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Semantic Face Hallucination: Super-Resolving
Very Low-Resolution Face Images with
Supplementary Attributes
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Abstract—Given a tiny face image, existing face hallucination methods aim at super-resolving its high-resolution (HR) counterpart by
learning a mapping from an exemplary dataset. Since a low-resolution (LR) input patch may correspond to many HR candidate

patches, this ambiguity may lead to distorted HR facial details and wrong attributes such as gender reversal and rejuvenation. An LR
input contains low-frequency facial components of its HR version while its residual face image, defined as the difference between the
HR ground-truth and interpolated LR images, contains the missing high-frequency facial details. We demonstrate that supplementing

residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in face
super-resolution. To explore this idea, we develop an attribute-embedded upsampling network, which consists of an upsampling
network and a discriminative network. The upsampling network is composed of an autoencoder with skip-connections, which
incorporates facial attribute vectors into the residual features of LR inputs at the bottleneck of the autoencoder, and deconvolutional
layers used for upsampling. The discriminative network is designed to examine whether super-resolved faces contain the desired
attributes or not and then its loss is used for updating the upsampling network. In this manner, we can super-resolve tiny (16x16
pixels) unaligned face images with a large upscaling factor of 8 x while reducing the uncertainty of one-to-many mappings remarkably.
By conducting extensive evaluations on a large-scale dataset, we demonstrate that our method achieves superior face hallucination

results and outperforms the state-of-the-art.

Index Terms—Face, super-resolution, hallucination, Attribute.

1 INTRODUCTION

ACE images provide important information for human visual
Fperception as well as computer analysis [1], [2]. Depending
on the imaging conditions, the resolution of a face area may be
unfavorably low, thus raising a critical issue that would directly
impede our understanding. Motivated by this challenge, recover-
ing high-resolution (HR) face images from their low-resolution
(LR) counterparts, also known as face hallucination, has received
increasing attention recently [3], [4], [5], [6]. State-of-the-art face
hallucination methods try to explore and utilize image domain
priors for super-resolution. Even though they are trained on large-
scale datasets benefiting from the development of deep learning
techniques, ill-posed nature of the problem, which induces inher-
ent ambiguities such as one-to-many correspondence between a
given LR face and its possible HR counterparts, would still lead to
drastically flawed outputs especially when the magnification factor
is very large.

For instance, as shown in Fig. 1, hallucinated details generated
by the state-of-the-art face super-resolution methods [4], [5] are
semantically and perceptually inconsistent with the ground-truth
HR image, and inaccuracies range from unnatural blur to attribute
mismatches including the wrong facial hair and mixed gender
features just to count a few. Note that Zhu et al.’s method [5],
dubbed CBN, exploits facial structure information to super-resolve
facial components while Yu and Porikli’s method [4], known
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Fig. 1. Comparison with the state-of-the-art CNN based face hallucina-
tion methods. (a) 16 x 16 LR input image. (b) 128 x 128 HR original image
(not used in training). (c) The corresponding HR image of the nearest
neighbor of the given LR image in the dataset after compensating for
misalignments. (d) Result of VDSR [7], which is a CNN based generic
super-resolution method. (e) Result of VDSRT [7] retrained with LR and
HR face image pairs. (f) Result of CBN [5]. (g) Result of TDAE [4]. (h)
Our result.

as TDAE, employ a class-specific discriminative prior. These
methods explore either the low-level class-specific feature sim-
ilarity or mid-level structure information as a spatial constraint
in face super-resolution. However, they cannot capture high-level
facial characteristic information and thus generate semantically
inaccurate upsampled facial details in the outputs.
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Unlike previous work, we utilize high-level semantic informa-
tion, i.e., facial attributes, to reduce the ambiguity when super-
resolving very low-resolution faces. However, a direct embedding
of the binary facial attribute vector as an additional input channel
to the network would still yield degraded results (see Fig. 3(c)). A
simple combination of low-level visual information (an LR image)
with high-level semantic information (attributes) in the input layer
does not prevent ambiguity or provide consistent LR-HR map-
pings. We also note that the low-frequency facial components are
visible in the LR input while the missing high-frequency details
are often contained in the corresponding residual between the
HR face image and the upsampled LR image (e.g.interpolated by
Bicubic interpolation). Thus, our intuition is to incorporate facial
attribute information into the residual features that are extracted
from LR inputs (as seen in the yellow block of Fig. 2) for super-
resolution of high-frequency facial details.

Driven by our observations above, we present a novel LR face
image upsampling network that is able to embed facial attributes
into face super-resolution. In contrast to previous face super-
resolution networks [3], [4], [5], [8], [9], [10], [11], our network
employs an autoencoder with skip connections to amalgamate
visual features obtained from LR face images and semantic cues
provided from facial attributes. It progressively upsamples the con-
catenated feature maps through its deconvolutional layers. Inspired
by the architecture of StackGAN [12], [13], we also employ a
discriminative network that is used to examine whether a super-
resolved face image is similar to authentic face images as well
as the attributes extracted from the upsampled faces are faithful
to the input attributes. As a result, our discriminative network
can guide the upsampling network to incorporate the semantic
information in the overall process. In this manner, the ambiguity in
hallucination can be significantly reduced. Furthermore, since we
apply the attribute information into the LR residual feature maps
rather than concatenating it to the low-resolution input images, we
can learn more consistent mappings between LR and HR facial
patterns. This allows us to generate realistic high-resolution face
images as shown in Fig. 1(h).

Above all, the contributions of our work can be summarized
as:

e We present a new semantics-embedded face hallucination
framework to super-resolve LR face images. Instead of
directly upsampling LR face images, we first encode LR
images with facial attributes and then super-resolve the
encoded feature maps.

e We propose an autoencoder with skip connections to ex-
tract residual feature maps from LR inputs and concatenate
the residual feature maps with attribute information. This
allows us to fuse visual and semantic information to
achieve better visual results.

e Even though our network is trained to super-resolve very
low-resolution face images, the upsampled HR faces can
be further modified by tuning the face attributes in order to
add or remove particular attributes. This property signif-
icantly increases the flexible of our face super-resolution
method rather than only outputting a deterministic upsam-
pled face.

o To the best of our knowledge, our method is the first at-
tempt to utilize high-level semantic information, i.e., facial
attribute, into face super-resolution, effectively reducing
the ambiguity caused by the inherent nature of this task,
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especially when the upscaling factor is very challenging,
i.e.8X%.

2 RELATED WORK

Since our work not only relates to traditional face hallucination
methods but also has a close relationship with generative adversar-
ial networks (GAN) [14], we briefly review the related literatures
in these two fields.

Face hallucination methods can be roughly grouped into three
categories: global model based, part based, and deep learning
based. Global model based methods upsample a whole LR input
image, often by a learned mapping between LR and HR face
images such as Principal Component Analysis (PCA). The seminal
works [8], [15] progressively transfer the pixels of HR faces to the
given LR face in a Gaussian Pyramid by maximizing a posteriori
estimate of the ground-truth HR face. Wang and Tang [16] learn
a linear mapping between LR and HR face subspaces, and then
reconstruct an HR output with the coefficients estimated from the
LR input. Liu ef al. [17] not only establish a global model for up-
sampling LR inputs by PCA but also exploit a local nonparametric
model, i.e., Markov Random Field (MRF), to enhance the facial
details as well as mitigate blocky and ghosting artifacts in the
upsampled faces. Kolouri and Rohde [18] morph an HR output
from the exemplar HR faces whose downsampled versions are
similar to the LR input by optimal transport and subspace learning
techniques. Global model based methods require LR inputs to be
precisely aligned and share similar poses to exemplar HR images.
However, aligning LR faces is difficult when the resolutions of
LR faces are very low (e.g., 1616 pixels). Therefore, global
model based algorithms produce severe artifacts when there are
misalignments and pose variations in LR inputs.

Aimed at addressing pose variations, part based methods
super-resolve individual facial regions separately. They either
exploit reference patches or facial components to reconstruct
the HR counterparts of LR inputs. Ma et al. [9] blend position
patches extracted from multiple aligned HR images to super-
resolve aligned LR face images. In order to suppress image noise
and achieve better performance, several follow-up methods [19],
[20], [21] reconstruct the position patches in LR faces by sparse
coding while Shi et al. [22] design a patch-based reconstruction
model in the high-dimensional kernel space. Liu et al. [23] develop
a bi-layer model to hallucinate face images and remove noise and
outliers in LR inputs simultaneously. In [23], a weight vector
is employed to identify whether a pixel is corrupted by noise
or not and thus used to tune the contribution of each pixel for
hallucination. Jiang et al. [24] exploit the neighboring information
of position patches, known as context-patches, to reconstruct HR
face images. Tappen and Liu [25] use SIFT flow [26] to align the
facial components of LR images and reconstruct HR facial details
by warping the reference HR images. Yang et al. [27] employ a
facial landmark detector to localize facial components in the LR
images and then reconstruct details from the similar HR reference
components. Because part based methods need to extract and align
facial parts in LR images accurately, their performance degrades
dramatically when LR faces are tiny. More comprehensive survey
of traditional face super-resolution methods can be referred to the
literature review [28].

Recently, deep learning based models achieve significant
progress in several image processing tasks and are now pushing
forward the state-of-the-art in super-resolution. For instance, Yu
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Fig. 2. The architecture of our attribute embedded upsampling network. The network consists of two parts: an upsampling network and a
discriminative network. The upsampling network takes LR faces and attribute vectors as inputs while the discriminative network takes real/super-

resolved HR face images and attribute vectors as inputs.

and Porikli [11] employ deconvolutional layers to super-resolve
aligned LR faces and convolutional layers to remove potential
blocky artifacts. Their method also resorts an unsharp filter to
enhance the edges of hallucinated faces. In order to train an
end-to-end upsampling network, Yu and Porikli [3] introduce a
discriminative generative network to super-resolve aligned tiny LR
face images. Instead of restoring image intensities of HR faces,
Huang et al. [29] estimate wavelet coefficients of an upsampled
HR face in the framework of generative adversarial networks.
Then the upsampled HR face is reconstructed from the estimated
wavelet coefficients. Zhu and Fan [30] first extract feature maps
from a blurry LR face image by a convolutional neural network
(CNN) and then reconstruct a sharp HR version from the extracted
feature maps. Cao et al. [0] employ an attention-aware mechanism
to select facial regions from pre-aligned LR faces and then apply
a local enhancement network to super-resolve the selected LR
patches. Xu et al. [31] design a multi-class adversarial loss to
super-resolve aligned LR blurry faces and text images in the
framework of generative adversarial networks. Dahl e al. [32]
exploit an autoregressive generative model, also known as Pixel-
RNN [33], to upscale pre-aligned LR face images.

To relax the requirement of face alignments, Yu and
Porikli [10] interweave multiple spatial transformer networks [34]
with the deconvolutional layers. In this manner, their method can
align LR faces while super-resolving them simultaneously. Based
on the observation that mild distortions and artifacts in upsampled
HR faces can be mitigated in their downsampled versions, their
follow-up work [4] develops a decoder-encoder-decoder structure
to super-resolve noisy and unaligned LR faces. Zhu et al. [5]
develop a cascade bi-network to localize facial components first
and then super-resolve the unaligned LR faces. Chen et al. [35]

propose two-stage networks, where low-frequency components of
LR faces are first super-resolved and then face priors (i.e., facial
component locations) are used to enrich facial details. Later, Yu et
al. [36] develop a facial component heatmap guided upsampling
network, in which feature maps are first aligned and then the facial
components are estimated from the upsampled aligned feature
maps. In this way, Yu et al.ease the difficulty of estimating facial
components from LR faces. Bulat et al. [37] employ a constraint
that the landmarks of the upsampled faces should be close to
the landmarks detected in their ground-truth images to handle
various poses. However, due to the inherent under-determined
nature of super-resolution, they may still produce results unfaithful
to the ground-truths, such as gender reversal and face rejuvenation.
Grm et al. [38] and Hsu et al. [39] embed identity information into
face hallucination in order to boost face recognition performance
on the upsampled HR faces. Since the identity information is only
employed in the loss function but not enforced in the testing phase,
those methods may still suffer the inherent ambiguity of super-
resolution in the testing phase.

Lee et al’s method [40], concurrent with our work, also
employs attributes in face super-resolution, where a feature ex-
tractor network is used to extract and combine the features of
attributes and LR faces. However, their discriminative network
is only designed to distinguish whether the upsampled faces are
realistic or not and there is no mechanism to exam whether the
attributes are successfully embedded or not. Lu et al. [41] present
an attribute-guided face generation network based on conditional
CycleGAN [42]. Similar to our method [43], their method also
takes one LR input image and an attribute vector to generate an
HR face which satisfies the given attributes. However, [41] only
addresses aligned LR faces and requires to train four networks,
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i.e., two generators and two discriminators.

Image generation also has a close relationship to face hallu-
cination when generated images are faces. Goodfellow et al. [14]
propose a generative adversarial network (GAN) to construct im-
ages from noise, but the resolution of constructed images is limited
(i.e.48x48 pixels) due to difficulty in training. Later, variants
of GANs have been proposed to increase the resolutions and
quality of generated images [44], [45], [40], [47], [48]. Rather than
generating images from noise, conditional GANs [49] have been
proposed to generate images from both noise as well as certain
conditional inputs, and the conditional information is fed to both
the generator and the discriminator. [50] and [12] generate images
based on textual inputs. Yan et al. [13] use a conditional CNN
to generate faces based on attribute vectors. Perarnau et al. [51]
develop an invertible conditional GAN to generate new faces by
manipulating facial attributes of the input images, while Shen and
Liu [52] change attributes of an input image on its residual image
by training two generative networks in a complementary fashion.
Since their methods aim at generating new face images rather than
super-resolving faces, they may change the identity information.
In contrast, our work focuses on obtaining HR faces faithful to
LR inputs. We employ the attribute information to reduce the
uncertainty in face hallucination rather than producing new face
images.

GANs based image-to-image translation networks have also
been proposed, such as domain transfer [42], [53], super-
resolution [3], [54] as well as photo editing [55], [56]. In par-
ticular, several face editing works, such as face aging [57], face
completion [58], [59], and face attribute transferring [55], [56],
also share many similarities with face hallucination. For instance,
the inputs are face images and the outputs are another versions
of the input images. However, face editing works mainly focus
on changing certain attributes of the given faces or completing
the missing parts of faces. On the contrary, our method aims at
super-resolving LR input face images to their HR counterparts by
exploiting the provided facial attributes instead of editing the input
LR faces.

3 SUPER-RESOLUTION WITH ATTRIBUTE EMBED-
DING

Each low-resolution face image may correspond to many high-
resolution face candidates during the process of increasing their
resolutions. To reduce the ambiguity encountered in the super-
resolution process, we present an upsampling network that takes
LR faces and semantic information (i.e., facial attributes) as inputs
and outputs super-resolved HR faces. The entire network consists
of two parts: an upsampling network and a discriminative network.
The upsampling network is used for embedding facial attributes
into LR input images as well as upsampling the fused feature
maps. The discriminative network is used to constrain the input
attributes to be encoded and the hallucinated face images to be
similar to real ones. The entire architecture of our network is
illustrated in Fig. 2.

3.1 Attribute Embedded Upsampling Network

The upsampling network is composed of a facial attribute em-
bedding autoencoder and upsampling layers (as shown in the
blue frame). Previous works [3], [4], [10], [11] only take LR
images as inputs and then super-resolve them by deconvolutional
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layers. They do not make use of any valuable semantic information
into account during super-resolution. Indeed, obtaining semantic
information such as facial attributes for face images is not difficult,
yet it is logical to make use of semantic information, especially
for face images. For instance, we can deduce gender information
from the outfits. Unlike previous works, we incorporate low-level
visual and high-level semantic information in face super-resolution
to reduce the ambiguity of the mappings between LR and HR
images.

Rather than concatenating LR input images with attribute
vectors directly, in our proposed attribute embedding network
we employ a convolutional-deconvolutional autoencoder with skip
connections [60] to fuse visual features and attribute vectors.
Due to the skip connections, we can utilize residual features
obtained from LR input images to incorporate the attribute vectors.
Specifically, at the bottleneck of the autoencoder, we concatenate
the attribute vector with the residual feature vector as illustrated in
the green and blue vectors of Fig. 2. As shown in Fig. 3(d), when
we encode attributes with the feature maps of LR faces at the
bottleneck of the autoencoder without using the skip connections
instead of residual feature maps, artifacts appear in the smooth
regions of the super-resolved result. After combining the residual
feature vectors of LR inputs with the attribute vectors, we employ
deconvolutional layers to upsample the concatenated feature maps.
Since LR input images may undergo misalignments, such as in-
plane rotations, translations and scale changes, we use spatial
transformer networks (STNs) [34] to compensate for misalign-
ments similar to [4], [10], as shown in the purple blocks in Fig. 2.
Since STNs employ bilinear interpolation to re-sample images,
they will blur LR input images, as reported in [10]. Therefore, we
only employ STNs in the upsampling layers.

To constrain the appearance similarity between the super-
resolved faces and their HR ground-truth counterparts, we exploit
a pixel-wise Euclidean distance loss, also known as pixel-wise
£ loss, and a feature-wise /o loss, dubbed perceptual loss [61].
The pixel-wise £o loss is employed to enforce image intensity
similarity between the upsampled HR faces and their ground-
truth images. As reported in [3], deconvolutional layers supervised
by an {5 loss tend to output over-smoothed results as shown in
Fig. 3(e). Since the perceptual loss measures Euclidean distance
between features of two images, we use it to constrain feature
similarity between the upsampled faces and their ground-truth
ones. We use VGG-19 [62] to extract features from images (please
refer to Sec. 3.3 for more details). Without the help of the
perceptual loss, the network tends to produce ringing artifacts to
mimic facial details, such as wrinkles, as seen in Fig. 3(g).

3.2 Discriminative Network

In order to force the upsampling work to encode facial attribute
information, we employ a conditional discriminative network.
Specifically, the discriminative network is designed to distinguish
whether the attributes of super-resolved face images are faithful to
the desired attributes embedded in the upsampling network or not
and is used to constrain the upsampled images to be similar to HR
real face images too.

Even though our autoencoder concatenates attribute vectors
with residual feature maps of the LR inputs, the upsampling
network may simply learn to ignore them, e.g., the weights
corresponding to the semantic information are zeros. Therefore,
we need to design a discriminator network to enforce semantic
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Fig. 3. Ablation study of our network. (a) 16 x 16 LR input image. (b) 128 x 128 HR ground-truth image, its ground-truth attributes are male and
old. (c) Result without using an autoencoder. Here, the attribute vectors are replicated and then concatenated with the LR input directly. (d) Result
without using skip connections in the autoencoder. (e) Result by only using an ¢ loss. (f) Result without using the attribute embedding but with a
standard discriminative network. In this case, the network is similar to the decoder in [4]. (g) Result without using the perceptual loss. (h) Our final

result.

attribute information into the generative process. As shown in
Fig. 3(f), by employing a standard discriminative network [3],
[45], the output HR face still looks like a female face even if the
expected figure should be an old male. It implies that the attribute
information is not well embedded. Therefore, simply embedding
a semantic vector into LR inputs may increase the ambiguity or
deviate the learned mapping between the LR and correct HR face
images.

We present a discriminative network to enforce the input
attribute information to be embedded in LR inputs, thus gener-
ating the desired attributes in the hallucinated face images. As
shown in the red frame of Fig. 2, our discriminative network is
constructed by convolutional layers and fully connected layers.
HR face images (real and upsampled faces) are fed into the
network while attribute information is also fed into the middle
layer of the network as conditional information. Here, an attribute
vector is replicated and then concatenated with the feature maps
of images. Because CNN filters in the first layers mainly extract
low-level features while filters in higher layers extract image
patterns or semantic information [63], we concatenate the attribute
information with the extracted feature maps on the third layer,
which yields good empirical results in our experiments. If the
extracted features do not comply with the input attribute informa-
tion, the discriminative network ought to pass that information to
the upsampling network. Our discriminative network is a binary
classifier which is trained with a binary cross-entropy loss. With
the help of the discriminative network, the attribute information
can be embedded into the upsampling network. As shown in
Fig. 3(h), our final result is faithful to the age and gender of the
ground-truth image.

3.3 Training Procedure

Our face super-resolution network is trained in an end-to-end
fashion. We use an LR face image denoted by /; and its ground-
truth attribute label vector a; as the inputs and the corresponding
HR ground-truth face image h; as the target. Note that, since our
network aims at super-resolving very low-resolution face images
rather than manipulating facial attributes of HR face images,
we only feed the correct attributes of LR face images into the
upsampling network in the training phase.

In training the entire network, we employ a binary cross-
entropy loss to update our discriminative network and then train
the upsampling network using a pixel-wise £ loss, a perceptual
loss and the discriminative loss obtained from our discriminative
network. Therefore, we first update the parameters of the dis-
criminative network and then the parameters of the upsampling

network because the upsampling network relies on the loss back-
propagated from the discriminative network to update its weights.

3.3.1

Our discriminative network is designed to embed attribute in-
formation into the upsampling network as well as to force the
super-resolved HR face images to be authentic. Similar to [12],
[13], our goal is to make the discriminative network be able to
tell whether super-resolved faces contains the desired attributes
or not but fail to distinguish hallucinated faces from real ones.
Hence, in order to train the discriminative network, we take real
HR face images h; and their corresponding ground-truth attributes
a; as positive sample pairs {hi; a; }. Negative data is constructed
from super-resolved HR faces h; by our upsampling network and
their ground-truth attributes a; as well as real HR faces and
mismatched attributes a;. Therefore, the negative sample pairs
consist of both {h;, a;} and {h;, a;}. The objective function for
the discriminative network L is expressed as:

Lp =~ E[log Da(h, a)]
—E [log(l — Dy(h,a)) + log(1 — Dy(h, Ez))}
= = E(h;,a0)~p(h,a) 108 Da(hi, a;)]
—E(n, a:)~p(h,a) 108(1 — Da(hi, a;))]
~EGi,anyptivay 1080~ Dalhi,ai))]
== E(n;,a:)~p(h,a) 108 Da(hi, a;)]
—En, a,)~p(h,a) log(1 — Da(hi, a;i))]
—E,,a0)~p(1,a) l0g(1 — Da(Us(ls, as), a;))]

where d represents the parameters of the discriminative network
D, Dy(hi,a;), Da(hi,a;) and Dy(h;, a;) are the outputs of D,
Uy (1;) is the output of our upsampling network and ¢ represents
the parameters of our upsampling network. In addition, p(h, a)
represents the joint distribution of positive sample pairs, p(h, a) as
well as p(h, @) represent the joint distributions of negative sample
pairs, and p(l, a) represents the joint distribution of the LR input
faces and their ground-truth attributes.

Since all the layers in our discriminative network are differ-
entiable, back-propagation is used to calculate the gradients with
respect to the parameters of the discriminative network d. Thus,
we minimize £p by RMSprop [64] as follows:

A = a4 (1 - (2R,
od
oLp 1 @
9d VAT ¢

Training Discriminative Network

(1

dtt=d —r
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where 7 and <y represent the learning rate and the decay rate
respectively, 7 indicates the index of the iterations, A is an
auxiliary variable, and € is set to 108 to avoid division by zero.

3.8.2 Training Upsampling Network

Since our upsampling network aims at super-resolving LR input
images, we only feed our upsampling network with LR face
images [; and their corresponding attributes a; as inputs. To
constrain the upsampled faces to be similar to the HR ground-truth
face images, we employ a pixel-wise f5 loss on image intensities,
expressed as:

Lpia =B nympti 1 = hill

N
= E(li,ai,m)wp(l,a,h) ||ut (lzv ai) - hi||F7

where p(iL, h) is the joint distribution of the upsampled faces and
their ground-truth counterparts and p(l, h, a) represents the joint
distribution of the LR and HR face images and their corresponding
attributes in the training dataset.

As mentioned in Sec. 3.1, we also employ a perceptual loss
L fcqt to enforce the feature similarity between the super-resolved
faces and their corresponding ground-truths, written as:

Efeat = ]E(ibi7h,i)Np(fL7}L)||(I)(ili) - (p(hZ)”zF

(€]
= By a0,h)~p(basm) |2 Ue(li; ai)) — ©(hs) |1,

where ®(-) denotes feature maps extracted by the ReLU32 layer
in VGG-19 [62], which gives good empirical performance in our
experiments.

To enforce the upsampling network to encode the attribution
information, a discriminative loss L 4; is also exploited as follows:

Lais = =E i, aymp(in.a) 108(Dalhi; a;))

(&)
= ~E(, a,)~p(t,0) 108(Da(Us(1i, a;), ai)),
where p(il,a) indicates the joint distribution of the upsampled
faces and their corresponding attributes.
All the above three losses are used to update the parameters of
our upsampling network, and the total loss £y is expressed as:

['Z/[ = Acpi:v + CVﬁf'eat + B»Cdisa (6)

where « is a weight term which trades off between the image
intensity similarity and the feature similarity, and /3 is a weight
which trades off between the appearance similarity and the at-
tribute similarity. Here, we also employ RMSprop to update the
parameters of our upsampling network:

. . oL
AT = AT (1=7) (),

Ly 1 )
"ot VAR 1

After updating the upsampling network, we can obtained
upsampled face images in better quality. Hence, we use HR
faces hallucinated by the newly updated upsampling network to
train the discriminative network again. By updating these two
network alternatingly, we can achieve realistic super-resolved face
images including correct attributes. The entire training procedure
is illustrated in Algorithm 1.

pi+l i

Algorithm 1 Training procedure of our entire network

Input: minibatch size N, LR and HR face image pairs {l;, h;}
and their corresponding attributes a@;, maximum number of
iterations K.

1: while iter < K do

2:  Choose one minibatch of LR and HR image pairs {l;, h;}
and their corresponding attributes, ¢ = 1,..., N.

3:  Generate one minibatch of HR face images h; from
{li, ai},i = ]., ey N, where hz = Z/{t(lia CLZ').

4:  Generate mismatched attributes a; from a; by randomly
permuting one dimension in an attribute vector.

5. Generate positive sample pairs {hi,a;} and negative sam-
ple pairs {h;,a;} and {h;, a;}.

6:  Update the parameters of the discriminative network D, by
using Eqn. 1 and Eqn. 2.

7. Update the parameters of the upsampling network U; by
using Eqn. 6 and Eqn. 7.

8: end while

Qutput: Our attribute embedded upsampling network.

3.4 Super-Resolving LR Inputs with Attributes

The discriminative network D is only required in the training
phase. In the super-resolving (testing) phase, we take LR face
images and their corresponding attributes as the inputs of the up-
sampling network U/, and the outputs of U are the hallucinated HR
face images. In addition, although the attributes are binary values,
i.e., either O or 1, in training, the attributes can be further scaled,
such as negative values or values exceeding 1, to manipulate the
final super-resolved results according to the users’ descriptions in
the testing phase.

3.5 Implementation Details

The detailed architectures of the upsampling and discriminative
networks are illustrated in Fig. 2. We employ convolutional layers
with kernels of size 4 X 4 in a stride 2 in the encoder and deconvo-
lutional layers with kernels of size 4 X4 in a stride 2 in the decoder.
The feature maps in our encoder will be passed to the decoder by
skip connections. We also use the same architectures of the STN
layers in [4] to align feature maps. Specifically, the STN layers
are constructed by convolutional and ReLLU layers (Conv+ReLU),
max-pooling layers with a stride 2 (MP2) and fully connected
layers (FC). STN; layer is cascaded by: MP2, Conv+ReLU
(with the filter size: 128 x20x5x%5), MP2, Conv+ReLU (with
the filter size: 20x20x5x5), FC+ReLU (from 80 to 20 dimen-
sions) and FC (from 20 to 4 dimensions). STNy is cascaded
by: MP2, Conv+ReLU (with the filter size: 64Xx128x5Xx5),
MP2, Conv+ReLU (with the filter size: 128x20x5x5), MP2,
Conv+ReLU (with the filter size: 20x20x3x3), FC+ReLU (from
180 to 20 dimensions) and FC (from 20 to 4 dimensions). We do
not use zero-padding in the convolution operations.

We set the learning rate to 0.001 and multiplied by 0.95 after
each epoch, and « is set to 0.01. As suggested by [4], we also
set B to 0.01 and gradually decrease it by a factor 0.995, thus
emphasizing the importance of the appearance similarity. On the
other hand, in order to guarantee the attributes to be embedded
in the training phase, we stop decreasing 5 when it is lower than
0.005.
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4 EXPERIMENTS

We evaluate our network qualitatively and quantitatively, and com-
pare with the state-of-the-art methods [4], [5], [6], [7], [9], [22],
[24], [35], [36], [40], [54]. Ma et al.’s method [9] exploits position-
patches in the exemplary dataset to reconstruct HR images while
Jiang et al.’s method uses context-patches to upsample LR images.
Shi et al. [22] establish the correspondences between LR and
HR position patches in a high-dimensional kernel space. Kim et
al.’s method [7], dubbed VDSR, is a generic CNN based super-
resolution method. Ledig er al’s method [54], also known as
SRGAN, is also a generic CNN based super-resolution method,
which employs an adversarial loss to enhance the super-resolved
details. Since VDSR and SRGAN are trained on natural images,
they may not capture LR facial patterns well for face super-
resolution. We retrain VDSR and SRGAN on entire face images
for fair comparisons. Zhu et al. [5] employ a cascaded deep con-
volutional neural network to hallucinate facial components of LR
face images. Cao et al. [6] exploit a recurrent attention mechanism
to localize and upsample facial regions. Yu and Porikli [4] use
a decoder-encoder-decoder structure to super-resolve unaligned
LR faces. Chen et al. [35] and Yu et al. [36] exploit the facial
structure as a spatial constraint to hallucinate faces. Lee et al. [40]
fuse attribute vectors and LR inputs in the feature space and then
upsample the concatenated features to obtain HR faces.

4.1 Dataset

We use the Celebrity Face Attributes (CelebA) dataset [65] to
train our network because CelebA dataset contains over 220K face
images and also provides 40 binary-value attributes for each face
image. Unlike previous face generation methods [13], [51], [52],
our network focuses on super-resolving LR faces by exploiting
facial attributes. Hence, we only choose the attributes related to
facial details, such as gender, age and beard information, rather
than the attributes which can be directly extracted from LR
faces, such as hair and skin colors, and are not related to facial
details, such as wearing hats, glasses and earrings. In particular,
we select the 18 attributes from the 40 attributes, including 5
o’clock shadow, arched eyebrow, bags under eyes, big lips, big
nose, bushy eyebrows, double chin, goatee, heavy makeup, high
cheekybone, male, mouth open, mustache, narrow eyes, no beard,
pointy nose, sideburns and young. In this way, we reduce the
potential inconsistency between visual and semantic information
imposed by the supplementary attributes.

When generating the LR and HR face pairs, we select 170K
cropped face images from the CelebA dataset, and then resize
them to 128 x 128 pixels as HR images. We manually transform
the HR images, including rotations, translations and scale changes,
and then downsample HR images to 16 X 16 pixels to attain their
corresponding LR images. We use 160K LR and HR face pairs and
their corresponding attributes for training, 2K LR and HR image
pairs and their attributes for validation, and 2K LR face images
and their ground-truth attributes for testing.

4.2 Qualitative Comparison with the SoA

Some algorithms [6], [7], [9], [22], [24], [54] need the alignments
of LR inputs before face super-resolution while Yu and Porikli’s
method [4] and Yu et al.’s method [36] automatically generate
upright HR face images. For a fair comparison and better illustra-
tion, we employ a spatial transformer network STNy to align LR
faces. The aligned upright HR ground-truth images are shown for
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comparison. As reported in [4], [10], LR faces aligned by STNj
may still suffer misalignments. Therefore, we employ multiple
STNs in the upsampling network to reduce misalignments similar
to [4], [10]. The only difference between STNy and STN; is that
the first MP2 operation in STN; is removed in STN( and the input
channel is 3.

Bicubic upsampling only interpolates new pixels from neigh-
boring pixels rather than hallucinating new contents for new
pixels. Furthermore, the resolution of our input face images is very
small, and little information is contained in the input images. As
shown in Fig. 4(c), Fig. 5(c), Fig. 6(c) and Fig. 7(c), conventional
bicubic interpolation fails to generate facial details. The upsam-
pled faces also suffer from obvious skew artifacts. This indicates
that it is difficult to align very low-resolution faces accurately by
a single STNp.

Ma et al. [9] super-resolve HR faces by position patches
from HR exemplar face images. Thus, their method is sensitive
to misalignments in LR inputs. As seen in Fig. 4(d), Fig. 5(d),
Fig. 6(d) and Fig. 7(d), there are obvious blur artifacts along the
profiles of hallucinated faces. In addition, the correspondences
between LR and HR patches become inconsistent as the upscaling
factor increases. Hence, severe blocky artifacts appear on the
boundaries of different patches.

Shi et al. [22] project position-patches into a high-dimensional
kernel space to better represent the nonlinear relationship between
exemplary HR patches. Thus, Shi et al.’s method avoids the
assumption of local geometry consistency between LR and HR
patches. However, this method is also sensitive to misalignments
in LR inputs because it is still based on position-patches. As seen
in Fig. 4(e), Fig. 5(e), Fig. 6(e) and Fig. 7(e), the upsampled facial
details suffer from blur artifacts due to the misalignments of LR
faces.

Jiang et al. [24] exploit context-patches from HR exemplar
face images to upsample LR faces, where context-patches consist
of the same position-patch and its neighboring patches. Moreover,
Jiang et al’s method also employs a thresholding strategy to
select patches and reproduce learning to enhance the final results,
known as TLcR-RL. Although context-patch based methods can
tolerate slight misalignments of LR faces, aliasing artifacts appear
in the upsampled HR face images due to the variations of facial
expressions and poses in the HR exemplar dataset, as visible in
Fig. 4(f), Fig. 5(f), Fig. 6(f) and Fig. 7(f).

Kim et al. [7] present a deep CNN for generic purpose super-
resolution, known as VDSR. Because VDSR is trained on natural
image patches and does not provide an upscaling factor of 8, it
cannot capture the global face structure, as shown in Fig. 1(d). We
re-train the model with an upscaling factor of 8 X on face images,
marked as VDSRT. As shown in Fig. 4(g), Fig. 5(g), Fig. 6(g) and
Fig. 7(g), this method also suffers from the distortion artifacts in
the results due to misalignments. Furthermore, since VDSRT is
only trained by a pixel-wise {5 loss, it outputs overly smoothed
results as seen in Fig. 4(g), Fig. 5(g), Fig. 6(g) and Fig. 7(g).

Ledig et al. [54] develop a CNN based generic super-resolution
method, dubbed SRGAN. In order to avoid producing overly
smoothed super-resolved results, SRGAN employs an adversarial
loss [14], [45]. Since original SRGAN is also trained on generic
image patches, we also fine-tune SRGAN with entire face images
for a fair comparison, named as SRGANT. As seen in Fig. 4(h),
Fig. 5(h), Fig. 6(h) and Fig. 7(h), SRGAN is able to capture LR
facial patterns and achieves sharper upsampled results compared
to VDSR. However, misalignments in LR faces result in severe
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Fig. 4. Comparison with the state-of-the-arts methods on male images. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Ma et al’s method [9]. (e) Results of Shi et al’s method [22]. (f) Results of Jiang et al.’s method (TLcR-RL) [24]. (g) Results of
Kim et al’'s method (VDSR) [7]. (h) Results of Ledig et al.’s method (SRGAN) [54]. (i) Results of Zhu et al.’'s method (CBN) [5]. (j) Results of Cao et
al’s method [6]. (k) Results of Yu and Porikli's method (TDAE) [4]. (I) Results of Chen et al.’s method (FSRNet) [35]. (m) Results of Yu et al.’s
method [36]. (n) Results of Lee et al’s method (AACNN) [40]. (o) Our results.

distortions in the final results.

Zhu et al. [5] develop a cascaded bi-network (CBN) to super-
resolve very low-resolution face images. CBN firstly localizes
facial components in LR faces and then super-resolves facial
details by a local network and entire face images by a global
network. As shown in the first and fourth rows of Fig. 4(i), CBN
is able to generate HR facial components, but it also hallucinates
feminine facial details in male face images. For instance, eye
lines appear in male faces as seen in the fourth row of Fig. 4(i).
Furthermore, CBN fails to super-resolve faces of senior people,
as shown in the first row of Fig. 6(i). As the upscaling factor

increases, the facial details in LR faces become more ambiguous.
Therefore, it is difficult to recover the facial details of senior
people, such as wrinkles and age spots which are even hard to
observe in LR faces.

Cao et al. [6] propose an attention-aware face hallucination
network. Their network jointly learns an attention mechanism to
focus on local face regions and a local enhancement network to
super-resolve the selected regions. Because the attention mecha-
nism is learned on aligned faces, misalignments of LR faces lead
to inferior super-resolution performance, as illustrated in Fig. 4(j),
Fig. 5(j), Fig. 6(j) and Fig. 7(j). In addition, their method also
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Fig. 5. Comparison with the state-of-the-arts methods on male images. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Ma et al’s method [9]. (e) Results of Shi et al’s method [22]. (f) Results of Jiang et al.’s method (TLcR-RL) [24]. (g) Results of
Kim et al’'s method (VDSR) [7]. (h) Results of Ledig et al.’s method (SRGAN) [54]. (i) Results of Zhu et al.’'s method (CBN) [5]. (j) Results of Cao et
al’s method [6]. (k) Results of Yu and Porikli's method (TDAE) [4]. (I) Results of Chen et al.’s method (FSRNet) [35]. (m) Results of Yu et al.’s
method [36]. (n) Results of Lee et al’s method (AACNN) [40]. (o) Our results.

suffers from obvious blocky artifacts since some facial regions are
not chosen by the attention mechanism for super-resolution.

Yu and Porikli [4] exploit a transformative discriminative au-
toencoder (TDAE) to upsample very low-resolution face images.
They also employ deconvolutional layers to upsample LR faces
as well as STN layers to align LR faces, but their discriminative
network is only used to force the upsampling network to produce
sharper results without imposing any high-level semantic infor-
mation, e.g., facial attributes, in super-resolution. As visible in
Fig. 4(k), Fig. 5(k). Fig. 6(k) and Fig. 7(k), their method also
reverses the genders of the upsampled faces as well as suffers

from facial rejuvenation.

Chen et al. [35] develop two stage networks to super-resolve
HR faces by exploiting face priors, named FSRNet. FSRNet firstly
upsamples low-frequency components of LR faces by its first-
stage network and then explores the face structure of upsampled
faces as face priors to enhance facial details by its second-stage
network. Although their method does not require alignment of LR
faces, we apply their method to the LR faces aligned by STNg
for comparisons. Since aligning LR faces may introduce extra
blurriness and skew artifacts, FSRNet may fail to localize facial
components from upsampled overly-smooth HR faces. Thus, FS-
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Fig. 6. Comparison with the state-of-the-arts methods on female images. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Ma et al’s method [9]. (e) Results of Shi et al’s method [22]. (f) Results of Jiang et al’s method (TLcR-RL) [24]. (g) Results of
Kim et al’'s method (VDSR) [7]. (h) Results of Ledig et al.’s method (SRGAN) [54]. (i) Results of Zhu et al.’'s method (CBN) [5]. (j) Results of Cao et
al’s method [6]. (k) Results of Yu and Porikli's method (TDAE) [4]. (I) Results of Chen et al.’s method (FSRNet) [35]. (m) Results of Yu et al.’s
method [36]. (n) Results of Lee et al’s method (AACNN) [40]. (o) Our results.

RNet produces blurry HR faces, as shown in Fig. 4(1), Fig. 5(1),
Fig. 6(1) and Fig. 7(1).

Yu et al. [36] present a facial component heatmap guided
upsampling network. This method aligns feature maps by STN
layers and then estimates the facial component heatmaps from
the aligned feature maps rather than coarsely upsampled HR face
images in [35]. Since the attributes are not embedded in this
method, their super-resolved results may exhibit facial attributes
different from the HR ground-truths. For instance, the upsampled
mouths are open while the ground-truth ones are closed, as seen
in the second, third and last rows of Fig. 5(m). As visible in the

second row of Fig. 7(m), the upsampled mouth is different from
the HR ground-truth one. The hallucinated eyes are almost closed
while the ground-truth ones are open, as visible in the first row of
Fig. 6(m).

Lee et al. [40] introduce an attribute augmented convolu-
tional neural network (AACNN) to super-resolve LR faces. Since
AACNN is trained on aligned LR and HR face pairs, AACNN
is sensitive to misalignments of LR faces. In addition, there is
no mechanism to ensure the embedding of attribute information.
Thus, AACNN may not fully exploit the attribute information
to reduce the ambiguity of face super-resolution, as shown in
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Fig. 7. Comparison with the state-of-the-arts methods on female images. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Ma et al’s method [9]. (e) Results of Shi et al’s method [22]. (f) Results of Jiang et al’s method (TLcR-RL) [24]. (g) Results of
Kim et al’'s method (VDSR) [7]. (h) Results of Ledig et al.’s method (SRGAN) [54]. (i) Results of Zhu et al.’'s method (CBN) [5]. (j) Results of Cao et
al’s method [6]. (k) Results of Yu and Porikli's method (TDAE) [4]. (I) Results of Chen et al.’s method (FSRNet) [35]. (m) Results of Yu et al.’s
method [36]. (n) Results of Lee et al’s method (AACNN) [40]. (o) Our results.

Fig. 4(n), Fig. 5(n), Fig. 6(n) and Fig. 7(n).

In contrast, our method is able to reconstruct authentic facial
details as shown in Fig. 4(0), Fig. 5(0), Fig. 6(o) and Fig. 7(0).
Even though there are different poses, facial expressions and ages
in the input faces, our method still produces visually pleasant
HR faces which are similar to the ground-truth faces without
suffering gender reversal and facial rejuvenation. For instance,
we can super-resolve faces of senior persons as illustrated in the
second row of Fig. 4(0) and the first rows of Fig. 6(0) as well as
the child face in the last row of Fig. 5(0).

Note that, FSRNet and CBN do not require LR faces to

be aligned beforehand. The inferior super-resolution performance
may be caused by the imperfect alignment of LR faces. Therefore,
in Fig. 8, we also demonstrate the super-resolution results when
FSRNet and CBN are directly applied to upsample unaligned
LR faces. As seen in Fig. §, FSRNet and CBN may still fail to
localize facial components and then output artifacts in the final
results. Those artifacts may handicap the process of aligning the
upsampled HR face images. On the contrary, our method not only
generates authentic HR faces but also aligns them to the upright
position.
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Fig. 8. Results of the state-of-the-arts methods on unaligned LR face
images. (a) Unaligned LR inputs. (b) Original HR images. (c) Results
of Zhu et al’s method (CBN) [5]. (d) Results of Chen et al’s method
(FSRNet) [35]. (e) Our results.

TABLE 1
Quantitative evaluations on the test dataset.

Method | PSNR SSIM
Bicubic 19.23 0.56
Ma et al. [9] 19.11 0.54
Shi et al. [22] 19.12 0.55
TLcR-RL [24] 19.18 0.56
VDSR [7] 19.58 0.57
VDSRT [7] 20.12 0.57
SRGANT [54] 19.06 0.57
CBN [5] 18.77 0.54
Cao et al. [6] 20.09 0.58
TDAE [4] 20.40 0.57
FSRNet [35] 19.25 0.54
Yu et al. [36] 21.25 0.60
AACNN [40] 19.33 0.54
Ours 21.82 0.62

4.3 AQuantitative Comparison with the SoA

We quantitatively measure the performance of all the methods
on the entire test dataset by the average Peak Single-to-Noise
Ratio (PSNR) and Structural SIMilarity (SSIM) scores. Table 1
demonstrates that our method also achieves superior performance
in comparison to other methods.

As indicated in Tab. 1, after retraining VDSR and SRGAN
with face images, they achieve higher PSNRs but still output
inferior quantitative results compared with our results. Yu et al.’s
method [36] and TDAE [4] also employ multiple STNs to align
LR face images and achieve the second and third best results
respectively. Note that [36] exploits a multi-task network to super-
resolve face images while TDAE [4] employs three networks,
which are much larger than our network. This phenomenon also
indicates that the ambiguity is significantly reduced by imposing
attribute information into the super-resolution procedure rather
than by increasing the capacity of a neural network. Therefore,
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our method is able to achieve better quantitative results.

5 DISCUSSIONS
5.1 Attribute Manipulation in Super-Resolution

Given an LR face image, previous deep neural network based
face hallucination methods [3], [4], [5] only produce a certain
HR face image. There is no freedom for those methods to fine-
tune the final results. In contrast, our method can output different
super-resolved results by adjusting the attribute vectors. As shown
in Fig. 9, by changing the gender attribute we can hallucinate
face images either from male to female or from female to male.
Our method can manipulate the age of the upsampled faces,
i.e., more wrinkles and age spots, by changing the age attribute,
as seen in Fig. 9(b). Because gender and age information may
become ambiguous in LR face images, combining that semantic
information in super-resolution can produce more accurate results.
In addition, after obtaining super-resolved faces, our method is
still able to post-edit the upsampled facial details in accordance
with the desired attributes. For instance, our method removes
the eye lines and shadows in Fig. 9(c), makes noses bigger in
Fig. 9(d), removes and adds beard in Fig. 9(e), opens and closes
eyes in Fig. 9(f), makes eyebrows bushy in Fig. 9(g), makes lips
bigger in Fig. 9(h) as well as opens and closes mouths in Fig. 9(i)
by manipulating the corresponding attribute vectors. Therefore,
infusing semantic information into LR face images significantly
increases the flexibility of our method.

To demonstrate our upsampling network is able to embed
attributes into the upsampled HR faces successfully, we choose
9 different attributes, i.e., gender, age, makeup, big nose, beard,
open eyes, bushy eyebrows, big lips and open mouth, and train
a attribute classifier for each attribute. Note that, some of our
selected 18 attributes are coupled together, such as goatee and
beard information, and some attributes may not be always consis-
tent with human observation and are even hard to distinguish in
upsampled faces in our experiments, such as eye bags. Therefore,
we conduct the quantitative evaluations on the above 9 attributes
as visible in Fig. 9 rather than all the selected attributes. By
increasing and decreasing the corresponding attribute values, the
true positive accuracies are changed accordingly, as illustrated
in Tab. 2. This indicates that the attribute information has been
successfully embedded in super-resolution.

5.2 Learn to Encode Attribute Vectors in Hallucination

Since our network directly accepts binary-value attributes, an
option to improve the embedding might be using a shared CNN
branch ENg to encode attribute vectors. In the training stage,
the encoding branch ENg will be updated as well in order to
embed attributes into the upsampling network. Because the output
of ENg, i.e., the embedded attribute vector, is the input of both
the upsampling network and the discriminative network, the /o
and perceptual losses from the upsampling network I/ and the
discriminative loss from the discriminative network D are used to
update EN;. Therefore, although the upsampling network and the
discriminative network are updated alternatingly, EN is updated
in every iteration.

In training our discriminative network, the discriminative la-
bels for the faces upsampled by U are set to O regardless of
the attribute information, the labels for real faces with matched
attributes are set to 1, and the labels for real faces with mis-
matched attributes are set to 0. Different from the previous training
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(d) Nose

(h) Lips (i) Mouth

Fig. 9. Our method can fine-tune the super-resolved results by adjusting the attributes. From top to bottom: the LR input faces, the HR ground-
truth faces, our results with ground-truth attributes, our results by adjusting attributes. (a) Reversing genders of super-resolved faces. (b) Aging
upsampled faces. (c) Removing makeups. (d) Changing noses. (The first two columns: making noses pointy, and the last two columns: making
noses bigger.) (e) Adding and removing beard. (f) Narrowing and opening eyes. (g) Making and removing bushy Eyebrows. (h) Making lips bigger.
(i) Opening and closing mouths.

protocol [3], [4], the discriminative loss is not only used to attributes. Since the binary cross-entropy loss is not able to
update the discriminative network but also employed to update distinguish whether the faces are hallucinated or the attributes does
the embedding branch EN. We only use one binary cross-entropy  not match the faces, it may cause ambiguity in the procedure of
loss to update the discriminative network D, but the training errors ~ backpropagation.

of D may come from either the face images or the mismatched . . .
On the other hand, in training our upsampling network, only



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

14

TABLE 2
Classification results impacted by tuning attributes.

Attributes Male Young Makeup Big nose Beard Narrow Bushy Big lips Mouth
eyes eyebrows open
GT Attr. Acc. 100% 100% 91% 42% 100% 67% 88% 56% 100%
Increased Attr. Acc. 100% 100% 100% 100% 100% 100% 100% 94% 100%
Decreased Attr. Acc. 0% 0% 2.9% 8.3% 0% 0% 0% 0% 0%
TABLE 3
Ablation study on our proposed network

‘ ENj wrAttr inAttr WOALtr woAE noSkip stdDiscr Ours

PSNR 20.03 20.42 21.43 21.64 21.03 21.21 21.65 21.82

SSIM 0.55 0.53 0.60 0.60 0.58 0.58 0.60 0.62

TABLE 4 and low-level visual information. This is also verified by the

Embedding attributes into different layers of D

Layers ‘ D, Do D3 Dy

PSNR 21.59 21.76 21.82 21.63

SSIM 0.62 0.62 0.62 0.61
TABLE 5

Quantitative evaluations of impact of different losses

Losses ‘ £piz £piz+[:feat Lpiz"'ﬁdis Ours
PSNR 22.45 22.31 20.96 21.82
SSIM 0.66 0.65 0.57 0.62

the upsampled faces with their corresponding ground-truth at-
tributes are fed into the discriminative network and the discrimina-
tive labels are set to 1. Note that, in training D, the discriminative
labels for super-resolved faces with their attributes should be 1
while in training U/, the labels are set to 0. Similar to previous
works [3], [4], [10], the discriminative loss should be only used
to update the upsampling network to make the super-resolved
faces realistic, but here it is also used to update the encoding
network ENg. Thus, it is difficult for ENg to learn a consistent
encoder due to the contradicted discriminative labels in training
D and U. Therefore, the super-resolution performance using EN
decreases 1.79 dB as indicated in Tab. 3 and the hallucinated faces
suffer from obvious artifacts, as seen in Fig. 10(c). Therefore, we
directly feed a binary-value attribute vector into our upsampling
and discriminative network.

5.3 Performance with/without Autoencoder

As shown in Fig. 3(c), we demonstrate that it is not suitable to
concatenate high-level semantic information with low-level image
pixels directly. Specifically, we remove the autoencoder, replicate
the attribute vector to the image size, and then concatenate the
replicated attributes with the input LR image. In this way, all
semantic labels will be applied to the whole images by the low-
level convolutional filters. However, low-level filters are mainly
responsible to extract image edges or corners [63]. It is unsuitable
to employ low-level filters to fuse high-level semantic information

quantitative result, donated as woAE, in Tab. 3.

On the contrary, we first encode the LR input faces by an
encoder and then fuse the high-level semantic information, i.e.,
attribute vectors, with the high-level feature maps extracted by the
encoder. In this manner, the attribute labels are better associated
with the feature maps qualitatively and quantitatively, as shown in
Fig 3(h) and Tab. 3.

5.4 Performance with/without Skip-Connections

As shown in Fig. 2, we also employ skip-connections to pass
low-frequency components of LR inputs to the decoder. In this
fashion, we only focus on embedding the supplementary attributes
into high-frequency facial details as well as preserve spatial in-
formation of LR input faces. Here, the low-frequency components
are not strict low-frequency components of LR faces but relatively
low-frequency compared to the components in the residual branch,
i.e., high-frequency components. Without using skip-connections,
the network will fuse the facial attributes with all the frequency
components of LR faces. As seen in Fig. 3(d), the hallucinated
faces suffer from obvious artifacts at the smooth regions after
removing the skip-connections. Therefore, the attribute informa-
tion should be fused into high-frequency components of LR
faces rather than low-frequency ones. We also demonstrate the
quantitative result without using the skip-connections, denoted as
noSkip, in Tab. 3. As indicated in Tab. 3, with the help of the skip-
connections, our super-resolution performance increases 0.60 dB
in PSNR.

5.5 Performance with Inaccurate Attributes

When super-resolving very low-resolution face images, we may
not always obtain all the 18 ground-truth attributes. Therefore, we
may use inaccurate attribute information in face hallucination. In
this case, we set undetermined attributes to 0.5 as neutral attributes
in super-resolution because an attribute is set either 1 or 0 in train-
ing. In an extreme case, we do not know any information about
attributes. Hence, we use the neutral value for all the attributes in
super-resolution, marked as inAttr, and the quantitative result is
shown in Tab. 3. Figure 10(d) also illustrates that our network can
still generate high-quality results with inaccurate attributes.
Another case is that completely wrong attributes may be
assigned to a given input, marked as wrAttr. Here, we reverse all
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Fig. 10. Discussions on the variants of our network. (a) 16 x 16 LR input images. (b) 128 x 128 HR ground-truth images. (c) Results of using a
shared CNN branch EN; to encode attributes in super-resolution. (d) Results of using all neutral attributes. (e) Results of using completely wrong
attributes. (f) Results without embedding attribute information. (g) Results of using a standard discriminative network. (h) Our results.

the ground-truth attributes to their opposite values as completely
wrong attributes. For instance, we change an attribute value 1 to
0 or vice verse. Notice that, some attributes are coupled together,
such as gender and beard attributes. Thus, the wrong attributes are
not only inconsistent with LR faces but also may contradict each
other. Figure 10(e) shows that the super-resolved face images with
completely wrong attributes, and Tab. 3 demonstrates the quantita-
tive results of using completely wrong attributes. As demonstrated
in Tab. 3, using completely wrong attributes degrades the face
super-resolution performance. Furthermore, the upsampled HR
face images are different from their corresponding HR ground-
truth ones, as visible in Fig. 10(e). Therefore, when an attribute
is uncertain, using neural attributes is more preferable to achieve
better face hallucination performance.

5.6 Performance with/without Attribute Embedding

To demonstrate the influence of embedding attributes in face
hallucination, we remove the branches of feeding attributes into
U and D for comparisons, and denote this variant as woAttr.
As shown in Fig. 10(f), the final results upsampled by woAttr
suffer from gender reversal and expression changes. The aver-
age PSNR without embedding attributes decreases 0.18 dB, as
indicated in Tab. 3. Furthermore, we also employ two pretrained
attribute classifiers, i.e., gender and age, to recognize the attributes
recovered by our network and woAttr. For the age classification
results, the error rate of our proposed network is 0 while the error
rate of woAxttr is 23.4%. For the gender classification results, the
error rate of our proposed network is 0 while the error rate of
woAttr is 6%. These experiments demonstrate that our method
effectively reduces ambiguity in face hallucination by embedding
supplementary attributes.

5.7 Impact of Embedding Layers in D

As mentioned in Sec. 3.2, we embed attribute vectors into the third
layer of the discriminative network. Here, we also demonstrate the
quantitative results of embedding attributes into different layers
of the discriminative network, (i.e., 1st, 2nd, 3rd and 4th con-
volutional layers). As reported in our previous work [10], overly

smoothed upsampled results tend to achieve higher PSNR but their
visual quality is inferior. Therefore, we compare the quantitative
results when these variants generate similar visual quality results.
As shown in Tab. 4, we achieve the best performance when
embedding attribute vectors into the third layer of D.

Lee et al. [40] employ a vanilla discriminative network to
distinguish whether the input faces are real or generated. In this
manner, the discriminative network is not used to guarantee that
the attributes are correctly embedded. Similar to the work [40],
we replace our conditional discriminative network with a standard
discriminative network, and then retrain our upsampling, marked
as stdDiscr. As seen in the second row of Fig. 10(g), the upsampled
face has been rejuvenated. Since there is no mechanism to exam
whether attribute information is fully embedded in the upsampled
face images, the upsampled results may still suffer from ambiguity.
Thus, artifacts appear in the super-resolved faces, as visible in
Fig. 10(g). As indicated in Tab. 3, using our conditional discrimi-
native network can obtain higher PSNRs compared to employing a
standard discriminative network. This also implies that a standard
discriminative network cannot force our upsampling network to
embed the facial attribute information.

5.8

As seen in Fig. 3, we only show the impact of different losses
on the visual results. In Tab. 5, we also show the quantitative
results of our network trained by using different losses. When
only employing the pixel-wise ¢5 loss, the average PSNR is higher
but the visual results suffer from severe blurriness, as shown in
Fig. 3(e). To avoid generating overly smoothed results, the feature-
wise {5 loss is used in training the network. Due to the lack of the
guidance of high-level semantic information in super-resolution,
the network trained by using the pixel-wise and feature-wise losses
still suffers from notorious ambiguity, such as gender reversal or
facial rejuvenation. Using the discriminative loss L4;s and the
pixel-wise £5 loss is able to embed the attribute information in
the upsampled face images, but the facial characteristics may
not be fully captured. Thus, the upsampling network generates
ringing artifacts to mimic facial details, as shown in Fig. 3(g).

Impact of Different Losses
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By employing these three losses altogether, our network is able
to achieve the best visual quality. Similar to the phenomenon
mentioned in our previous work [3], using the discriminative loss
is a trade-off between the quantitative performance and the visual
quality. Therefore, we set the weight for the discriminative loss to
0.001.

6 CONCLUSIONS

We introduced an attribute embedded discriminative network to
super-resolve very low-resolution (16x 16 pixels) unaligned face
images by a large magnification factor 8 in an end-to-end
fashion. With the help of the conditional discriminative network,
our network successfully embeds facial attribute information into
the upsampling network to reduce the inherit ambiguity in super-
resolution. After training, our network is not only able to super-
resolve LR faces but also fine-tune the upsampled results by
adjusting the attribute information. In this manner, our network
can generate HR face images much closer to their correspond-
ing ground-truth ones, thus achieving superior face hallucination
performance.
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