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a b s t r a c t

Domain adaptation aims at adapting the knowledge acquired on a source domain to a new different but

related target domain. Several approaches have been proposed for classification tasks in the unsupervised

scenario, where no labeled target data are available. Most of the attention has been dedicated to searching

a new domain-invariant representation, leaving the definition of the prediction function to a second stage.

Here we propose to learn both jointly. Specifically we learn the source subspace that best matches the target

subspace while at the same time minimizing a regularized misclassification loss. We provide an alternat-

ing optimization technique based on stochastic sub-gradient descent to solve the learning problem and we

demonstrate its performance on several domain adaptation tasks.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In real world applications, having a probability distribution mis-

match between the training and the test data is more often the rule

than an exception. Think about part of speech tagging across different

text corpora [5], localization over time with wifi signal distributions

that get easily outdated [42], or biological models to be used across

different subjects [38]. Computer vision methods are also particularly

challenged in this respect: real world conditions may alter the image

statistics in many complex ways (lighting, pose, background, motion

blur etc.), to not even mention the difference in quality of the acqui-

sition device (e.g. resolution), or the high number of possible artifi-

cial modifications obtained by post-processing (e.g. filtering). Due to

this large variability, any learning algorithm trained on a source set

regardless of the final target data will most likely produce poor, un-

satisfactory results.

Domain adaptation techniques propose to overcome these issues

and make use of information coming from both source and target do-

mains during the learning process. In the unsupervised case, where

no labeled samples are provided for the target, the most extensively

studied paradigm consists in assuming the existence of a domain-

invariant feature space and searching for it. In general all the tech-

niques based on this idea focus on transforming the representation
∗ Corresponding author. Tel.: +91 95906030.

E-mail address: ttommasi@cs.unc.edu, tommasi.t@gmail.com (T. Tommasi).
1 Work done while at KU Leuven.
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f the source and target samples to maximize some notion of simi-

arity between them [12,14,15]. However in this way the classification

ask is left aside and the prediction model is learned only in a second

tage. As thoroughly discussed in [2,29], the choice of the feature rep-

esentation able to reduce the domain divergence is indeed a crucial

actor for the adaptation. Nevertheless it is not the only one. If several

epresentations induce similar marginal distributions for the two do-

ains, would a classifier perform equally well in all of them? Is it

nough to encode the labeling information in the used feature space

r is it better to learn a cross-domain classification model together

ith the optimal domain-invariant representation? Here we answer

hese questions by focusing on unsupervised domain adaptation sub-

pace solutions. We present an algorithm that learns jointly both a

ow dimensional representation and a reliable classifier by optimiz-

ng a trade-off between the source-target similarity and the source

raining error.

. Related work

For classification tasks, the goal of domain adaptation is to learn

function from the source domain that predicts the class label of a

ovel test sample from the target domain [33]. In the literature there

re two main scenarios depending on the availability of data annota-

ions: the semi-supervised and the unsupervised setting.

In the semi-supervised setting a few labeled samples are pro-

ided for the target domain besides a large amount of annotated

ource data. Existing solutions can be divided into classifier-based

nd representation-based methods. The former modify the original

http://dx.doi.org/10.1016/j.patrec.2015.07.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.07.009&domain=pdf
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B. Fernando et al. / Pattern Recognition Letters 65 (2015) 60–66 61

f

t

l

p

i

o

m

t

g

p

l

c

s

s

l

g

p

a

s

t

l

A

k

p

m

s

a

a

l

i

t

r

f

s

r

i

e

i

i

a

t

[

m

b

g

d

t

T

i

e

s

s

c

r

d

g

i

r

t

b

L

t

fi

b

s

h

u

i

c

t

c

t

t

s

o

t

w

w

a

W

L

i

o

d

W

e

a

s

3

a

t

t

t

f

D
t

t

P

A

a

t

t

h

ε

H

c

s

ε
a

a

h

u

A

s

c

R

s

d

f

t

F

w

m

ormulation of Support Vector Machines (SVM) [10,41] and other sta-

istical classifiers [6]: they adapt a pre-trained model to the target, or

earn the source and target classifiers simultaneously. The latter ex-

loit the correspondence between source and target labeled data to

mpose constraints over the samples through metric learning [25,34],

r consider feature augmentation strategies [23] and manifold align-

ent [40]. Some approaches have also tackled the cases with more

han two available domains [9,19] and the unlabeled part of the tar-

et has been used for co-regularization [26]. Recently, two methods

roposed to combine classifier-based and representation-based so-

utions. [20] introduced an approach to learn jointly a cross-domain

lassifier and a transformation that maps the target points into the

ource domain. Several kernel maps are used to encode the repre-

entation in [8], which proposed a domain transfer multiple kernel

earning algorithm.

In the more challenging unsupervised setting, all the available tar-

et samples are unlabeled. Many unsupervised domain adaptive ap-

roaches resort to estimating the data distributions and minimizing

distance measure between them, while re-weighting/selecting the

amples [13,38]. The Maximum Mean Discrepancy (MMD) [16] maps

wo sets of data to a reproducing Kernel Hilbert Space and it has been

argely used as distance measure between two domain distributions.

lthough endowed with nice properties, the choice of the kernel and

ernel parameters are critical and, if non-optimal, can lead to a very

oor estimate of the distribution distance [17]. Dictionary learning

ethods have also been used with the goal of defining new repre-

entations that overcome the domain shift [30,35]. A reconstruction

pproach was proposed in [24]: the source samples are mapped into

n intermediate space where each of them can be represented as a

inear combination of the target domain samples.

Another promising direction for unsupervised domain adaptation

s that of subspace modeling. This is based on the idea that source and

arget share a latent subspace where the domain shift is removed or

educed. As for dictionary learning, the approaches presented in this

ramework are mostly linear, but can be easily extended to non-linear

paces through explicit feature mappings [39]. In [4] Canonical Cor-

elation Analysis (CCA) has been applied to find a coupled domain-

nvariant subspace. Principal Component Analysis (PCA) and other

igenvalue methods are also widely used for subspace generation. For

nstance, Transfer Component Analysis (TCA, [32]) is a dimensional-

ty reduction approach that searches a latent space where the vari-

nce of the data is preserved as much as possible and the distance be-

ween the distributions is reduced. Transfer Subspace Learning (TSL,

37]) couples PCA and other subspace learning methods with a Breg-

an divergence-based regularization which measures the distance

etween the distribution in the projected space. Alternatively, the al-

orithm introduced in [1] uses MMD in the subspace to search for a

omain invariant projection matrix. Other methods exploited mul-

iple intermediate subspaces to link the source and the target data.

his idea was introduced in [15] where the path across the domains

s defined as a geodesic curve over a Grassmann manifold. This strat-

gy has been further extended in [14] where all the intermediate

ubspaces are integrated to define a cross-domain similarity mea-

ure. Despite the intuitive characterization of the problem, it is not

lear why all the subspaces along this path should yield meaningful

epresentations. Recently the Subspace Alignment (SA) method [12]

emonstrated that it is possible to map directly the source to the tar-

et subspace without necessarily passing through intermediate steps.

Overall, the main focus of the unsupervised methods proposed

n the literature is on the domain invariance of the final data rep-

esentation and less attention has been dedicated to its discrimina-

ive power. First attempts in this direction have been done in [14]

y substituting the use of PCA over the source subspace with Partial

east Squares (PLS), and in [32] where SSTCA chooses the represen-

ation by maximizing its dependence on the data labels. Our work

ts in this context. We aim at extending the integration of classifier-

ased with representation-based solutions in the unsupervised
etting where no access to the target labels is available, not even for

yperparameter cross validation. Differently from all the described

nsupervised approaches we go beyond searching only a domain

nvariant feature space and we want to optimize also a cross-domain

lassification model. We propose an algorithm that combines effec-

ively subspace and max-margin learning and exploits the source dis-

riminative information better than just encoding it in the represen-

ation. Our approach does not need an estimate of the source and

arget data distributions and relies on a simple measure of domain

hift. Finally, in previous work the performance of the adaptive meth-

ds have been often evaluated by tuning the model parameters on

he target data [12,24] or by fixing them to default values [21]. Here

e choose a more fair setup for unsupervised domain adaptation and

e show that our approach outperforms different existing subspace

daptive methods by exploiting exclusively the source annotations.

e name our algorithm Joint cross-domain Classification and Subspace

earning (JCSL).

In the following sections we define the notation that will be used

n the rest of the paper (Section 3) and we briefly review the the-

ry of learning from different domains together with the subspace

omain shift measure used in [12] from which we took inspiration.

e then introduce our approach (Section 4) followed by an extensive

xperimental analysis that shows its effectiveness on several domain

daptation tasks (Section 5). We conclude with a final discussion and

ketching possible directions for future research (Section 6).

. Problem setup and background

Let us consider a classification problem where the data instances

re in the form (xi, yi). Here xi ∈ R
D is the feature vector for the i-

h sample and yi ∈ {1, . . . , K} is the corresponding label. We assume

hat ns labeled training samples are drawn from a source distribu-

ion Ds = P(xs, ys), while a set of nt unlabeled test samples come

rom a different target distribution Dt = P(xt , yt), such that it holds

s �= Dt . In particular, the source and the target distributions satisfy

he covariate shift property [36] if they have the same labeling func-

ion with P(ys|xs) = P(yt |xt), while the marginal distributions differ

(xs) �= P(xt). We operate under this hypothesis.

bound on the target domain error. Theoretical studies on domain

daptation have established the conditions under which a classifier

rained on the source data can be expected to perform well on the

arget data. The following generalization bound on the target error εt

as been demonstrated in [2]:

t(h) ≤ εs(h) + dH(Ds,Dt) + λ. (1)

ere h indicates the predictor function, while H is the hypothesis

lass from which the predictor has been chosen. In words, the bound

tates that a low target error can be guaranteed if the source error

s(h), a measure of the domain distribution divergence dH(Ds,Dt),
nd the error λ of the ideal joint hypothesis on the two domains

re small. The joint error can be written as λ = εt(h∗) + εs(h∗) where
∗ = argminh∈H(εt(h) + εs(h)). The value of λ is supposed to be low

nder the the covariate shift assumption.

subspace measure of domain shift. The low-dimensional intrinsic

tructure of the source and target domains can be specified by their

orresponding orthonormal basis sets, indicated respectively as S ∈
D×d and T ∈ R

D×d . These are two full rank matrices, and d is the

ubspace dimensionality. In [12], a transformation matrix M is intro-

uced to modify the source subspace. The domain shift of the trans-

ormed source basis with respect to the target is simply measured by

he following function:

(M) = ||SM − T ||2
F , (2)

here || · ||F is the Frobenius norm. The Subspace Alignment (SA)

ethod proposed to minimize this measure, obtaining the optimal
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transformation matrix in closed form: M = S�T ∈ R
d×d . The matrix

= SM = SS�T ∈ R
D×d is finally used to represent the source data.

The original domain basis sets can be obtained through different

strategies, both unsupervised (PCA) and supervised (PLS, LDA), as ex-

tensively studied in [11].

SA has shown promising results for visual cross-domain classifica-

tion tasks outperforming other subspace adaptive methods. However,

on par with its competitors [14,15], it keeps the domain adaptive pro-

cess (learning M) and the classification process (e.g. learning an SVM

model) separated, focusing only on the distribution divergence term

dH(Ds,Dt) of the bound in (1).

4. Proposed approach

With the aim of minimizing both the domain divergence and the

source error in (1), we propose an algorithm that learns a domain-

invariant representation and an optimal cross-domain classification

model. For the representation we concentrate on subspace meth-

ods and we take inspiration from the SA approach. For the classifi-

cation we rely on a standard max-margin formulation. The details of

our Joint cross-domain Classification and Subspace Learning (JCSL) al-

gorithm are described below.

Given a fixed target subspace basis T ∈ R
D×d we minimize the fol-

lowing regularized risk functional

G(V, w) = ||w||2
2 + α||V − T ||2

F + β
ns∑
i

L(xs
i , ys

i , w,V). (3)

Here the regularization terms aim at optimizing separately the lin-

ear source classification model w ∈ R
d, and the source representation

matrix V ∈ R
D×d, while the loss function L depends on their combi-

nation. For our analysis we choose the hinge loss: L(xs
i
, ys

i
, w,V) =

max{0, 1 − xs
i
�V wys

i
}, but other loss functions can be used for dif-

ferent cross-domain applications. The parameters α and β allows to

define a trade-off between the importance of the terms in the objec-

tive function. In particular a high α value pushes V towards T giving

more importance to the distribution divergence term, while a high β
value focuses the attention on the training error term to improve the

classification performance in the new space.

The matrix V has a role analogous to that of U in SA, however in

our case it is not necessary to specify a priori the source subspace S

which is now optimized together with the alignment transformation

matrix M in a single step. Note that, if the source and target data can

be considered as belonging to the same domain (no domain shift),

our method will automatically provide V = T boiling down to stan-

dard learning in the shared subspace. We follow previous literature

and propose the use of PCA to define the target subspace T [12,14].

Besides having demonstrated good results empirically, the theoret-

ical meaning of this choice can be identified by writing the mutual

information between the target and the source as

MI(source; target) = H(target) − KL(source||target). (4)

Projecting the target data to the subspace T maximizes the entropy

H(target), while our objective function minimizes the domain shift,

which is related to the Kullback-Leibler divergence KL(·||·). Hence, we

expect to increase the mutual information between source and target.

Minimizing (3) jointly over (V, w) is a non-convex problem and

finding a global optimum is generally intractable. However we can

apply alternated minimization for V and w resulting in two intercon-

nected convex problems that can be efficiently solved by stochastic

subgradient descent. For this procedure we need the partial deriva-

tives of (3) that can be easily calculated as:

∂G(V, w)

∂V
= 2α(V − T) − β �ns

i=1
�i

∂G(V, w)

∂w
= 2w − β �ns

i=1
	i (5)
here � and 	 are the derivatives of L(xs
i
, ys

i
, w,V) with respect to V

nd w. When using the hinge loss we get

i =
{

xs�
i

wys
i

0
	i =

{
xs�

i
Vys

i

0

if (xs�
i

V wys
i
) < 1

otherwise.

The iterative subgradient descent procedure terminates when the

lgorithm converges, showing a negligible change of either V or w be-

ween two consecutive iterations. The formulation holds for a binary

lassifier but can easily be used in its one-vs-all multiclass extension

hat highly benefits from the choice of the stochastic variant of the

ptimization process.

At test time, we indicate the classification score of class y for

he target sample xt
i

as s(xt
i
, wy) = xt

i

�
Twy. The multiclass final

rediction is then obtained by maximizing over the scores: y∗
i

=
rgmaxy(s(xt

i
, wy)). Note that the source representation matrix V is

ot involved at this stage, and the target subspace basis T appears in-

tead. Differently from the pre-existing unsupervised domain adap-

ation methods that encode the discriminative information in the

epresentation, JCSL learns directly a domain invariant classification

odel able to generalize from source to target. The JCSL learning

trategy is summarized in Algorithm 1.

lgorithm 1 JCSL.

Input: step size η and batch size γ for stochastic sub-gradient

descent

Output: V ∗,w∗

1: Initialize V ← S, w ← 0, k ← 0

2: while not converged do

3: k ← k + 1

4: calculate the partial derivatives:

∂G(V, w)

∂V
= 2α(V − T) − β�

γ
i=1

�i

with �i =
{

xs
i
�wys

i
if (xs

i
�V wys

i
) < 1

0 otherwise

∂G(V, w)

∂w
= 2w − β�

γ
i=1

	i

with 	i =
{

xs
i
�Vys

i
if (xs

i
�V wys

i
) < 1

0 otherwise

5: Fix V , identify the optimal w:

wk ← wk−1 − η

(
∂F(V, w)

∂w

)
wk−1

6: Fix w, identify the optimal V :

Vk ← Vk−1 − η

(
∂F(V, w)

∂V

)
Vk−1

7: end while

. Experiments

We validate our approach over several domain adaptation tasks. In

he following we first describe our experimental setting (Section 5.1)

nd then we report on the obtained results (Sections 5.2–5.4). More-

ver we present a detailed analysis on the role of the learning param-

ters and on the domain-shift reduction effect of JCSL (Section 5.2).

.1. Datasets, baselines and implementation details

We choose three image datasets (see Fig. 1) and a wifi signal

ataset.
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Fig. 1. Top line: examples from Office+Caltech dataset and the MNIST+USPS dataset. Bottom line: weakly labeled images from Bing dataset.
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Office + Caltech [14]. This dataset was created by combining the

ffice dataset [34] with Caltech256 [18] and it contains images of 10

bject classes over four domains: Amazon, Dslr, Webcam and Cal-

ech. Amazon consists of images from online merchants’ catalogues,

hile Dslr and Webcam domains are composed by respectively high

nd low resolution images. Finally, Caltech corresponds to a subset of

he original Caltech256. We use the features provided by Gong et al.

14]: SURF descriptors quantized into histograms of 800 bag-of-visual

ords and standardized by z-score normalization. All the 12 possi-

le source-target domain pairs are considered. We use the data splits

rovided by Hoffman et al. [20].

MNIST [27] + USPS [22]. This dataset combines two existing im-

ge collections of digits presenting different gray scale data distri-

utions. Specifically they share 10 classes of digits. We randomly

elected 1800 images from USPS and 2000 images from MNIST. By

ollowing [28] we uniformly re-scale all images to size 16 × 16 and

e use the L2-normalized gray-scale pixel values as feature vectors.

oth domains are alternatively used as source and target.

Bing + Caltech [3]. In this dataset, weakly annotated images from

he Bing search engine define the source domain while images of Cal-

ech256 are used as target. We run experiments varying the number

f categories (5, 10, 15, 20, 25 and 30) and the number of source ex-

mples per category (5 and 10) using the same train/test split adopted

n [3]. As typically done for this dataset, Classemes features are used

s image representation [3].

Wifi [42]. This dataset was used in the 2007 IEEE ICDM contest

or domain adaptation. The goal is to estimate the location of mobile

evices based on the received signal strength (RSS) values from dif-

erent access points. The domains correspond to two different time

eriods during which the collected RSS values present different dis-

ributions. The dataset contains 621 labeled examples collected dur-

ng time period A (source) and 3128 unlabeled examples collected

uring time period B (target). The location recognition performance

s generally evaluated by measuring the average error distance be-

ween the predicted and the correct space position of the mobile de-

ices. We slightly modify the task to define a classification rather than

regression problem. We consider 247 locations and we evaluate the

lassification performance between the sets A and B with and with-

ut domain adaptation. We repeat the experiments both testing over

ll the target data and considering 10 random target splits, each with

00 random samples.

We benchmark JCSL2 against the following subspace-based do-

ain adaptation methods:
2 We implemented our algorithm in MATLAB. The code is submitted with the paper

s supplementary material. h
TCA, SSTCA: Transfer Component Analysis and its semi-

upervised extension [32]. We implemented TCA and SSTCA by fol-

owing the original paper description. For SSTCA we turned off the

ocality preserving option to have a fair comparison with all the other

onsidered methods, none of which exploits local geometry3.

TSL: Transfer Subspace Learning [37]. We used the code made

ublicly available by the authors4 which implements TLS by adding a

regman-divergence based regularization to the Fisher’s Linear Dis-

riminant Analysis (FLDA).

GFK (LDA−PCA), SA(LDA−PCA): for both the Geodesic Flow Kernel [14]

nd the Subspace Alignment [12] methods we slightly modified the

riginal implementation provided by the authors5 to integrate the

vailable discriminative information in the source domain. As pre-

iminary evaluation we compared the results of GFK and SA when

he basis of the source subspace were obtained with PLS and LDA.

lthough performing similarly on average, PLS showed less stability

han LDA with large changes in the outcome for small variations of

he subspace dimensionality d. This can be explained by considering

he difficulty of finding the best d that jointly maximizes the source

ata/label coherence and minimizes the source/target shift. Thus, for

ur experiments we rely on the more stable LDA for the source which

xes d equal K − 1. On the other hand, the target subspace is always

btained by applying PCA and selecting the first K − 1 eigenvectors.

As further baselines we also consider the source classifier learned

ith no adaptation (NA) in the original feature space and in the target

ubspace. The last one is obtained by applying PCA on the target do-

ain and using the eigenvectors as basis to represent both the source

nd the target data (PCAT).

For all the methods the final classifier is a linear SVM with the C

arameter tuned by two-fold cross-validation on the source over the

ange {0.001, 0.01, 0.1, 1.0, 10}. Our JCSL has three main parameters (α,

, d) that are also chosen by two-fold cross validation on the source.

e remark that the target data are not annotated, thus tuning the

arameters on the source is the only feasible option. We searched for

, β in the same range indicated before for C. The parameter d was

uned in {10, 20, . . . , 100} both for JCSL and for the baselines PCAT,

SL, TCA and SSTCA.

We implemented the stochastic sub-gradient descent using a step

ize of η = 0.1 and a batch size of γ = 10. The alternating optimiza-

ion converges for less than 100 iterations and we can obtain the re-

ults for any of the source-target domain pairs of the Office+Caltech
3 Following the original paper notation we fixed μ = 0.1, λ = 0, γ = 0.5.
4 http://www.cs.utexas.edu/˜ssi/TrFLDA.tar.gz
5 http://www-scf.usc.edu/˜boqinggo/domain_adaptation/GFK_v1.zip,

ttp://homes.esat.kuleuven.be/˜bfernand/DA_SA/downloadit.php?fn=DA_SA.zip

http://www.cs.utexas.edu/~ssi/TrFLDA.tar.gz
http://www-scf.usc.edu/~boqinggo/domain_adaptation/GFK_v1.zip
http://homes.esat.kuleuven.be/~bfernand/DA_SA/downloadit.php?fn=DA_SA.zip
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Table 1

Recognition rate (%) results over the Office+Caltech and MNIST+USPS datasets.

DA problem NA PCAT SA(LDA−PCA) GFK(LDA−PCA) TCA SSTCA TSL JCSL

A → C 38.1 ± 2.6 41.1 ± 1.7 43.4 ± 3.2 43.2 ± 3.7 43.5 ± 3.2 38.8 ± 2.4 40.4 ± 0.9 42.6 ± 0.9

A → D 32.9 ± 2.8 37.5 ± 1.4 44.7 ± 2.6 43.7 ± 2.8 38.8 ± 2.1 34.1 ± 6.9 40.8 ± 1.7 42.5 ± 3.2

A → W 36.8 ± 2.9 39.1 ± 2.8 40.3 ± 2.9 41.3 ± 2.0 41.0 ± 1.0 34.1 ± 3.8 41.1 ± 2.3 47.6 ± 2.1

C → A 39.5 ± 1.0 40.6 ± 2.8 39.3 ± 1.8 39.9 ± 1.5 42.5 ± 1.2 39.1 ± 3.5 43.0 ± 4.2 44.3 ± 1.2

C → D 38.8 ± 2.4 40.9 ± 1.3 44.0 ± 2.0 42.0 ± 2.5 42.1 ± 2.5 38.3 ± 4.1 40.4 ± 3.4 46.5 ± 1.5

C → W 37.8 ± 1.4 35.9 ± 3.2 37.3 ± 3.3 41.8 ± 3.8 39.4 ± 2.5 31.6 ± 4.9 40.9 ± 2.4 46.5 ± 2.0

D → A 24.4 ± 1.7 30.6 ± 2.7 35.7 ± 2.3 31.0 ± 2.7 30.4 ± 2.1 38.0 ± 2.6 39.6 ± 1.2 41.3 ± 0.9

D → C 30.5 ± 2.1 37.9 ± 1.3 41.5 ± 1.4 40.9 ± 2.8 36.7 ± 2.6 32.9 ± 1.8 33.4 ± 2.1 35.1 ± 0.9

D → W 60.9 ± 3.1 67.9 ± 2.8 58.6 ± 2.1 60.5 ± 3.8 64.5 ± 3.2 76.2 ± 3.0 73.7 ± 1.5 74.2 ± 3.6

W → A 29.7 ± 1.7 34.1 ± 1.7 34.7 ± 0.9 33.1 ± 1.2 34.6 ± 1.4 35.1 ± 2.6 38.0 ± 1.6 43.1 ± 1.0

W → C 34.1 ± 1.6 38.1 ± 1.3 36.7 ± 1.2 37.7 ± 1.8 39.6 ± 2.2 29.7 ± 2.5 30.4 ± 1.3 36.1 ± 2.0

W → D 71.1 ± 2.6 74.6 ± 0.9 69.5 ± 2.4 75.3 ± 2.6 77.3 ± 2.7 69.9 ± 3.4 66.9 ± 1.6 66.2 ± 2.9

AVG. 39.6 43.2 43.8 44.2 44.2 41.4 44.0 47.2

MNIST → USPS 45.4 45.1 48.6 34.6 40.8 40.6 43.5 46.7

USPS → MNIST 33.3 33.4 22.2 22.6 27.4 22.2 34.1 35.5

AVG. 39.4 39.2 35.4 28.6 34.1 31.4 38.8 41.1

Fig. 2. Target accuracy vs source accuracy over domain adaptation problem (Amazon → Caltech), (Amazon → Webcam), (MNIST → USPS) and (USPS → MNIST) obtained by using

JCSL and changing the parameters α, β and d. In all the cases the top right point cluster shows the high correlation between the source and target accuracy. By comparing the x- and

y- axis values of this cluster it is also evident the source-to-target performance drop with respect to the source-to-source result in each experiment. The red square indicates the

result selected by our method for the considered split. The red line is obtained by least-square fitting and makes it evident the trend in the results shared by all the source-target

pairs.
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6 Analogous results are obtained for all the remaining source-target pairs.
(excluding feature extraction) in 2 min using a modern desktop com-

puter (2.8 GHz cpu, 4Gb of ram, 1 core). With respect to the consid-

ered competing methods, the training phase of JCSL is slower (e.g. 60

times slower with respect to SA and GFK), but we remark that JCSL

provides an optimized cross-domain classifier besides reducing the

data distribution shift. The test phase runtime is comparable for all

the considered approaches. In practical applications domain adapta-

tion models are usually learned offline, thus the training time is a

minor issue.

5.2. Results - Office+Caltech and MNIST+USPS

The obtained results over the Office+Caltech and MNIST+USPS

datasets are presented in Table 1. Overall JCSL outperforms the con-

sidered baselines in 7 source-target pairs out of 14 and shows the best

average results over the two datasets. Thus, we can state that, mini-

mizing a trade-off between source-target similarity and the source

classification error pays off compared to only reducing the cross-

domain representation divergence. Still SA shows an advantage with

respect to JCSL in a few of the considered cases most probably be-

cause it can exploit the discriminative LDA subspace. With respect

to JCSL, TCA and SSTCA seem to work particularly well when the do-

main shift is small (e.g. Amazon → Caltech, Dslr → Webcam). Inter-

estingly JCSL is the only method that consistently outperforms NA

over MNIST+USPS.

Parameter analysis. To better understand the performance of JCSL we

analyze how the target accuracy varies with respect to the source ac-

curacy while changing the learning parameters α, β and d. The plots

in Fig. 2 consider four domain adaptation problems, namely (Amazon

→ Caltech), (Amazon → Webcam), (MNIST → USPS) and (USPS →
NIST)6. All of them present two main clusters. On the left, when the

ource accuracy is low, the target accuracy is uniformly distributed.

his behavior mostly appears when β is very small and α has a high

alue: this indicates that minimizing only ||V − T ||2
F

does not guaran-

ee stable results on the target task. On the other hand, in the second

luster the source accuracy is highly correlated with the target accu-

acy. On average, for the points in this region, both the domain diver-

ence term and the misclassification loss obtain low values. The final

CSL result with the optimal (V∗, w∗) appears always in this area and

he dimensionality of the subspace d seems to have only a moderate

nfluence on the final results. The red line reported on the plots is

btained by least-square fitting over the source and target accuracies

nd presents an analogous trend for all the considered source-target

airs. This is an indication that when domains are adaptable (negligi-

le λ in (1)) our method is able to find a good source representation

s well as a classifier that generalizes to the target domain.

easuring the domain shift. For the same domain pairs considered

bove we also evaluate empirically the H�H divergence measure de-

ned in [2]. This is obtained by learning a linear SVM that discrimi-

ates between the source and target instances, respectively pseudo-

abeled with +1 and −1. We separated each domain into two halves

nd use them for training and test when learning a linear SVM model.

high final accuracy indicates high domain divergence. We perform

his analysis by comparing the domain shift before and after the

pplication of SA and JCSL, according to their standard settings. SA

resents a single step and learns one subspace representation U. JCSL

xploits a one-vs-all procedure learning as many Vy as the number



B. Fernando et al. / Pattern Recognition Letters 65 (2015) 60–66 65

5 10 15 20 25 30
15

20

25

30

35

40

45

50

55

Number of classes

Ta
rg

e
t 

A
c

c
u

ra
c

y 
(%

)

No Adaptation
PCA

T

SA
GFK
TCA
TSL
JCSL

5 10 15 20 25 30
20

25

30

35

40

45

50

55

60

Number of classes

Ta
rg

e
t 

A
c

c
u

ra
c

y 
(%

)

No Adaptation
PCA

T

SA
GFK
TCA
TSL
JCSL

Fig. 3. Experimental results on Bing+Caltech obtained when using 5 (left) and 10 (right) samples per class in the source. SSTCA has shown similar or worse results than TCA, so we

did not include it in this evaluation to avoid further clutter in the plot.

Table 2

H�H analysis. Lower values indicate lower cross-domain distribution

discrepancy.

Space A → C A → W MNIST → USPS USPS → MNIST

Original features 74.82 90.18 100.00 100.00

SA
(LDA-PCA)

65.96 56.56 55.78 55.74

JCSL 65.76 54.97 57.03 53.28
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Table 3

Classification accuracy obtained over wifi localization dataset [42]. The full-row con-

tains the results over the whole target set. In the split-row we present the results ob-

tained over 10 splits of the target, each containing 400 randomly extracted samples.

NA SA
(LDA-PCA)

GFK
(LDA-PCA)

TCA SSTCA JCSL

Full 16.6 17.3 17.3 19.0 18.5 20.2

Splits 16.9 ± 2.1 17.6 ± 2.2 17.4 ± 2.1 19.2 ± 2.1 18.0 ± 2.2 20.5 ± 2.4

w
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f classes: each step involves all the data (no per class sample se-

ection). The final domain shift for JCSL is the average over the ob-

ained separate shift values. The results in Table 2 indicate that SA and

CSL produce comparable results in terms of domain-shift reduction,

uggesting that the main advantage of JCSL comes from the learned

lassifier.

.3. Results - Bing+Caltech

Due to the way in which it was defined, Bing+Caltech can be con-

idered as a much more challenging testbed for unsupervised domain

daptation compared to the other used datasets (see also Fig. 1). At

he same time it also corresponds to one of the most realistic sce-

arios where domain adaptation is needed: we have access to only

limited number of noisy labeled source images obtained from the

eb and we want to use them to classify over a curated collection of

bject images. For this problem exploiting at the best all the available

nformation is crucial. Specifically, since the source is not fully reli-

ble, coding its discriminative information in the representation (e.g.

hrough LDA or PLS) may be misleading. On the other hand, using the

ubspace of the non-noisy target data to guide the learning process

an be much more beneficial.

As shown in Fig. 3, JCSL is the only method that consistently im-

roves over the non-adaptive approach independently from the num-

er of considered classes. TSL is always equivalent to NA, while the

ther subspace methods, although initially helpful for problems with

ew classes, lose their advantage over NA when the number of classes

ncreases. This behavior is almost equivalent when using both 5 and

0 source samples per class.

.4. Results - wifi localization

To demonstrate the generality of the proposed algorithm, we eval-

ate JCSL also on non-visual data. Since the wifi vector dimensional-

ty (100) is lower than the number of classes (247), we do not exploit

DA here but we simply apply PCA to define the subspace dimen-

ionality for both the source and target domains. The results on the
ifi-localization task are reported in Table 3 and show that domain

daptation is clearly beneficial.

TCA and SSTCA are the state of the art linear methods on the wifi

ataset and they confirm their value even in the considered classifi-

ation setting by outperforming SA and GFK. Still JCSL presents the

est results. The obtained classification accuracy confirms the value

f our method over the other subspace-based techniques.

. Conclusions

Motivated by the theoretical results of Ben-David et al. [2], in this

aper we proposed to integrate the learning process of the source

rediction function with the optimization of the invariant subspace

or unsupervised domain adaptation. Specifically, JCSL learns a rep-

esentation that minimizes the divergence between the source sub-

pace and the target subspace, while optimizing the classification

odel. Extensive experimental results have shown that, by taking

dvantage of the described principled combination and without the

eed of passing through the evaluation of the data distributions, JCSL

utperform other subspace domain adaptation methods that focus

nly on the representation part.

Recently several works have demonstrated that Convolutional

eural Network classifiers are robust to domain shift [7,31]. Reason-

ng at high level we can identify the cause of such a robustness on

he same idea at the basis of JCSL: deep architectures learn jointly a

iscriminative representation and the prediction function. The highly

on-linear transformation of the original data coded into the CNN

ctivation values can also be used as input data descriptors for JCSL

ith the aim of obtaining a combined effect. As future work we plan

o evaluate principled ways to find automatically the best subspace

imensionality d using low-rank optimization methods.
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