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Forecasting future action sequences with attention:
a new approach to weakly supervised action

forecasting
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Abstract—Future human action forecasting from partial obser-
vations of activities is an important problem in many practical
applications such as assistive robotics, video surveillance and
security. We present a method to forecast actions for the unseen
future of the video using a neural machine translation technique
that uses encoder-decoder architecture. The input to this model
is the observed RGB video, and the objective is to forecast the
correct future symbolic action sequence. Unlike prior methods
that make action predictions for some unseen percentage of
video one for each frame, we predict the complete action
sequence that is required to accomplish the activity. We coin
this task action sequence forecasting. To cater for two types of
uncertainty in the future predictions, we propose a novel loss
function. We show a combination of optimal transport and future
uncertainty losses help to improve results. We evaluate our model
in three challenging video datasets (Charades, MPII cooking and
Breakfast).

We extend our action sequence forecasting model to perform
weakly supervised action forecasting on two challenging datasets,
the Breakfast and the 50Salads. Specifically, we propose a model
to predict actions of future unseen frames without using frame
level annotations during training. Using Fisher vector features,
our supervised model outperforms the state-of-the-art action
forecasting model by 0.83% and 7.09% on the Breakfast and
the 50Salads datasets respectively. Our weakly supervised model
is only 0.6% behind the most recent state-of-the-art supervised
model and obtains comparable results to other published fully
supervised methods, and sometimes even outperforms them on
the Breakfast dataset. Most interestingly, our weakly super-
vised model outperforms prior models by 1.04% leveraging on
proposed weakly supervised architecture, and effective use of
attention mechanism and loss functions.

Index Terms—action forecasting, weakly supervised learning,
action sequence forecasting

I. INTRODUCTION.
We humans forecast others’ actions by anticipating their

behavior. For example by looking at the video sequence in
Fig.1, we can say “the person is going towards the fridge,
then probably he will open the refrigerator and take something
from it”. Our ability to forecast comes naturally to us. We
hypothesize that humans analyze visual information to predict
plausible future actions, also known as mental time travel [1].
One theory suggests that humans’ success in evolution is due
to the ability to anticipate the future [1]. Perhaps, we correlate
prior experiences and examples with the current scenario to
perform mental time travel.
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Fig. 1. Someone is going towards the fridge. What are the plausible future
sequence of actions? Our action sequence forecasting model predicts the future
action sequence { open fridge � take something � close fridge }, after
processing the partial video. Our weakly supervised model predicts a label for
each future frame without using any frame level annotations during training.

Recently, the human action prediction/forecasting problem
has been extensively studied in the Computer Vision and AI
community. The literature on this prediction topic can be
categorized as early action [2], activity [3], [4], and event
prediction [5]. In early human action prediction, methods
observe an ongoing human action and aim to predict the action
in progress as soon as possible [6] before it finishes. This prob-
lem is also known as action anticipation in the literature [7].
As these methods predict an ongoing action before it finishes,
they are useful for applications when future planning is not
a major requirement. In contrast, activity prediction aims at
forecasting future action as soon as possible (not necessarily in
the temporal order) and is useful in many robotic applications,
e.g., human robot interaction. These methods can facilitate
information for some level of future planning [8]. In activity
prediction, some methods observe p% of the activity and then
predict actions for q% of the future frames in the video.
Most interestingly, these methods predict actions per-frame
which limits their practical application in many cases [3]. The
limitation of these methods are two fold. First, these methods
need precise temporal annotations for each future frame during
training. Even though this is feasible with small scale datasets,
in practical applications obtaining labels for each frame is a
challenging task. It is more feasible to obtain the sequence of
actions without temporal extents. As an example, in Fig.1, it
is easy to obtain action sequence < open, take, close
> rather than precise frame level annotations. In this paper
we use only those coarse action sequence labels for training.
Secondly, most prior methods make the assumption about
length of the video implicitly or explicitly [3], [9]. In contrast,
our formulation does not make these rigid assumptions.

Alternatively, some methods observe k number of actions in
an activity and then predict only the next future action [10].
However, we humans are able to forecast the future series
of actions which allows us to plan for the future, (e.g. if
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Fig. 2. A high level illustration of our action sequence forecasting solution.
Given an input video, we train a GRU-based sequence-to-sequence machine
translation model to forecast future action sequence. Specifically, our method
should know when to stop generating actions for the future. In other words,
we solve the problem of what steps (actions) are needed to finish the current
activity of the person. During training we use the action sequences without
temporal extents of each action. At test time, our models are able to forecast
future action sequence and a label for each future unseen frame.

someone is going to cook a simple potato dish, probably we
will see a sequence of actions such as peel � cut � wash �
boil). We humans are able to predict the future irrespective of
video length or the number of frames. We aim to solve this
challenging problem of forecasting future sequence of actions
to complete an activity from the partial observations of the
activity. We call this task action sequence forecasting. This
type of problems arise in practice, especially in robotics, e.g.,
robot assisted industrial maintenance, and assistive robotics in
healthcare.

Our model observes only a handful of actions within a long
activity. Then it forecasts the sequence of actions for the future
without making any assumptions on the length of video or
using precise future temporal annotations. In contrast to the
majority of action anticipation and activity prediction models,
ours is trained to predict the future action sequence as shown
in figure 2. To solve this problem, there are several challenges
that we need to tackle. First, our method needs to implicitly
infer the goal of the person. Second, it should learn to what
extent the person has completed the activity. Finally, it has to
infer what other actions are needed to accomplish the activity.
We formulate our solution such that all of this is learned in a
data driven manner. Specifically, we make use of the complex
relationship between observed video features and the future
actions to learn a complex mapping between them. To facilitate
that, we formulate it as a neural machine translation problem
where the input is an observed RGB video and the target is
a symbolic sequence of future actions. Specifically, we use a
recurrent encoder-decoder architecture.

Each future action depends on the past observed feature
sequence and interestingly, some of the observed features are
important in determining the future actions more than others.
For example, if our model predicts ”adding sugar” as the future
action, then it is more likely that our model gives a higher
attention weight to frames having a cup or a mug. Therefore,
we make use of an attention mechanism that allows us to
align-and-attend past features when generating future actions.
For each predicted future action, the attention mechanism
processes the entire input feature sequence and selects the
relevant set of observed frames that contain information about
the future actions. Similar ideas have been explored before
in other application domains, e.g., handwritten mathematical

expression recognition [11]. Furthermore, our GRU encoder
allows us to better model the temporal evolution of observed
human actions and encode them into a temporally coherent
hidden representation. The attention mechanism query these
hidden temporal representations and provide useful informa-
tion to the decoder GRU to generate accurate future actions.

Furthermore, the uncertainty of predictions increases with
two factors; (1) the amount of data the model observes, and
(2), how far into the future it predicts. If our model observes
more data, perhaps the predictions are likely to be reliable.
Moreover, if the model predicts far into the future, then
predictions are likely to be unreliable. We develop a novel
loss function that allows us to consider these two factors and
extend the traditional cross-entropy loss to cater for these
uncertainties. We also make use of optimal transport loss
which allows us to tackle the exposure bias issue of this
challenging sequence-to-sequence machine translation prob-
lem. Exposure bias arises when we use cross-entropy loss to
train neural machine translation models where it provides an
individual action-level training loss (ignoring the sequential
nature) which may not be suitable for our task. The optimal
transport loss is a more structured loss that aims to find a
better matching of similar actions between two sequences,
providing a way to promote semantic and contextual similarity
between action sequences. In particular, this is important when
forecasting future action sequences from observed temporal
features.

Finally, we propose a model to predict action labels for
future frames in a weakly supervised manner. Weakly super-
vised action forecasting is useful for practical applications,
specially when it is harder to obtain frame level annotations
(or start, end of actions). Specifically, we extend our action
sequence forecasting model to perform action forecasting for
future frames. Our weakly supervised model generates pseudo
representations for future frames and then uses an attention
mechanism to align them with forecasted future symbolic
action sequence. Using this mechanism it predicts labels for
future unseen frames. Our weakly supervised action forecast-
ing method uses a novel GRU encoder-decoder architecture
and we train this model using coarse action sequences (labels).
Our model obtains results that are comparable to supervised
methods and sometimes even outperforms them.

In a summary, our contributions are as follows:

• We propose an action sequence forecasting model that
only utilizes the observed input frame sequence. Our ar-
chitecture for weakly supervised action forecasting allows
us to train with coarse annotations and predict action
labels for frames at test time.

• We propose new loss functions that handle the uncertainty
in future action sequence forecasting and we demonstrate
the usefulness of optimal transport and the uncertainty
losses.

• We extensively evaluate our method on four challenging
action recognition benchmarks and obtain state of the
art results for action forecasting. Our weakly supervised
method obtains comparable results to prior supervised
methods and in some datasets even outperforms them.
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II. RELATED WORK.

We categorize the related work into three, 1. early action
prediction and anticipation, 2. activity prediction and 3.
weakly supervised action understanding and 4. machine
translation.

Early action prediction and anticipation: Early action
prediction aims at classifying the action as early as possible
from partially observed action video. Typically, experiments
are conducted on well segmented videos containing a single
human action. In most prior work, methods observe about
50% of the video and then predict the action label [12], [13],
[7]. In particular these methods can be categorized into four
types. Firstly, some generate features for the future and then
use classifiers to predict actions using generated features [14],
[15]. Feature generation for future action sequences containing
a large number of actions is a challenging task and therefore,
not feasible in our case. Secondly, [7], [16], [17] develop novel
loss functions to cater for uncertainty in the future predictions.
Our work also borrows some concepts from these methods
to develop loss functions but ours is applied over the future
action sequence in contrast to applying over an action. Thirdly,
some anticipation methods generate future RGB images and
then classify them into human actions using convolution neural
networks [18], [19]. However, generation of RGB images for
the future is a very challenging task specially for longer action
sequences. Similarly, some methods aim to generate future
motion images and then try to predict action for the future [20].
However, we aim to forecast action sequences for unseen parts
of the human activity and are more challenging than action
anticipation. Therefore, action anticipation methods can not
be used to solve our problem. Furthermore, our approach
uses coarse level video annotations during training which
allows someone to scale up our method for very large scale
problems as-well-as for domains where obtaining frame level
annotations is difficult.
Activity prediction: Some action forecasting methods assume
that the number of future frames is given and predict the action
label for each future frame [3], [9], [21]. These methods ([3],
[9], [21]) require precise temporal annotations at frame-level
during training and some methods use ground truth labels for
observed actions [9] during inference. Several action forecast-
ing methods are evaluated in [3] including CNN and RNN
based approach. In particular this method [3] uses frame level
annotations of observed data to train a frame classification
model. This model predicts actions of the observed frames.
Then using the generated actions of the observed frames, it
directly predicts the actions for the future frames. Furthermore,
the CNN, RNN methods of [3] predicts future actions for
frames in a segment-wise manner until the desired prediction
level is reached. In contrast, our model does not make any
assumptions about the length of the sequence and rely on
the model to emit the end-of-sequence token when predicting
future action sequences. Furthermore, when predicting action
labels for the future frames in a weakly supervised manner, our
method generates pseudo representations for future frames and
predicts action labels per-frame using the attention mechanism.

Method in [9] uses a memory network which is also an
encoder-decoder method. However, our model architecture and
the loss functions used are different from [9]. Our model
does not use frame level annotations and use only coarse
video level annotations during training. In contrast, the method
in [9] uses frame level annotations and frame features during
training and even frame level annotations of observed frames
during testing. First, both the observed frame sequence and
the action sequence are encoded with a LSTM unit and then
they are concatenated and fed to a memory network decoder
to generate future actions. In contrast, our weakly supervised
action forecasting model relies on a new encoder-decoder
architecture with three dedicated decoders to generate future
action labels for frames in a weakly supervised manner. We
use only coarse action labels during training and our model
does not need any annotated frames during inference as in [9].
Model presented in [21] consists of two parts, i.e., temporal
feature attention module, and time-conditioned skip connec-
tion module for action forecasting. Our model is different from
all these methods due to the differences in model architecture
and type of supervision used. We aim to predict the future
sequence of action (e.g. wash � clean � peel � cut) and
assign a label for each future frame in a weakly supervised
manner without using frame level annotations during training.

Some activity prediction methods aim at predicting the next
action in the sequence [10], [22] or focus on first person
human actions [23], [24]. Specifically, [10] used to predict
the next action using the previous three actions using motion,
appearance, and object features with a two layered stacked
LSTM. Authors in [22] use stochastic grammar to predict
the next action in the video sequence. Even though these
methods can be extended to predict the sequence of actions
by recursively applying them, we face two challenges. Firstly,
errors may propagate making future actions more wrong, and
secondly it may not know when to stop producing action
symbols, which is important when the actions are part of some
larger activity. Sequence-to-sequence machine translations are
naturally able to address both these two issues [25]. We make
use of this strategy to solve our problem.
Weakly supervised action understanding: To the best of
our knowledge we are the first to present a model for weakly
supervised action forecasting. Weakly supervised methods are
used for tasks such as action detection [26], [27] and segmen-
tation [28]. Authors in [28] utilize weak annotations for action
classification by aligning each frame with a label in a recurrent
network framework. Specifically, they use connectionist tem-
poral classification architecture with dynamic programming
to align actions with frames. Authors in [29] learn to find
relevant parts of an object/action after randomly suppressing
random parts of images/videos. This method focuses only on
very few discriminative segments. Authors in [30] directly
predict the action boundaries using outer-inner-contrastive loss
in a weakly supervised manner. Authors in [26] propose two
terms that minimize the video-level action classification error
and enforce the sparsity when selecting segments for action
detection. Authors in [31] use attention-based mechanism to
identify relevant frames and apply a pairwise video similarity
constraint in a multiple instance framework. Our weakly
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supervised model is different from what has been used in prior
work with respect to two reasons. First, our model generates
features for unseen frames and then assigns a label for each
using only coarse sequence annotations as shown in Fig 2.
Secondly, our network architecture contains a hierarchy of
GRU encoders and decoders. To be precise, it consists of a
single encoder and three decoders dedicated to predict and
assign action labels for future frames.
Machine translation. Our method is also related to machine
translation methods [25], [32], [33], [34]. However, none
of these works use machine translation for action sequence
forecasting from videos. Typically, machine translation is used
for language tasks [25], [32]. To the best of our knowledge,
we are the first to use neural machine translation for trans-
lating a sequence of RGB frames (a video) to a sequence of
future action labels with weak supervision. Indeed, machine
translation has been used for unsupervised learning of visual
features [35] in prior work which is related to us. But they
did not use it for predicting future action sequences.

III. FUTURE ACTION SEQUENCE GENERATION.

A. Problem

We are given a video in which a human is performing
an activity. Our model only observes the initial part of the
video containing initial sequence of actions. The objective of
this work is to train a model to predict the future unseen
sequence of actions. A visual illustration of this model is
shown in figure 2. Let us denote the observed RGB video
by Xo =

〈
xo1, x

o
2, x

o
3, · · · , xop

〉
where xop is the pth frame. The

observed action sequence is denoted by Y o = 〈yo1, yo2, · · · yoP〉
(note that p 6= P) and the future unseen ground truth action
sequence by Y u = 〈yu1 , yu2 , · · · yuN 〉 where each action y ∈ Y
and Y is the set of action classes and the start time of each
action yi is before or equal to the start time of yi+1. In contrast
to most other action forecasting problems, we do not use frame
level annotations. Each observed (yot ) or future unseen action
(yut ) may span over multiple frames and we do not explicitly
use the start and end time of each action. However, during
inference we are able to predict an action label for future
unseen frames or explicitly infer the start and end of each
future action.

First, we present our default future action sequence forecast-
ing model in section III-B. Second, we extend this model to
infer start and end of future actions only using coarse labels
sequences Y o and Y u for training. This weakly supervised
action forecasting method is presented in section IV. Our
fully supervised model which uses frame level annotations for
observed and future actions is presented in IV-A.

B. Future action sequence forecasting model

In contrast to other action forecasting methods that operates
at frame level (or clip level), we do not know the label of
each observed RGB frame xop. Our model has access to frame
sequence Xo only. We train a model φ(,Θ) that predicts
unseen action sequence Y u from seen RGB feature sequence
Xo where Θ are the parameters of model, i.e. Y u = φ(Xo,Θ).
We do not make use of ground-truth action sequence Y o

during training or inference. Therefore, our method does not
need any frame level action annotations as in prior action
forecasting methods [3], [9].

We formulate this problem as a sequence-to-sequence ma-
chine translation problem [25], [32], [33], [34] where we use
observed rgb sequence Xo as the input sequence. Then the
symbolic unseen action sequence Y u is the target sequence.
Specifically, we use an GRU-based encoder-decoder archi-
tecture. Our hypothesis is that the encoder-decoder machine
translation would be able to learn the complex relationship
between seen feature sequence and future actions. To further
improve the model predictive capacity, we also use attention
over encoder hidden state when generating action symbols for
the future and use novel loss functions to tackle uncertainty.
Next we describe our model in detail.

1) GRU-encoder-decoder: We use GRU-based encoder-
decoder architecture for translating video sequence into future
action sequence. Our encoder consists of a bi-directional GRU
cell. Let us define the encoder GRU cell which takes the
observed feature sequence consisting of p elements as input.
We define the encoder GRU by fe() for time step t as follows:

−→
h t,
←−
h t = fe(x

o
t ,
−→
h t−1,

←−
h t−1) (1)

where
−→
h t,
←−
h t ∈ RD are the forward and backward hidden

states at time t. The initial hidden state of the encoder
GRU is set to zero. Then we make use of a linear mapping
We ∈ R2D×D to generate a unified representation of both
forward and backward hidden states for each time step

−→
h t,
←−
h t

as follows:
ht = [

−→
h t−1,

←−
h t−1]×We (2)

where [·, ·] indicates the concatenation of forward and back-
ward hidden states. Therefore, the outcome of the encoder
GRU is a sequence of hidden state vectors denoted by
H =

〈
ho
1,h

o
2, · · ·ho

p

〉
. The bi-directional GRU encode more

contextual information which might inherently enable the
model to infer the intention of person doing the activity. The
decoder is a forward directional GRU fd(), that generates the
decoder hidden state gq ∈ RD at decoding time step q define
as follows:

gq = fd([cq−1, ŷq−1],gq−1) (3)

where ŷq−1 is the predicted target action class score vector
at step q-1. The input to decoder GRU fd() at time step is a
concatenation of the context vector cq−1 and the previously
predicted action score vector ŷq−1 denoted by [cq−1, ŷq−1].
We obtain the action score vector at step q of the decoder
using following linear mapping:

ŷq = gq × U (4)

where U ∈ RD×|Y| is a learnable parameter. Note that the
output symbol at step q of the decoder is obtain by argmax
operator, i.e., ŷq = argmax ŷq. The decoder is initialized by
the final hidden state of the encoder (i.e. g0 = ho

p where ho
p

is the final hidden state of the encoder). The initial symbol of
the decoder is set to SOS (start of sequence symbol) during
training and testing. The decision to include the previous
predicted action ŷq−1 as an input in the decoder is significant
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as now the decoder model has more semantic information
during the decoding process. One choice would be to simply
ignore the previously predicted action symbol. However, that
would hinder the predictive capacity of the decoder as decoder
is not explicitly aware of what it produced in the previous
time step. Conceptually, now the decoder is trying to find the
most likely next symbol P (yq|yq−1,gq−1, cq−1) using both
previous symbol and the contextual information.

Next we describe how to generate the context vector cq−1
which summarizes the encoder-decoder hidden states using
attention mechanism.

2) Attention over encoder hidden state: It is intuitive to
think that not all input features contribute equally to generate
the output action symbol ŷq at decoder step q. Therefore, we
propose to make use of attention over encoder hidden states
H to generate the context vector cq−1 which serves as an
part of input to the decoder GRU. Specifically, to generate
cq−1, we linearly weight the encoder hidden vectors H =〈
ho
1,h

o
2, · · ·ho

p

〉
, i.e.,

cq =
∑
i

exp(αqi )∑
j exp(α

q
j)
ho
i (5)

where αqi is the weight associated with the encoder hidden
state ho

i to obtain q-th context vector defined by the following
equation.

αqi = tanh([ho
i ;gq]×Watt)× V (6)

Here Watt ∈ R2D×D and V ∈ D are learnable parameters
and αqi depends on how well the encoder-decoder hidden
states ho

i ,gq are related. This strategy allows us to attend all
encoder hidden states H =

〈
ho
1,h

o
2, · · ·ho

p

〉
when generating

the next action symbol using decoder GRU. During training
we make use of the teacher forcing strategy to learn the model
parameters of the encoder-decoder GRUs where we randomly
choose to use yq instead of ŷq in equation 3 with a probability
of 0.5. This is to make sure that the inference strategy is not
too far away from the training strategy and that convergence
takes place faster. During inference, given the input features
sequence, we pass it thorough the encoder-decoder to generate
future action sequence until we hit the end-of-sequence symbol
(EOS). The model is also trained with start-of-sequence (SOS)
symbol and EOS.

3) Tackling the uncertainty: Correctly predicting the future
action sequence from a partial video is challenging as there
are more than one plausible future action sequences. This
uncertainty increases with respect to two factors; 1. to what
extent we have observed the activity, (the more we observe,
the more information we have to make future predictions)
and 2. how far into the future we are going to predict using
observed data (if we predict too far into the future, there are
more possibilities and more uncertainty). To tackle these two
factors, we propose to modify the cross-entropy loss which is
typically used in sequence-to-sequence machine translation1.
Let us assume that we have observed P number of actions,
and we are predicting a total of N number of action symbols.
Let us denote the cross-entropy loss between the prediction

1This strategy may be applicable to other loss functions as well.

(ŷq) and the ground truth (yq) by L(ŷq,yq). Then our novel
loss function that handles the uncertainty (Lun(Ŷ u, Y u)) for
a given video Xo, Y u is define by

Lun = (1− exp(−P
N

))

N∑
q=1

exp(−q)L(ŷq,yq) (7)

where the term (1 − exp(−P/N )) takes care of shorter
observations and makes sure that longer action observations
contributes more to the loss function. If the observed video
contains less actions (information), then predictions made
by those are not reliable and therefore does not contribute
much to the overall loss. Similarly, the second inner term
exp(−q)L(ŷq,yq) makes sure that those predictions too far
into the future make only a small contribution to the loss. If
our model makes a near future prediction, then possibly model
should do a better job and if it makes an error, we should
penalize more. During training, we make use of sequential
data augmentation to better exploit the above loss function.
In-fact, for given a training video consist of M actions (i.e.
Y = 〈y1, y2, · · · yM〉), we augment the video to generate
M− 1 observed sequences where Y o = 〈yo1, yo2, · · · yot 〉 and
Y u =

〈
yot+1, · · · yoM

〉
for t = {1, · · · ,M − 1}. Then we train

our networks with these augmented video sequences with the
uncertainty loss.

4) Optimal Transport Loss (OT): So far, the cross-entropy
loss is applied over actions in a point-wise manner without
taking into account the topological or the geometric structure
of action space. The element-wise cross-entropy loss obtained
for action at step-q of the decoder only relies on the ground-
truth action at step-q and it does not take the sequence-to-
sequence structural nature of the task. Moreover, when the
predicted sequence is longer than the ground truth, the cross-
entropy loss requires adhoc end-of-sequence token (class)
to handle this. However, ideally, the encoder-decoder model
should be able to predict the target action sequence of the
future by considering structural nature of this task.

The optimal transport defines a distance measure between
probability distributions over a metric space by considering the
topology, and in our case the topology of actions sequences.
It is desirable to exploit this metric structure in the action
sequence space using optimal transport loss [36] over predicted
action sequences. We propose to make use of optimal transport
loss of [36] defined by

Dc(µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ [c(x,y)] (8)

where Π(µ, ν) is the set of all joint distributions γ(x,y) with
marginals µ(x) and ν(y) and c(x,y) is the cost function for
moving x to y in the sequence space. We take the cost function
to be the L2 norm i.e. c(x,y) = ‖x− y‖2.

Specifically, we consider the optimal transport distance
between two discrete action distributions µ, ν ∈ P(A) of the
action sequences where A is the action space. The discrete
distributions µ, ν can be written as weighted sums of Dirac
delta functions i.e. µ =

∑n
i=1 uiδxi

and ν =
∑m
j=1 vjδyj

with∑n
i=1 ui =

∑m
j=1 vj = 1. Given a cost matrix C ∈ Rn×m+
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where Cij is the cost from xi to yj , the optimal transport loss
is equivalent to

Lot(µ, ν) = min
P∈Π(u,v)

∑
i,j

PijCij (9)

where Π(u,v) = {P ∈ Rn×m+ }|P1m = u,P>1n = v} and
1n is a n-dimensional vector of all ones.

The minimum P ∗ in equation 9 is the ideal optimal transport
solution that caters for the topological structure of predicted
and ground truth action sequences. The cost function is defined
in the Euclidean space over action predictions as follows:

Cij = ||ŝi − sj||2 (10)

where ŝi is the predicted action score vector at step i and sj
is the one-hot-vector obtained from the ground truth action
sequence Y u at step j. Note that both Ŷ u and Y u are discrete
action symbol sequences and the optimal transport loss is
complementary to the cross entropy loss and vice-versa.

Because the optimal transport assignment problem is formu-
lated as a permutation problem, we make use of the Sinkhorn
divergence method proposed in [37] to estimate the optimal
transport loss in equation 9. Using this Sinkhorn algorithm
implementation proposed in [37], we compute the optimal
transport loss between the predicted and ground-truth action
probability distributions from equation 9. Let S be the N×|Y|
ground truth tensor where Sjk contains the probability value
of action k in step j (i.e. each row j is equal to one-hot vector
sj), and Ŝ be the corresponding tensor containing the predicted
probability values (i.e. each row i is equal to probability
vector ŝi). The optimal transport loss (Lot) computed using
the Sinkhorn algorithm is then denoted by Lsh(Ŝ, S). The
combination of both losses is given by the following:

Ltotal = Lun(Ŷ u, Y u) + β × Lsh(Ŝ, S), (11)

where β is the trade-off parameter and Lun(Ŷ u, Y u) is
obtained by equation 7.

IV. WEAKLY SUPERVISED FUTURE ACTION FORECASTING

In this section we present a method to infer the temporal
extent of each future action using only the coarse labels of
observed and unseen future action sequences. Therefore, es-
sentially our method is a weakly supervised action forecasting
method. Specifically, during training we make use of observed
feature sequence Xo =

〈
xo1, x

o
2, x

o
3, · · · , xop

〉
, observed action

sequence Y o = 〈yo1, yo2, · · · yoP〉 and the future unseen action
sequence Y u = 〈yu1 , yu2 , · · · yuN 〉. Note that both Y o and Y u

are coarse sequences, i.e. we do not know the temporal extent
of each action. Both Y o and Y u are used to compute the
loss during training. At test time, we predict future action
sequence Ŷ u and a label of for each unseen frame only using
observed feature sequence Xo. To do that, we use the attention
mechanism presented in section III-B2. High level illustration
of our novel architecture is shown in Fig. 3. Now we give more
details of our weakly supervised action forecasting method

First, our model processes the feature sequence Xo using a
GRU encoder foe () to obtain a hidden state sequence Ho of
the same length as Xo.

Ho = foe (Xo) (12)
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Future Hidden
Seq.

Predicted Future Action

Fig. 3. A visual illustration of our weakly supervised action forecasting
architecture. It consists of a encoder and three decoder GRUs. The first
decoder uses attention mechanism to align observed hidden sequence Ho with
the observed action sequence Y o. The second GRU decoder processes last
observed hidden state ho

p and then decodes to generate pseudo states for the
future features denoted by Hu =

〈
hu
1 , · · · , hu

Z

〉
. The attention mechanism is

used to align predicted future action sequence Y u with pseudo hidden states
Hu. This allows us to estimate a label for each future hidden state using the
attention weights and action scores < yu

1 , · · · .yu
N >.

Then, a GRU decoder fod () with attention is used to decode
Ho to obtain the observed action sequence Ŷ o. The encoder-
decoder with attention used here (i.e. foe () and fod ()) is
explained in section III-B1 and III-B2.

The second GRU decoder fud () without attention takes the
last hidden state hop of Ho as the initial hidden state and
decodes to generate a sequence of future hidden states for
unseen frames. Let us assume there are Z number of future
unseen frames. Therefore, fud () generates the future hidden
state sequence Hu = 〈hu1 , · · ·huZ〉 as follows:

Hu = fud (hop). (13)

We call these future unseen hidden vectors as pseudo states
and in practice Z is known or given to us. The final GRU
decoder (fuyd ) with attention is applied over these pseudo state
sequence Hu to obtain future action sequence Ŷ u as follows:

Ŷ u = fuyd (Hu). (14)

The attention allows us to align each future hidden state hut
with the corresponding future label ŷuq of Ŷ u. Similar to equa-
tion 3, inputs to this decoder are the predicted future action
score and the context vectors. Let αqt be the attention score on
tth unseen hidden state hut for generating qth action symbol
ŷuq of Ŷ u. The attention scores are obtained as explained in
section III-B2. The attention score indicates the contribution
of future frame xut for generating action yuq of the future.
Therefore, we can assign action score st for each future frame
xut using the following equation

st =
∑
q

αqt × yu
q (15)

where yu
q is the score vector of qth future action symbol of Ŷ u.

Even though, we have never observed any of future features,
this formulation allows us to generate pseudo hidden states for
future and then decode that to generate future action sequence.
This attention mechanism allows us to assign a label for each
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future frame without using any explicit frame level annotation
during training.

To train foe (), fod (), fud (), huyd () we use combination of two
losses as follows:

Loss = L(Y o, Ŷ o) + γL(Y u, Ŷ u) (16)

where the loss functions L() are explained in section III-B3.
As before, we use end-of-sequence token (EOS) during train-
ing and testing for both Ŷ o and Ŷ u. In our implementation
we make sure that the feature dimensions of X,Ho, Hu are
the same.

A. Fully supervised action forecasting

We also extend the method presented in section IV for fully
supervised action forecasting. In this case, the observed and
future action sequences Y o, Y u are frame specific and the
loss function in Eq. 16 is applied over frame level action
annotations during training. However, at inference, model
takes observed feature sequence Xo as input and predicts
action labels for each future frame. We do not use EOS token
for fully supervised model.

V. EXPERIMENTS.

In this section we extensively evaluate our model using
three challenging action recognition datasets, namely the
Charades[38], MPII Cooking[39] and Breakfast[40] datasets.
Next we give a brief introduction to these datasets. MPII-
Cooking Dataset has 65 fine grained actions, 44 long videos
with a the total length of more than 8 hours. Twelve partici-
pants interact with different tools, ingredients and containers
to make a cooking recipe. We use the standard evaluation splits
where total of five subjects are permanently used in the training
set. Rest six of seven subjects are added to the training set and
all models are tested on a single subject and repeat seven times
in a seven fold cross-validation manner. In this dataset, there
are 46 actions per video on average.

Charades dataset has 7,985 video for training and 1,863
videos for testing. The dataset is collected in 15 types of indoor
scenes, involves interactions with 46 object classes and has a
vocabulary of 30 verbs leading to 157 action classes[38]. On
average there are 6.8 actions per video which is much higher
than other datasets having more than 1,000 videos.

Breakfast dataset[40] consist of 1,712 video where 52 actors
making breakfast dishes. There are 48 fine-grained actions
classes and four splits. On average each video consists of 6.8
actions per video.

There are no overlapping actions in Breakfast and Cooking
datasets. Charades has handful of videos with overlapping
actions. To generate ground truth action sequences, we sort
the list of actions by start times, ignoring the end time of the
actions.

A. Performance evaluation measures:

We measure the quality of generated future action se-
quences using BLEU-1 and BLEU-2 scores[41]. These are
commonly used in other sequence evaluation tasks such as

image captioning. We use the standard BLEU score definition
proposed in the Machine Translation and Natural Language
Community[41] which is also publicly implemented in Python
nltk toolbox. We also report sequence-item classification ac-
curacy which counts how many times the predicted sequence
elements match the ground truth in the exact position. Fur-
thermore, we also report the mean average precision (mAP)
which does not account for the order of actions. To calculate
mAP, we accumulate the action prediction scores of the unseen
video and compare it with the ground truth. BLEU-1, BLEU-2
and sequence-item classification accuracy reflects the sequence
forecasting performance while the mAP only accounts for
holistic future action classification performance discarding the
temporal order of actions.

The use of BLEU scores is somewhat novel in action
forecasting. In machine translation, BLEU score is used to
compare a candidate sequence of words against a reference
translation. Similarly, we use BLEU scores in the context of
action sequence forecasting to provide a precision measure
over action sequences. For example, BLEU-2 score indicates
the precision of each models’ ability to correctly predicts
two-action compositions (e.g open � close, wash � peel).
Therefore, BLEU scores provides complementary information
to sequence-item classification accuracy.

B. Feature extraction and implementation details:

Unless specifically mentioned, we use effective I3D features
[42] as the video representation for all datasets. First, we
fine-tune I3D networks for video action classification using
provided video level annotations. Afterwards, we extract 1024-
dimensional features to obtain a feature sequence for each
video.

C. Evaluating our model

In the following sections we evaluate various aspects of
our model aiming to provide some insights to the reader.
First, we evaluate our action sequence forecasting model from
section V-D to V-G. In section V-D we evaluate our action
sequence forecasting model with cross-entropy loss. Then in
section V-E we evaluate the impact of new loss functions for
action sequence forecasting. After that in section V-F we
compare our model with baselines models for predicting the
next action. We also evaluate the performance of our model
when predicting the next action conditioned on the last three
actions in section V-G. Finally, we evaluate weakly supervised
action forecasting in section V-H and compare with other
published methods.

D. How well does it perform in action sequence forecasting?

In this section we evaluate our action sequence forecasting
model using all three datasets. During training, for each given
video X and the action sequence Y = 〈y1, y2, · · · , yN 〉, our
model take feature sequence Xo corresponding to observed
action sequence Y o = 〈yo1, · · · , yoi 〉 and then predict future
action sequence Y u =

〈
yui+1, · · · , yuN

〉
for all i values (i.e.

for i = 1, · · · , N − 1). The observed ith action symbol is
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Fig. 4. Qualitative results obtained with our method on MPII Cooking dataset. Correctly predicted actions are shown in green and the wrong ones in red.

TABLE I
GRU ENCODER-DECODER PERFORMANCE ON ACTION SEQUENCE FORECASTING

Dataset Setup BLEU-1 (%) BLEU-2 (%) Seq. Item. Acc (%) mAP
Charades Random 1.04 0.35 0.28 4.40
Charades Classification 15.26 2.78 5.35 28.40
Charades Forecasting (Mean+GRU) 5.15 1.87 2.30 5.90
Charades Forecasting (GRU-ED) 5.75 2.18 1.53 5.10
Charades Forecasting (GRU-ED Att.) 7.95 2.87 2.60 6.10
Breakfast Random 1.33 0.49 0.70 7.53
Breakfast Classification 51.83 37.38 26.35 46.89
Breakfast Forecasting (Mean+GRU) 25.65 10.23 18.11 24.94
Breakfast Forecasting (GRU-ED Att.) 34.56 21.15 21.29 30.24
MPII-Cooking Random 1.28 0.48 0.47 6.53
MPII-Cooking Classification 25.74 14.34 14.86 20.60
MPII-Cooking Forecasting (GRU-ED Att.) 8.70 4.10 4.50 10.80

denoted by yoi , and corresponds to a real action e.g. ”opening
fridge”. We use this action sequence sampling strategy to
evaluate test videos for all possible i values. Unless otherwise
specified, we use this strategy for training and testing which
we call as the Action Sequence Forecasting Setup. With
this augmentation strategy, we obtain much larger dataset for
training and evaluation. This setup is different from what has
been done in prior work[3].

We report results using our GRU-based encoder-decoder
model trained with attention (GRU-ED Att.) and traditional
cross-entropy loss for action sequence forecasting. As a base-
line, we report results for random performance. In this case,
for a given video, we randomly generate the next score vector
to obtain the next action symbol for the unseen sequence.
As the second baseline, we process the entire video fea-
ture sequence to obtain the full action sequence denoted by
Classification Setup. In this case, we observe the feature
sequence Xo corresponding to all actions and then output the
action sequence Y = 〈y1, y2, · · · , yN 〉. We do this using the
same model presented in section III-B and cross-entropy loss.
Results obtained by sequence classification model serves as a
soft upper bound for the action sequence forecasting model.

Additional baselines: To validate the effectiveness of atten-

tion mechanism, we also compare results with GRU encode-
decoder without attention denoted by GRU-ED. To validate the
effectiveness of encode-decoder architecture, we also report
results using another GRU baseline where the input to GRU is
the mean I3D feature. This model is denoted by Mean+GRU.

Results are shown in Table I. We make several observations.
First, our model performs significantly better than the random
performance. Sequence item classification accuracy (which is
a strict measure) reflects the difficulty of action sequence
forecasting task. In the forecasting setup, we obtain item
classification accuracy of 2.60, 4.50, and 21.29 where the
random performance is 0.28, 0.47, and 0.70 on Charades, MPII
cooking and Breakfast respectively. The random performance
indicates the difficulty of forecasting task. Our model is 10-30
times better than random performance.

The difference in results between classification and fore-
casting setups is not too drastic, especially for Breakfast and
Charades. Our classification model obtains seq. item accuracy
of 5.35 while our forecasting model reach 2.60 on Charades.
Similarly for MPII cooking dataset, the classification model
obtains 14.86 and our action forecasting model’s performance
is 4.50. Interestingly, seq. item classification accuracy of 26.35
and 21.29 is obtained for classification and forecasting models
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TABLE II
EVALUATING THE IMPACT OF UNCERTAINTY LOSSES AND THE OPTIMAL

TRANSPORT LOSS. ACC. IS THE SEQUENCE ITEM CLASSIFICATION
ACCURACY.

Loss BLEU-1 BLEU-2 Acc. (%) mAP (%)
Charade dataset.

Cross-entropy 7.95 2.87 2.6 6.1
Lun-past-only 8.11 2.98 2.6 6.1
Lun-future-only 8.61 3.11 2.8 6.4
Lun-both 8.80 3.30 2.9 7.2
Lot 7.73 3.06 3.4 7.2
Lot + Lun-future-only 9.59 3.92 4.0 8.2

MPII Cooking dataset.
Cross-entropy 8.70 4.10 4.50 10.80
Lun-future-only 9.22 5.00 5.64 10.36
Lot 8.20 4.75 6.15 11.30
Lot + Lun-future-only 11.43 6.74 8.88 12.04

respectively on Breakfast. For action forecasting task, the
Charades dataset is the most challenging and the least is
Breakfast dataset. Interestingly, for BLEU-2, the classification
model obtains 2.78 while future action forecasting model
performs better on Charades dataset.

The encoder-decoder model without attention (GRU-ED)
improves results over Mean+GRU model on BLEU-1 and
BLEU-2 scores on the challenging Charades dataset. Inter-
estingly, when attention mechanism is employed to the GRU
encoder-decoder, the results improve over the Mean+GRU
model on all metrics. BLEU-1 score is improved from 5.15
to 7.95 and BLEU-2 score from 1.87 to 2.87. Furthermore,
sequence item classification accuracy is improved from 2.30
to 2.60. These results suggest the effectiveness of encoder-
decoder architecture with attention for action forecasting on
the most challenging dataset. On the Breakfast dataset, we
see even massive improvements, where the GRU-ED Att.
model obtains an improvement of 8.91 for BLEU-1 and 10.92
for BLEU-2. Similarly, we see an improvement of 3.18%
for sequence item classification accuracy. We conclude that
GRU encoder-decoder with attention is effective for future
action sequence forecasting problem. These results indicate
the effectiveness of our method for future action sequence
forecasting task. However, these results also suggest that there
is more to do. Later in the experiments, we show how to
improve these results.

E. What is the impact of loss functions?

In this section we evaluate our method using the uncer-
tainty and optimal transport loss functions for action sequence
forecasting setup. The uncertainty loss consist of two parts in
Equation 7.

1) the effect of the fraction of past observations (1 −
exp(P/N )) denoted by Lun-past-only.

2) the extent of future predictions (exp(−q)) denoted by
Lun-future-only.

First, we analyze the impact of these two terms separately and
then evaluate them jointly. We also demonstrate the impact
of optimal transport loss alone (Lot). Finally, we evaluate
combination of all losses where we set the β of Equation 9 to
be 0.001. Results are reported in Table II.

TABLE III
PERFORMANCE COMPARISON FOR PREDICTING NEXT ACTION. MLP IS

THE MULTIPLE LAYERED PERCEPTRON.

Charades MPII Cooking Breakfast
Method Acc. (%) mAP Acc. (%) mAP Acc. (%) mAP
MLP 3.9 1.7 7.1 4.1 16.2 8.8
LSTM 2.5 1.3 2.4 3.0 4.3 3.0
Our 6.8 3.0 11.0 9.2 16.4 11.8

From the results in Table II, we see that both uncertainty
and optimal transport losses are more effective than the cross-
entropy loss which justifies our hypothesis about these new
loss functions. Interestingly, the loss term(Lun-future-only),
obtains the best results for BLEU scores while OT loss obtain
best action sequence classification accuracy for an individual
loss. The combination of two uncertainty losses perform better
than individual ones. Combination of both Lot and Lun-
future-only perform much better than all others obtaining a
significant improvement in BLEU-1 and BLEU-2 scores from
best of 7.95 to 9.59 and 2.87 to 3.92 on Charades dataset.
Similar trend can be seen for MPII-Cooking with consistent
improvements. This shows that optimal transport loss and
Lun-future-only are complimentary to each other. Though
two uncertainty losses perform better than cross-entropy loss,
unfortunately, the combination of all three losses do not seem
to be useful. Perhaps we need a better way to combine both
uncertainty losses with the OT loss which we leave for further
investigation in the future.

We visualize some of the obtained results in figure 4. Inter-
estingly, our method is able to generate quite interesting future
action sequences. In the first example, our method accurately
obtain four out of five actions. In the second example, it
predicts two actions correctly, however the predicted action
sequence seems plausible though it is not correct.

F. How does it work for predicting the next action?

.
In this section, we evaluate the impact of our sequence-to-

sequence encoder-decoder architecture for predicting the next
action. For a given observed sequence Y o = 〈yo1, · · · , yoi 〉, the
objective is to predict the next action yui+1 for all i values of
the video. Once again yoi is the i-th action of the video. As
before, we generate all train and test action sequences. For
comparison, we also use two layered fully connected neural
network (MLP) which applies mean pooling over the observed
features and then use MLP as the classifier. Similarly, we also
compare with a standard LSTM which takes the input feature
sequence and then predict the next action only. For our method
and two baselines (LSTM, MLP), we use the same hidden size
of 512 dimensions. For all models, we use the same activation
function, i.e. tanh(). We report results in Table III.

First, we see that MLP obtains better results than LSTM.
Second, our sequence-to-sequence method with attention per-
forms better than both LSTM and MLP methods. MLP obtains
1.7 mAP for predicting the next action indicating features
do not contain enough information about future and more
complicated mechanism is need to correlate past features
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TABLE IV
ACTION FORECASTING PERFORMANCE FOR USING ONLY THE FEATURES

FROM PREVIOUS THREE ACTIONS ON CHARADES DATASET.

Loss Accuracy (%) mAP (%)
Cross-entropy 3.54 1.7
Lot + Cross-entropy 6.25 2.3

with the future action. Our method obtains far better results
than these two baselines indicating the effectiveness of our
sequence-to-sequence architecture for next action prediction
task. We conclude our model is better suited for future action
prediction than MLP and LSTM.

G. What if we only rely on three previous actions?

In this experiment we evaluate the performance of our
model when we predict the next action using only the three
previous actions. Here we train and test our method using all
augmented action sequences. As before we use I3D features
from the seen three actions and aims to predict the next action
class. We also compare traditional cross-entropy with (Lot +
Cross-entropy) loss. Results are reported on Table IV.

First, even for our method, we see a drop in performance
from the results reported in previous experiment in Table III.
When we predict the next action using all previous action
features, with the cross-entropy loss, we obtain a classification
accuracy of 6.8% in Table III whereas, in Table IV, our
cross-entropy method obtains 3.54% only. This suggests that
it is better to make use of all available information from
observed video features and just let the attention mechanism
to find the best features. Secondly, the optimal transport loss
combined with cross-entropy loss improve results indicating
it is complimentary even in this constrained case. For this
experiment there is no need to make use of uncertainty loss
as there is only one action to predict.

H. Evaluating weakly supervised action forecasting and com-
parison to other SOA methods.

In this section we evaluate our weakly supervised action
forecasting model presented in section IV. For this experi-
ment we use Breakfast dataset and commonly used 50Salads
dataset [43]. In all prior experiments, we focus on forecasting
future action sequence whereas most recent methods in the
literature take a somewhat different approach[3], [9], [21].
These methods observe p% of the video and aims to predict
future actions for q% of the video assuming length of video
is known and frame level action annotations (at least the start
and end of each action is known) are provided. In this section
we follow the protocol used in[3], [9], [21]. However, our
weakly supervised method does not make use of any frame
level annotations during training.

First, we compare our fully supervised method (sec-
tion IV-A) against the weakly supervised method using I3D
features on Breakfast dataset. We compare our results with[3],
[21] and report mean per class accuracy as done in[3], [21].
Unfortunately, the method in [9] uses ground truth action

sequence labels (the observed actions) during inference which
is not a realistic setup. As a fair comparison with methods
proposed in[3], [21], we also experiment with the Fisher
Vector (FV) features used in[3], [21]. Results for Breakfast
dataset are reported in Table V.

When we use I3D features, our supervised method outper-
forms all baselines presented in [3], [21] by a large margin, in-
cluding larger prediction percentages such as 0.5. On average,
our supervised method obtains an improvement of 4.6% over
the best prior model in [21]. Specifically, the biggest average
improvement is obtained when we observe only the 20% of
video. In this case, the average improvement is 5.1% across all
prediction percentages. We also see a consistent improvement
over all (p%) percentages.

When we use I3D features, our weakly supervised method
also outperforms fully supervised results of [3], [21] in ma-
jority cases. It fails only in two extreme cases, e.g., when
predicting 50% into the future. This indicates the power of
I3D features and the effectiveness of our weakly supervised
method. With I3D, our weakly supervised method is only 3.8%
behind our fully supervised method on average and in one
instance it is only 0.3% behind fully supervised results (i.e.
observe 30% and predict 10%). As our weakly supervised
method does not use any frame level annotations, this is a
positively surprising result. Even more conclusive trend can
be seen when we use Fisher Vector features.

Most interestingly, our weakly supervised results are com-
parable to [3], [21] when we use Fisher Vector features (FV).
Somewhat surprisingly, when predicting 10% to the future
(p=10%), our weakly supervised method obtains better results
than supervised methods of [3], [21] indicating the effective-
ness of our weakly supervised model presented in section IV.
Our weakly supervised method is only 1.4%, 0.6% behind our
supervised and recent [21] methods respectively. Most inter-
estingly, it is 0.1% better than supervised CNN method of [3].
Our weakly supervised method performs relatively better when
we observe more data (i.e. results for 30% observation is
comparable to supervised performance of [3], [21]). In three
out of eight cases, our weakly supervised method (with FV)
outperforms supervised state-of-the-art methods such as [3],
[21]. We attribute this improvement to the model architecture
and the attention mechanism.

Specifically, the use of bidirectional GRU helped to improve
results. Bi-directional encoding allows us to better exploit
temporal dependencies in feature sequence. Furthermore, in
our implementation we make sure that the feature dimensions
of X,Ho, Hu are the same –see section IV. We notice that
lower or higher dimensions for Ho and Hu hinder the perfor-
mance. One interesting question is weather one should enforce
the distribution of future hidden features P (Hu) correlate
with unseen future features distribution P (Xu)? We leave this
question as a future exploration.

We also notice that the loss function in Eq. 16 plays a
special role. Specifically, the best results are obtained when
we give slightly higher importance to the second term of this
loss by setting γ to be 2.0. However, very large γ values (such
as γ = 5.0 or γ = 10.0) are worse than smaller values
(e.g. γ = 1.0). Interestingly, ignoring the first part of the
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TABLE V
COMPARISON OF ACTION FORECASTING METHODS USING BREAKFAST DATASET ONLY USING FEATURES. THE BEST RESULTS USING FISHER VECTOR

(FV) FEATURES ARE UNDERLINED. OVERALL BEST RESULTS ARE SHOWN IN BOLD. ALL RESULTS FROM [3] AND [21] USE FRAME LEVEL ANNOTATIONS
AND THEREFORE FULLY SUPERVISED. CASES WHERE OUR WEAKLY SUPERVISED METHOD OUTPERFORMS PRIOR SUPERVISED STATE-OF-THE-ART ARE

UNDERLINED WITH RED COLOUR.

observation (%) 20% 30%
prediction (%) 10% 20% 30% 50% 10% 20% 30% 50%
Grammar[3] 16.60 14.95 13.47 13.42 21.10 18.18 17.46 16.30
Nearest Neighbor[3] 16.42 15.01 14.47 13.29 19.88 18.64 17.97 16.57
RNN[3] 18.11 17.20 15.94 15.81 21.64 20.02 19.73 19.21
CNN[3] 17.90 16.35 15.37 14.54 22.44 20.12 19.69 18.76
Time-Condition [21] 18.41 17.21 16.42 15.84 22.75 20.44 19.64 19.75
Our fully supervised - FV 18.75 18.35 17.78 17.00 23.98 21.93 19.70 19.58
Our fully supervised - I3D 23.03 22.28 22.00 20.85 26.50 25.00 24.08 23.61
Our weakly supervised - FV 18.60 16.73 14.80 14.65 23.80 21.15 19.25 16.83
Our weakly supervised - I3D 21.70 18.85 16.65 14.58 26.20 21.78 20.43 16.50

TABLE VI
COMPARISON OF ACTION FORECASTING METHODS USING 50SALADS DATASET ONLY USING FEATURES. WE REPORT RESULTS USING FISHER VECTOR

(FV) FEATURES USED IN PREVIOUS METHODS. OVERALL BEST RESULTS ARE SHOWN IN BOLD. WHEN OUR WEAKLY SUPERVISED METHOD
OUTPERFORMS PRIOR METHODS, IT IS UNDERLINED. ALL RESULTS FROM [3] AND [21] USE FRAME LEVEL ANNOTATIONS AND THEREFORE FULLY

SUPERVISED.

observation (%) 20% 30%
prediction (%) 10% 20% 30% 50% 10% 20% 30% 50%
Grammar[3] 24.73 22.34 19.76 12.74 29.65 19.18 15.17 13.14
Nearest Neighbor[3] 19.04 16.1 14.13 10.37 21.63 15.48 13.47 13.90
RNN[3] 30.06 25.43 18.74 13.49 30.77 17.19 14.79 9.77
CNN[3] 21.24 19.03 15.98 9.87 29.14 20.14 17.46 10.86
Time-Condition [21] 32.51 27.61 21.26 15.99 35.12 27.05 22.05 15.59
Our fully supervised - FV 39.32 31.39 27.01 23.88 41.73 32.73 31.44 26.39
Our weakly supervised - FV 36.41 26.33 23.40 15.45 35.38 26.37 23.74 18.44

gt:
pr:

Fig. 5. Illustration of ground truth and forecasted actions for some random
videos. Each color represents an action.

loss term also leads to poor performance. This shows that the
models’ ability to obtain a good representation for observed
and unobserved future frames is important when forecasting
future actions. This also somewhat confirms our hypothesis on
mental time travel discussed in the introduction. Specifically,
we assume that humans correlate prior experiences and exam-
ples with the current scenario to perform mental time travel. In
this regard, it seems a better understanding of the past events
perhaps help to improve future predictions.

Visual illustration of some predictions are shown in figure 5.
Interestingly, most of the time our method is able to get the
action class correctly, although the temporal extent is not
precise. Furthermore, there is significant smoothness in the
prediction that we believe is due to the sequential learning
used in our method.

Similarly, now we provide results on 50Salads dataset using
the five fold cross validation with provided splits in [43] which
is the protocol used in [3], [21]. 50Salads dataset has 50 videos
with 17 fine-grained action classes where average length of
a video is 6.4 minutes and contain 20 action instances per
video on average. We report the accuracy of predicted frames
as mean over classes (MoC) and use the same Fisher vector
features used in prior methods [3]. Results are reported in

Table VI. We see a significant improvement in results on this
dataset compared to the improvements seen in the Breakfast
dataset. The recent Time-Condition [21] method obtains an
average improvement of 4.62% over prior RNN model of [3].
Interestingly, our fully supervised method obtains a significant
average improvement of 7.09% over the Time-Condition [21]
model. Our weakly supervised method is 6.05% lower than
our supervised model, yet obtains better results than super-
vised Time-Condition [21] method by obtaining an average
improvement of 1.04% . Compared to the breakfast dataset, the
improvement in the 50Salads dataset is positively surprising.
By visual inspection of the data, we also notice that there
is high temporal correlation in 50 Salads dataset, which
might positively influence our model to generate accurate
pseudo representation for future. Once again, we attribute this
improvement to the model architecture shown in figure 3, the
effective use of attention mechanism, use of pseudo hidden
states to represent future frame representation and effective
use of new loss functions.

VI. CONCLUSION.

In this paper we presented a method to predict future
action sequence from a partial observation of a video using
a GRU-based encoder-decoder machine translation technique.
We showed the effectiveness of regularizing the cross-entropy
loss for this task by catering the uncertainty of future pre-
dictions and the proposed optimal transport loss allowed us
to further improve results. We observed that conditioning on
few past video frames is not sufficient to forecast future
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actions accurately. It is better to make use of all available
information and use attention mechanism to select the most
relevant frames in the partially observed video. The attention
mechanism helped our model to better exploit the context of
activity and obtain accurate future predictions.

Weakly supervised action forecasting is an important prob-
lem and in this work we proposed an effective method by
taking advantage of an architecture that is designed to correlate
observed feature sequence with the future action sequence.
Our weakly supervised action forecasting model used an
GRU encoder, three dedicated decoders and used an effective
attention mechanism to obtain accurate actions for the future.
Using this attention method, our model predicted labels for
future unseen frames at test time without using frame specific
action labels during training. It obtained competitive results
compared to prior fully supervised methods and sometimes
even outperformed them. Our method is conceptually simple
and potentially useful for many practical applications where
one can train with easily obtainable coarse annotations of
videos. We believe our findings are insightful and useful for
the development of future action forecasting methods.
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