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Abstract

Given a tiny face image, existing face hallucination
methods aim at super-resolving its high-resolution (HR)
counterpart by learning a mapping from an exemplar
dataset. Since a low-resolution (LR) input patch may cor-
respond to many HR candidate patches, this ambiguity may
lead to distorted HR facial details and wrong attributes such
as gender reversal. An LR input contains low-frequency fa-
cial components of its HR version while its residual face im-
age, defined as the difference between the HR ground-truth
and interpolated LR images, contains the missing high-
frequency facial details. We demonstrate that supplement-
ing residual images or feature maps with additional facial
attribute information can significantly reduce the ambiguity
in face super-resolution. To explore this idea, we develop an
attribute-embedded upsampling network, which consists of
an upsampling network and a discriminative network. The
upsampling network is composed of an autoencoder with
skip-connections, which incorporates facial attribute vec-
tors into the residual features of LR inputs at the bottle-
neck of the autoencoder and deconvolutional layers used
for upsampling. The discriminative network is designed to
examine whether super-resolved faces contain the desired
attributes or not and then its loss is used for updating the
upsampling network. In this manner, we can super-resolve
tiny (16×16 pixels) unaligned face images with a large up-
scaling factor of 8× while reducing the uncertainty of one-
to-many mappings remarkably. By conducting extensive
evaluations on a large-scale dataset, we demonstrate that
our method achieves superior face hallucination results and
outperforms the state-of-the-art.

1. Introduction

Face images provide important information for human
visual perception as well as computer analysis [6, 33]. De-
pending on the imaging conditions, the resolution of a face
area may be unfavorably low, raising a critical issue that
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Figure 1. Comparison with the state-of-the-art CNN based face
hallucination methods. (a) 16×16 LR input image. (b) 128×128
HR original image (not used in training). (c) The correspond-
ing HR image of the nearest neighbor of the given LR image
in the dataset after compensating for misalignments. (d) Result
of VDSR [11], which is a CNN based generic super-resolution
method. (e) Result of VDSR† [11] retrained with LR and HR face
image pairs. (f) Result of [35]. (g) Result of [29]. (h) Our result.

would directly impede our understanding. Motivated by
this challenge, recovering frontalized high-resolution (HR)
face images from their low-resolution (LR) counterparts,
also known as face hallucination, has received increasing
attention recently [27, 29, 35, 4]. Existing face hallucina-
tion methods only utilize image domain priors for super-
resolution. Even though they are trained on large-scale
datasets, ill-posed nature of the problem, which induces
inherent ambiguities such as one-to-many correspondence
between a given LR face and its possible HR counterparts,
would still lead to drastically flawed outputs. For instance,
as shown in Fig. 1, the hallucinated details generated by the
state-of-the-art face super-resolution methods [35, 29] are
semantically and perceptually inconsistent with the ground-
truth HR image, and inaccuracies range from unnatural blur
to attribute mismatches including the wrong facial hair and
mixed gender features just to count a few.

Unlike previous work, we aim to utilize facial attributes
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to reduce the ambiguity when super-resolving very low-
resolution faces. However, a direct embedding of the binary
facial attribute vector as an additional input channel to the
network would still yield degraded results (see Fig. 3(c)). A
simple combination of low-level visual information (LR im-
age) with high-level semantic information (attributes) in the
input layer does not prevent ambiguity or provide consistent
LR-HR mappings. We also note that the low-frequency fa-
cial components are visible in the LR input while the miss-
ing high-frequency details are contained in the correspond-
ing residual between the HR face image and the upsampled
LR image (e.g.by bicubic interpolation). Thus, our intu-
ition is to incorporate facial attribute information into the
residual features that are extracted from LR inputs (as seen
in the yellow block of Fig. 2) for super-resolution of high-
frequency facial details.

Driven by our observations above, we present a new LR
face image upsampling network that is able to embed fa-
cial attributes into face super-resolution. In contrast to face
super-resolution networks [27, 28, 11], our network em-
ploys an autoencoder with skip connections to amalgamate
visual features obtained from LR face images and semantic
cues provided from facial attributes. It progressively up-
samples the concatenated feature maps through its decon-
volutional layers. Based on the StackGAN [31, 24] archi-
tecture, we also employ a discriminative network that ex-
amines whether a super-resolved face image is similar to
authentic face images and the attributes extracted from the
upsampled faces are faithful to the input attributes. As a re-
sult, our discriminative network can guide the upsampling
network to incorporate the semantic information in the over-
all process. In this manner, the ambiguity in hallucination
can be significantly reduced. Furthermore, since we apply
the attribute information into the LR residual feature maps
rather than concatenating it to the low-resolution input im-
ages, we can learn more consistent mappings between LR
and HR facial patterns. This allows us to generate realistic
high-resolution face images as shown in Fig. 1(h).

Contributions of our work can be summarized as:

• We present a new framework to hallucinate LR face
images. Instead of directly upsampling LR face im-
ages, we first encode LR images with facial attributes
and then super-resolve the encoded feature maps.

• We propose an autoencoder with skip connections to
extract residual feature maps from LR inputs and con-
catenate the residual feature maps with attribute infor-
mation. This allows us to fuse visual and semantic in-
formation to achieve better visual results.

• Even though our network is trained to super-resolve
very low-resolution face images, the upsampled HR
faces can be further modified by tuning the face at-
tributes in order to add or remove particular attributes.

• To the best of our knowledge, our method is the first
attempt to utilize facial attribute information into face
super-resolution, effectively reducing the ambiguity
caused by the inherent nature of this task, especially
when the upscaling factor is very challenging, i.e.8×.

2. Related Work
Face hallucination methods can be roughly grouped into

three categories: global model based, part based, and deep
learning based.

Global model based methods upsample the whole LR in-
put image, often by a learned mapping between LR and HR
face images such as PCA. Wang and Tang [22] learn a linear
mapping between LR and HR face subspaces, and then re-
construct an HR output with the coefficients estimated from
the LR input. Liu et al. [14] not only establish a global
model for upsampling LR inputs but also exploit a local
nonparametric model to enhance the facial details. Kolouri
and Rohde [12] morph an HR output from the exemplar HR
faces whose downsampled versions are similar to the LR in-
put by optimal transport and subspace learning techniques.
Since global model based methods require LR inputs to be
precisely aligned and share similar poses to exemplar HR
images, they produce severe artifacts when there are pose
variations in LR inputs.

Aimed at addressing pose variations, part based methods
super-resolve individual facial regions separately. They ei-
ther exploit reference patches or facial components to re-
construct the HR counterparts of LR inputs. Baker and
Kanade [2] reconstruct high-frequency details of aligned
LR face images by searching the best mapping between LR
and HR patches. Following this idea, [23, 26, 13] blend
position patches extracted from multiple aligned HR im-
ages to super-resolve aligned LR face images. Tappen and
Liu [21] use SIFT flow [15] to align the facial components
of LR images and reconstruct HR facial details by warping
the reference HR images. Yang et al. [25] employ a fa-
cial landmark detector to localize facial components in the
LR images and then reconstruct details from the similar HR
reference components. Because part based methods need to
extract and align facial parts in LR images accurately, their
performance degrades dramatically when LR faces are tiny.

Recently, deep learning based models achieve significant
progress in several image processing tasks and is now push-
ing forward the state-of-the-art in super-resolution. For in-
stance, Yu and Porikli [27] introduce a discriminative gen-
erative network to super-resolve aligned tiny LR face im-
ages. Follow-up works [28, 29] interweave multiple spa-
tial transformer networks with the deconvolutional layers
to relax the requirement of face alignment. Zhu et al. [35]
use a cascade bi-network to upsample very low-resolution
and unaligned faces. Zhu and Fan [34] exploit feature maps
extracted from a blurry LR face image by a convolutional



Figure 2. The architecture of our attribute embedded upsampling network. The network consists of two parts: an upsampling network and
a discriminative network. The upsampling network takes LR faces and attribute vectors as inputs while the discriminative network takes
real/super-resolved HR face images and attribute vectors as inputs.

neural network (CNN) to reconstruct its sharp HR face im-
age. However, due to the inherent under-determined nature
of super-resolution, they may still produce results unfaithful
to the ground truth, such as gender reversal and face rejuve-
nation.

Image generation also has a close relationship to face
hallucination when generated images are faces. Goodfel-
low et al. [7] propose a generative adversarial network
(GAN) to construct images from noise, but the resolution
of constructed images is limited (i.e.48×48 pixels) due to
difficulty in training. Later, variants of GANs have been
proposed to increase the resolutions and quality of gener-
ated images [5, 32, 1, 3]. Rather than generating images
from noise, [18, 31] generate images based on textual in-
puts. Yan et al. [24] use a conditional CNN to generate
faces based on attributes. Perarnau et al. [17] develop an
invertible conditional GAN to generate new faces by ma-
nipulating facial attributes of the input images, while Shen
and Liu [19] change attributes of an input image on its resid-
ual image. Since their methods aim at generating new face
images rather than super-resolving faces, they may change
the identity information. In contrast, our work focuses on
obtaining HR faces faithful to LR inputs. We employ the
attribute information to reduce the uncertainty in face hal-
lucination rather than editing input face images.

3. Super-resolution with Attribute Embedding

Each low resolution face image might map to many high
resolution face candidates during the process of making

them high resolution. To reduce the ambiguity encoun-
tered in the super-resolution process, we present an upsam-
pling network that takes LR faces and semantic information
(i.e.facial attributes) as inputs and outputs super-resolved
HR faces. The entire network consists of two parts: an up-
sampling network and a discriminative network. The up-
sampling network is used for embedding facial attributes
into LR input images as well as upsampling the fused fea-
ture maps. The discriminative network is used to constrain
the input attributes to be encoded and the hallucinated face
images to be similar to real ones. The entire architecture of
our network is illustrated in Fig. 2.

3.1. Attribute Embedded Upsampling Network

The upsampling network is composed of a facial at-
tribute embedding autoencoder and upsampling layers (as
shown in the blue frame). Previous work [27, 29] only
take LR images as inputs and then super-resolve them by
deconvolutional layers. They do not make use of valuable
semantic information into account during super-resolution.
Indeed, obtaining semantic information such as facial at-
tributes for face images is not hard, yet it is logical to make
use of it, especially for face images. Unlike previous work,
we incorporate low-level visual and high-level semantic in-
formation in face super-resolution to reduce the ambiguity
of mappings between LR and HR image patches.

Rather than concatenating LR input images with at-
tribute vectors directly, in our proposed facial attribute em-
bedding subnetwork, we employ an convolutional autoen-
coder with skip connections [16]. Due to the skip con-



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3. Ablation study of our network. (a) 16 × 16 LR input image. (b) 128 × 128 HR ground-truth image, its ground-truth attributes
are male and old. (c) Result without using an autoencoder. Here, the attribute vectors are replicated and then concatenated with the LR
input directly. (d) Result without using skip connections in the autoencoder. (e) Result by only using `2 loss. (f) Result without using
the attribute embedding but with a standard discriminative network. In this case, the network is similar to the decoder in [29]. (g) Result
without using the perceptual loss. (h) Our final result.

nections, we can utilize residual features obtained from LR
input images to incorporate the attribute vectors. Specifi-
cally, at the bottleneck of the autoencoder, we concatenate
the attribute vector with the residual feature vector as illus-
trated in the green and blue vectors of Fig. 2. As shown in
Fig. 3(d), if we encode LR faces with attributes instead of
residual feature maps, artifacts may appear in the smooth
regions of the super-resolved result. After combining the
residual feature vector of LR inputs with the attribute vec-
tor, we employ deconvolutional layers to upsample it. Since
LR input images may undergo misalignments, such as in-
plane rotations, translations and scale changes, we use spa-
tial transformer networks (STNs) [9] to compensate for mis-
alignments similar to [29], as shown in the purple blocks
in Fig. 2. Since STNs employ bilinear interpolation to re-
sample images, they will blur LR input images or feature
maps. Therefore, we only employ STNs in the upsampling
layers.

To constrain the appearance similarity between the
super-resolved faces and their HR ground-truth counter-
parts, we exploit a pixel-wise Euclidean distance loss, also
known as pixel-wise `2 loss, and a perceptual loss [10].
The pixel-wise `2 loss is employed to enforce image inten-
sity similarity between the upsampled HR faces and their
ground-truth images. As reported in [27], deconvolutional
layers supervised by `2 loss tend to output over-smoothed
results as shown in Fig. 3(e). Since the perceptual loss mea-
sures Euclidean distance between features of two images,
we use it to constrain feature similarity between the upsam-
ple faces and their ground-truth ones. We use VGG-19 [20]
to extract features from images (please refer to section 3.3
for more details). Without the help of the perceptual loss,
the network tends to produce ringing artifacts to mimic fa-
cial details, such as wrinkles, as seen in Fig. 3(g).

3.2. Discriminative Network

In order to force the upsampling work to encode facial
attribute information, we employ a conditional discrimi-
native network. Specifically, the discriminative network
is designed to distinguish whether the attributes of super-

resolved face images are faithful to the attributes embedded
in the upsampling network or not and is used to constrain
the upsampled images to be similar to HR real face images
too.

Even though our autoencoder concatenates attribute vec-
tors with residual feature maps of the LR inputs, the up-
sampling network may simply learn to ignore them, e.g.,
the weights corresponding to the semantic information are
zeros. Therefore, we need to design a discriminator network
to enforce semantic attribute information into the generative
process. As shown in Fig. 3(f), the output HR face looks
like a female face even if the expected figure should be an
old male. It implies that the attribute information is not well
embedded. Therefore, simply embedding a semantic vector
into LR inputs may increase the ambiguity or deviate the
learned mapping between LR and the correct HR face im-
ages. We present a discriminative network to enforce the in-
put attribute information to be embedded in LR inputs, thus
generating the desired attributes in the hallucinated face im-
ages.

As shown in the red frame of Fig. 2, our discriminative
network is constructed by convolutional layers and fully
connected layers. HR face images (real and upsampled
faces) are fed into the network while attribute information
is also fed into the middle layer of the network as condi-
tional information. Here, an attribute vector is replicated
and then concatenated with the feature maps of images. Be-
cause CNN filters in the first layers mainly extract low-level
features while filters in higher layers extract image patterns
or semantic information [30], we concatenate the attribute
information with the extracted feature maps on the third
layer. If the extracted features do not comply with the input
attribute information, the discriminative network ought to
pass that information to the upsampling network. Our dis-
criminative network is a binary classifier which is trained
with binary cross entropy loss. With the help of the discrim-
inative network, the attribute information can be embedded
into the upsampling network. As shown in Fig. 3(h), our
final result is faithful to the age and gender of the ground-
truth image.



3.3. Training Procedure

Our facial super resolution network is trained in an end-
to-end fashion. We use an LR face image denoted by li
and its ground-truth attribute label vector ai as the inputs
and the corresponding HR ground-truth face image hi as the
target. Note that, since our network aims at super-resolving
very low-resolution face images rather than transferring fa-
cial attributes of HR face images, we only feed the correct
attributes of LR face images into the upsampling network
in the training phase.

We train the upsampling network using a pixel-wise `2
loss, a perceptual loss and the discriminative loss obtained
from our discriminative network. We employ binary cross-
entropy loss to update our discriminative network. We first
update the parameters of the discriminative network, and
then the upsampling network because the upsampling net-
work relies on the loss back-propagated from the discrimi-
native network to update its weights.

Our discriminative network is designed to embed at-
tribute information into the upsampling network as well as
to force the super-resolved HR face images to be authentic.
Similar to [24, 31], our goal is to make the discriminative
network be able to tell whether super-resolved faces con-
tains the desired attributes or not but fail to distinguish hal-
lucinated faces from real ones. Hence, in order to train the
discriminative network, we take real HR face images hi and
their corresponding ground-truth attributes ai as positive
sample pairs {hi, ai}. Negative data is constructed from
super-resolved HR faces ĥi and their ground-truth attributes
ai as well as real HR faces and mismatched attributes ãi.
Therefore, the negative sample pairs consist of both {ĥi, ai}
and {hi, ãi}. The objective function for the discriminative
network LD is expressed as:

LD =− E [logDd(h, a)]

− E
[
log(1−Dd(ĥ, a)) + log(1−Dd(h, ã))

]
=− E(hi,ai)∼p(h,a)) [logDd(hi, ai)]

− E(ĥi,ai)∼p(ĥi,a))

[
log(1−Dd(ĥi, ai))

]
− E(hi,ãi)∼p(hi,ã)) [log(1−Dd(hi, ãi))] ,

(1)

where d represents the parameters of the discriminative net-
work D, and Dd(hi, ai), Dd(ĥi, ai) and Dd(hi, ãi) are the
outputs of D. We update the discriminative network by
minimizing LD.

Since our upsampling network aims at super-resolving
LR input images, we only feed our upsampling network
with LR face images li and their corresponding attributes
ai as inputs. To constrain the upsampled faces to be similar
to the HR ground-truth face images, we employ `2 losses on
both image intensity differences and differences of feature
maps. In addition, the discriminative loss is also exploited

to force the attribute information to be embedded. Hence,
we minimize the objective function LU of the upsampling
network as follows:

LU=E
[
‖ĥ−h‖2F +α‖φ(ĥ)−φ(h)‖2F−βlogDd(ĥ, a)

]
= E(li,hi,ai)∼p(l,h,a)

[
‖Ut(li, ai)− hi‖2F

+α‖φ(Ut(li, ai))−φ(hi)‖2F−βlogDd(Ut(li, ai), ai)
]
,

(2)

where t indicates the parameters of our upsampling net-
work U , p(l, h, a) represents the joint distribution of the LR
and HR face images and the corresponding attributes in the
training dataset, α is a weight term which trades off between
the image intensity similarity and the feature similarity, β is
a weight which trades off between the appearance similar-
ity and the attribute similarity, and φ(·) denotes extracted
feature maps from the layer “ReLU32” in VGG-19. Since
every layer in our network is differentiable, we employ RM-
Sprop [8] to update t and d.

3.4. Super-Resolving LR Inputs with Attributes

The discriminative network D is only required in the
training phase. In the super-resolving (testing) phase, we
take LR face images and their corresponding attributes as
the inputs of the upsampling network U , and the outputs
of U are the hallucinated HR face images. In addition,
although the attributes are normalized between 0 and 1 in
training, the attributes can be further scaled, such as neg-
ative values or values exceeding 1, to manipulate the final
super-resolved results according to the users’ descriptions
in the testing phase.

3.5. Implementation Details

The detailed architectures of the upsampling and dis-
criminative networks are illustrated in Fig. 2. We employ
convolutional layers with kernels of size 4×4 in a stride 2 in
the encoder and deconvolutional layers with kernels of size
4 × 4 in a stride 2 in the decoder. The feature maps in our
encoder will be passed to the decoder by skip connections.
We also use the same architectures of spatial transformer
networks in [29] to align feature maps. We set the learn-
ing rate to 0.001 and multiplied by 0.95 after each epoch,
and α is set to 0.01. As suggested by [29], we also set β to
0.01 and gradually decrease it by a factor 0.995, thus em-
phasizing the importance of the appearance similarity. On
the other hand, in order to guarantee the attributes to be em-
bedded in the training phase, we stop decreasing β when it
is lower than 0.005. (All the codes and pretrained model
will be released.)

4. Experiments
We evaluate our network qualitatively and quantitatively,

and compare with the state-of-the-art methods [11, 23, 35,
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Figure 4. Our method can fine-tune the super-resolved results by adjusting the attributes. From top to bottom: the LR input faces, the
HR ground-truth faces, our results with ground-truth attributes, our results by adjusting attributes. (a) Reversing genders of super-resolved
faces. (b) Aging upsampled faces. (c) Removing makeups. (d) Changing noses. (The first two columns: making noses pointy, and the last
two columns: making noses bigger.) (e) Adding and removing beard. (d) Narrowing and opening eyes.

29]. Kim et al.’s method [11] is a generic CNN based
super-resolution method. Ma et al.’s method [23] exploits
position-patches in the exemplar dataset to reconstruct HR
images. Zhu et al. [35] employ a cascaded deep convo-
lutional neural network to hallucinate facial components of
LR face images. Yu and Porikli [29] use a decoder-encoder-
decoder structure to super-resolve unaligned LR faces1.

4.1. Dataset

Similar to [27, 29, 17], we use the Celebrity Face At-
tributes (CelebA) dataset [36] to train our network. When
generating the LR and HR face pairs, we select 170K
cropped face images from the CelebA dataset, and then
resize them to 128×128 pixels as HR images. We manu-
ally transform the HR images, including rotations, transla-
tions and scale changes, and then downsample HR images
to 16 × 16 pixels to attain their corresponding LR images.

1The codes and models are provided from authors’ websites.

Table 1. Classification results impacted by tuning attributes.

Attributes GT Attr.
Acc.

Increased
Attr. Acc.

Decreased
Attr. Acc.

Young 100% 100% 0%

Male 100% 100% 0%

Big nose 42% 100% 8.33%

We use 160K LR and HR face pairs and their correspond-
ing attributes for training, and randomly choose 2K LR face
images for testing.

Furthermore, since color information can be directly
extracted from LR input faces, such as hair colors and
skin colors, we do not include those attributes in super-
resolution. Hence, we choose 18 attributes, such as gender,
age, and beard information, from 40 attributes in CelebA.
In this way, we reduce the potential inconsistency between
information extracted from visual information and informa-
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Figure 5. Comparison with the state-of-the-arts methods. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d)
Results of Kim et al.’s method (VDSR) [11]. (e) Results of Ma et al.’s method [23]. (f) Results of Zhu et al.’s method (CBN) [35]. (g)
Results of Yu and Porikli’s method (TDAE) [29]. (h) Our results.

Table 2. Quantitative evaluations on the test dataset.
Method Bicubic VDSR [11] VDSR† [11] Ma [23] CBN [35] TDAE [29] Ours
PSNR 19.23 19.58 20.12 19.11 18.77 20.40 21.82
SSIM 0.56 0.57 0.57 0.54 0.54 0.57 0.62

tion imposed by semantic information.

4.2. Attribute Manipulation in Super-Resolution

Given an LR face image, previous deep neural network
based face hallucination methods [27, 29, 35] only pro-
duce a certain HR face image. There is no freedom for
those methods to fine-tune the final results. In contrast,

our method can output different super-resolved results by
adjusting the attribute vectors. As shown in Fig. 4, by
changing the gender attribute we can hallucinate face im-
ages either from male to female or from female to male.
Our method can manipulate the age of the upsampled faces,
i.e., more wrinkles and age spots, by changing the age at-
tribute, as seen in Fig. 4(b). Because gender and age infor-



mation may become ambiguous in LR face images, combin-
ing that semantic information in super-resolution can pro-
duce more accurate results. In addition, we also post-edit
our super-resolved results. For instance, our method re-
moves the eye lines and shadows in Fig. 4(c), makes noses
bigger in Fig. 4(d), removes and adds beard in Fig. 4(e), as
well as makes eyes open in Fig. 4(f) by manipulating the
attribute vectors. Furthermore, we choose 3 different at-
tributes, i.e.young, male and big nose, and train a attribute
classifier for each attribute. By increasing and decreas-
ing the corresponding attribute values, the true positive ac-
curacies are changed accordingly, as illustrated in Tab. 1.
This indicates that the attribute information has been suc-
cessfully embedded in super-resolution. Therefore, infus-
ing semantic information into LR face images significantly
increases the flexibility of our method.

4.3. Qualitative Comparison with the SoA

We provide sample results in Fig 5. Note that, Ma et
al. [23] require input LR faces to be aligned before hallu-
cination while Yu and Porikli’s method [29] automatically
generates upright HR face images. For a fair comparison
and better illustration, we employ a spatial transformer net-
work STN0 to align LR faces similar to [29]. The aligned
upright HR ground-truth images are shown for compari-
son. As in [28], LR faces aligned by STN0 may still suf-
fer misalignments, which indicates that alignment of LR
faces is difficult. Therefore, we employ multiple STNs in
the upsampling network to reduce misalignments similar
to [28, 29].

Bicubic upsampling only interpolates new pixels from
neighboring pixels rather than hallucinating new contents
for new pixels. Furthermore, because the resolution of in-
put face images is very small, little information is contained
in the input images. As shown in Fig. 5(c), conventional
bicubic interpolation fails to generate facial details.

Kim et al. [11] present a deep CNN for generic purpose
super-resolution known as VDSR. Because VDSR is trained
on natural image patches, it cannot capture the global face
structure, as shown in Fig. 1(d). We re-train the model with
entire face images. As shown in Fig. 5(d), the artifacts ap-
pear in their results due to misalignments, and their method
also suffers the gender reversal problem.

Ma et al. [23] super-resolve HR faces by position-
patches from HR exemplar face images. Hence, their
method is sensitive to misalignments in LR inputs. As seen
in Fig. 5(e), there are obvious blur artifacts along the pro-
files of hallucinated faces. In addition, the correspondences
between LR and HR patches become inconsistent as the up-
scaling factor increases. Hence, severe block artifacts ap-
pear on the boundaries of different patches.

Zhu et al. [35] develop a cascaded bi-network (CBN) to
super-resolve very low-resolution face images. CBN firstly

localizes facial components in LR faces and then super-
resolves facial details by a local network and entire face
images by a global network. As shown in the first and fifth
rows of Fig. 5(f), CBN is able to generate HR facial compo-
nents, but it also hallucinates feminine facial details in male
face images, e.g., eye lines appear in male faces as seen in
the fifth row of Fig. 5(f). Furthermore, CBN fails to super-
resolve faces of senior people, as shown in the sixth row of
Fig. 5(f).

Yu and Porikli [29] exploit a transformative discrimina-
tive autoencoder (TDAE) to super-resolve very low resolu-
tion face images. They also employ deconvolutional lay-
ers to upsample LR faces, but their discriminative network
is only used to force the upsampling network to produce
sharper results without imposing attribute information in
super-resolution. As visible in Fig. 5(g), their method also
reverses the genders.

In contrast, our method is able to reconstruct authen-
tic facial details as shown in Fig. 1(h). Even though there
are different poses, facial expressions and ages in the input
faces, our method still produces visually pleasing HR faces
which are similar to the ground-truth faces without suffer-
ing gender reversal and facial rejuvenation. For instance,
we can super-resolve faces of senior persons as illustrated
in the second and sixth rows of Fig. 1(h) as well as the child
face in the last row of Fig. 5(h).

4.4. Quantitative Comparison with the SoA

We quantitatively measure the performance of all meth-
ods on the entire test dataset by the average PSNR and the
structural similarity (SSIM) scores. Table 2 presents that
our method achieves superior performance in comparison to
other methods, outperforming the second best with a large
margin of 1.42 dB in PSNR.

TDAE [29] also employs multiple STNs to align LR face
images and achieves second best results. Note that TDAE
employs three networks to super-resolve face images, which
is much larger than our network. This also indicates that
the ambiguity is significantly reduced by imposing attribute
information into the super-resolution procedure rather than
by increasing the capacity of a neural network. Thus, our
method is able to achieve better quantitative results.

4.5. Conclusions

We introduced an attribute embedded discriminative net-
work to super-resolve very low-resolution (16×16 pixels)
unaligned face images 8× in an end-to-end fashion. With
the help of the conditional discriminative network, our net-
work successfully embeds facial attribute information into
the upsampling network. After training our network, it is
not only able to super-resolve LR faces but also manipu-
late the upsampled results by adjusting the attribute infor-
mation.
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