet-50 model (i.e., Resnet-Dyn. or Resnet-Opt.). In
our TSN experiments, we observe the best results when only
the final three convolution layers of the student Resnet-50 are
finetuned. For a given still image action, the fine-tuned student
model is expected to produce softmax scores similar to the cor-
responding temporal model. Hence, the two-stream fusion for
this solution is performed by averaging the student model pre-
dictions with Resnet-Still predictions. We use RMSProp opti-
mizer and tune the learning rate and the softmax temperature
parameter [32] to obtain the best validation performance on the
fused predictions.

Remark 2 (Sampling pairs for TSN). Typically, TSN distilla-
tion is performed with the same instance input to both teacher
and student networks. However, in the proposed TSN solution
for T2SIL, the student model receives a still image input while
the teacher gets a randomly sampled co-class instance from the
temporal data (e.g., a dynamic image or optical-flow input).

In Table 2 we report the accuracies of the proposed solu-
tions. Here, we first report the results of the derived tempo-
ral streams from still images as “Derived temporal”. In the set
“Fusion with Still” we report the performance when the derived
temporal predictions are averaged with the original still image
softmax predictions. We observe an improvement by fusion for

Table 2: Accuracy in still image action classification with the proposed T2SIL
with only the derived temporal stream and after the two-stream fusion.

Transfer data modality
Knowledge - —
transfer method Optical-flow | Dynamic images
Val | Test | Val Test
Derived temporal
GAN 89.3 | 83.7 | 88.6 83.4
Triplets Embed. | 89.3 | 84.3 | 89.0 83.6
TSN 88.4 | 829 | 89.3 84.3
Fusion with Still
GAN 89.0 | 84.0 | 88.6 83.7
Triplets Embed. | 89.0 | 84.2 | 89.4 84.4
TSN 89.4 | 844 | 89.6 84.7

both optical-flow and dynamic images from the TSN solution.
The triplets embedding learning has shown an improvement of
0.2% in test accuracy when dynamic images are used as the
temporal information source. Note, that we report the improve-
ment as the difference in percentage accuracies from the still
image baseline in Table 1. We observe the highest improvement
of 0.5% in test performance with the TSN dynamic images ex-
periments.

5.2. Remarks on the performances

Feature generation with GANs have shown excellent perfor-
mance for related transfer learning problems [28, 16]. Surpris-
ingly, we do not observe improvement from our GAN solution.
A reason behind this might be the insufficient training data for
the GAN solution to produce a decent generator. In compari-
son, the most successful method is the TSN solution. Perhaps
the way TSN is trained might be better suited for the issue of
limited data. This is because TSN training uses a large number
of paired combinations of data points as inputs and potentially
exposed to larger variations than GAN solution during training.

In comparison to distance losses, the softmax-cross entropy
loss has shown better generalization when used to train deep
networks with labeled data (e.g, comparison of softmax fea-
tures with distance loss trained features in [45]). Such proper-
ties of the softmax-cross entropy loss could have had favourable
effects on the TSN solution. Furthermore, given labeled data
from both temporal and image domains, the proposed T2SIL
approach can be described as a Cross-Modality Supervision
Transfer, CMST’. TSN solution has shown decent performance
in CMST literature (e.g, [18]). The distinguishable property of

TWe discuss this in the related work section in detail.



TSN from the other two solutions is that the student model is
trained to reproduce the classifier scores of a model trained on
temporal data. Hence, we conjecture that a solution attempting
to learn the labeling function of temporal data is more suitable
for T2SIL.

Although we see improvement from the proposed T2SIL,
this is not on par the improvements video action recognition re-
ceives from two-stream framework [2]. Hence, we think the
proposed T2SIL should be considered in the eye of a larger
transfer learning community to reap more benefits. Further-
more, we observe that T2SIL affects different classes in dif-
ferent ways®. And by using different temporal data modali-
ties (e.g., LSTM features) one might be able to reach better
improvements, implying a novel research problem with many
theoretical and practical potentials.

5.3. Class-wise analysis on TSN solution

In Fig. 7 we compare the class-wise accuracy improvements
of the still image data when the student model is used for clas-
sification. Out of the two data modalities we observe the dy-
namic images solution has improved in 21 classes out of 40. In
Fig. 8, when fused with still image predictions this reduces to
16 (i.e., the classes “long jump”, “table tennis shot”, “walking
with dog”, “walk”, “wave” have shown negative impact from
fusion). However, an overall improvement in the average of
per-class accuracies can be seen in the fused solution.

Dynamic images and optical-flow are two video representa-
tions that capture temporal information. Hence, it is reasonable
to expect some similar improvement patterns in them. We ob-
serve similar positive improvements in the two student model’s
for the classes “hula hoop”, “ice dancing”, “long jump”, “walk”,
and “kick ball”. One particular interesting thing about these
classes are that they all involve full body motions. However, we
observe some exceptions to this statement as well (e.g., “basket-
ball dunk”, “pommel horse”).

From this analysis, it is clear that T2SIL affects different
classes in different ways. And by using different temporal data
modalities (e.g., LSTM features) one might be able to increase
the throughput (e.g., Optical-flow student model shows a bias
to be better in many short and repetitive actions, “cricket shot”,
“hula hoop”, “kayaking”, “clap”, “dribble”, “walk”). This is
another indication for the complexity of T2SIL.

5.4. Video Frame based Experiment

Still action images and video action frames contains notable
visual differences. That is a video action frame image usually
tends to be low in context, resolution and may not center the
subject due to camera motions. In contrast, still image actions
tends to be rich in context and resolution while in most cases the
subject is in the center of the image. These differences bring an
inherent domain disparity between video frames and still action
images. As we observed in our dataset augmentation baseline
(see Baseline 2) this domain disparity screens us in improving

8Shortly we will provide a class-wise analysis of improvements brought by
our TSN solution.

Table 3: Performance of proposed solutions when mid-frame from SSVAC-40-
Videos are used as still images. The baseline performance on testing mid video
frames with Resnet-50 was 76.8%.

. Optical-flow | Dynamic images
Solution Temp. | Fused | Temp. | Fused
GAN 75.5 76.0 75.7 76.2
Triplets Embed. | 75.5 76.8 76.4 717.3
TSN 79.3 79.4 78.1 79.7

performance when additional video action frames are used as
still image training data. Our proposed, TSN solution, with
T2SIL framework attempts to work around this domain dispar-
ity by learning to transfer “still action images — temporal rep-
resentations”.

Here we describe an experiment where such domain dispar-
ity is non-existing. In other words, we replace our still action
images with sampled mid-frame images from videos. For this
experiment we use the mid-frame train/test set images of the
proposed SSVAC-40-Videos datasets. In Table 3 we report the
performance of our proposed three solutions with mid-frame
images. Here we observe the baseline performance of a Resnet-
50 trained on mid-video frames of SSVAC-40-Videos train data
to be 76.8%. For all experiment setups we use the same training
hyper-parameters as our still action image experiments.

We observe that our TSN solution yields a significant gain
in accuracy (+2.9% to be specific) from the baseline model af-
ter two-stream fusion. This experiment demonstrates that tangi-
ble gains can be achieved by our TSN solution if domain shift,
as considered in our work and in particular in SSVAC-40-Still
dataset, does not exist. Although this is a less challenging setup
than our original T2SIL we consider this experiment as an indi-
cation that temporal information can be used to gain improve-
ments when used for still image action recognition.

5.5. Upper bound with an Oracle

It might be interesting to answer the question “How much
improvement can we get if we have a perfect solution for
T2SIL?”

To answer this question, we perform an oracle experiment.
The assumption here is that we have learned a model that could
perfectly derive temporal information for a given still image ac-
tion. To simulate such a model, for a given still image action
we pick a co-class temporal representation (e.g., a dynamic im-
age, optical-flow inputs ). However, it is important to select the
temporal representation from the examples that weren’t used
for training the corresponding temporal model. Thereafter, the
prediction for still image is obtained by averaging the predic-
tions of the still image and the picked temporal instance. In Ta-
ble 4, we report the improvement results of 100 oracle test runs
for each data modality from the still image baseline in Table 1.
Although, our oracle experiment contains utopic assumptions
(e.g., a perfect temporal information derivation) it indicates us
of an upper bound for what might be achieved from T2SIL. This
oracle experiment demonstrates that with dynamic images, we
can potentially improve the still image action recognition by
5.8%. In our effort to improve results using T2SIL, we manage



to get an improvement of 0.5% which is 10 times lower than
what we can aim for. Therefore, we believe that this problem
should be explored in a large community to reap the maximum
benefits.

Table 4: Improvement in still image action classification accuracy from the
baseline performance (see Table 1), Test:84.2% and Val:88.2%.

Table 5: Network details for the GAN solution. All Leaky ReLU activations

Knowledge Transfer data modality

ave a slope of 0.2 for negative inputs. The dropout rate for all Dropout layers

Optical-flow Dynamic images

are 0.5. The Gaussian noise layers have a mean of 0.0 and a standard deviation

transfer method

f 0.01. The output dimension of the fully connected layers are given by dim. In

Val Test Val Test Table 6 we report the specific training hyper-parameters and layer parameters.
Oracle test 34+07 [ 44+03 [ 4707|5803 Layer | Layername | Activation | B.Norm.
Generator network
0 Input
1 FC - dim =d0 | Leaky ReLLU yes
6. Further Details of Experiments ) Dropout N N
In this section we give details of the training hyper-parameters 3 Gausm'an noise - _
and network model details for the three transfer learning solu- 4 FC-dim=d0 | Leaky ReL.U yes
tions. All network and training hyper-parameters are tuned for 5 Dr9pout i - -
the best performance in the validation set of SSVAC-40-Still. 6 Gaussian noise - -
7 FC - dim =d1 Tanh yes
6.1. Network and Hyper-parameters : T2SIL with Adversarial Discriminator network
Learning 0 Input
In Table 5 we report the structure of the networks used for ; Eg - glm i 3; ieallzy ieII:U yes
the adversarial solution. We report the training hyper-parameters - dim = caky ReLU yes
for our GAN solution in Table. 6. 3 FC-dim=d2 | Leaky ReLU yes
4 FC-dim=1 Sigmoid no
6.2. T2SIL with Deep Embedding Auxiliary classifier
1 \ FC - dim =40 \ - \ no
In Table 7 we report the structure of the networks used for - - - -
. . . . Dimensionality reduction network
the deep embedding learning solution. We report the training 0 p—
hyper-parameters for our embedding learning solution in Ta- 1npu
ble. 8. 1 FC - dim =d1 Tanh yes
2 Dropout - -
6.3. T2SIL with Teacher-Student Networks (TSN) 3 FC - dim = 40 - no

In Table. 9 we report the training hyper-parameters for the
proposed TSN solution.

7. Conclusion

Remarks on Observations : In this paper, we raise two novel
questions to the problem of action recognition from still im-
ages. To paraphrase, first we question whether still image action
recognition could benefit from temporal information. To an-
swer this question we proposed a novel transfer learning prob-
lem, T2SIL. Our experiments show that adversarial feature gen-
eration is not helpful for T2SIL. However, we see improve-
ments with deep embedding learning and a proposed teacher
student network solution. Out of the proposed three transfer
learning solutions, the teacher student network gives the best
performance. Hence, we conclude the answer to be “Yes” to
this first question.

Secondly, we question if existing transfer learning frame-
works are capable of reaping the maximum benefits from T2SIL.
Although helpful, comparing to video action recognition (e.g.,
two-stream fusion [2]), the improvements are not stellar. Hence,
we answer this second question with a “No”. We think the
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Table 6: Training hyper-parameters and network layer details for the GAN so-
lution.

Data modality do | di d2 A | Learning rate

Optical-flow 256 | 128 | 256 | 1.0 0.001

Dynamic images | 256 | 128 | 256 | 1.0 0.001




Table 7: Network details for the Triplets solution. All Leaky ReL.U activa-
tions have a slope of 0.2 for negative inputs. The dropout rate for all Dropout
layers are 0.5. The Gaussian noise layers have a mean of 0.0 and a standard
deviation of 0.01. The output dimension of the fully connected layers are given
by dim. In Table 8 we report the specific training hyper-parameters and layer
parameters.

Layer \

Layer name \ Activation | B. Norm.
Embedding network

Input

FC - dim =d0 | Leaky ReLU

Dropout - -

Gaussian noise - -

FC-dim =d0 | Leaky ReLU

Dropout - -

Gaussian noise - -
FC - dim = d1 Tanh

Embedding classifier

Input

FC - dim = 40 -

Dimensionality reduction network

Input

FC - dim = d1 Tanh yes
Dropout - -

FC - dim =40 - no

N N[N AW = O

o

—_—

no

W= O

T2SIL problem will open new research directions within the
transfer learning community and can be considered as a chal-
lenging problem in computer vision.

Limitations and Future Extensions : In its current formula-
tion, T2SIL framework has certain limitations. First and fore-
most, we require labeled video data for transferring the knowl-
edge to still image action data. Furthermore, we assume that
both still and temporal data belongs to the same set of classes
in our experiments. As such, this limits the use of abundantly
available video data (e.g., unlabeled) for current T2SIL. In fu-
ture, we intend to explore unsupervised-T2SIL as well as new
data setups where complete overlap between still and temporal
data classes are not present.

The proposed SSVAC-40 data is limited in size and anno-
tations. Lack of data samples in the proposed dataset might be
the reason for somewhat lower performance for GAN solution.
Furthermore, state of the art still action recognition solutions
use complex visual cues (e.g., body part annotations) to attain
improvements. However, due to the unavailability of such ex-
pensive annotations in SSVAC-40-Still data, we are unable to
benefit from the complex visual cues for T2SIL. As such, we
intend to extend the proposed SSVAC-40 dataset by size and
annotations in the future. With such modifications, we can ex-
plore a wide range of solutions to solve the proposed task.
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Figure 6: The class composition of the proposed still image action dataset SSVAC-40-Still.
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Figure 7: Improvement in per class accuracies for the still image predictions from the student model. The improvement is measured w.r.t. the baseline still image
model’s performance.
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Figure 8: Improvement in per class accuracies when the predictions of the still image and the student model are averaged. The improvement is measured w.r.t. the
baseline still image model’s performance.
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