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Abstract. In recent years, neural implicit representations have made remarkable
progress in modeling of 3D shapes with arbitrary topology. In this work, we
address two key limitations of such representations, in failing to capture local 3D
geometric fine details, and to learn from and generalize to shapes with unseen
3D transformations. To this end, we introduce a novel family of graph implicit
functions with equivariant layers that facilitates modeling fine local details and
guaranteed robustness to various groups of geometric transformations, through
local k-NN graph embeddings with sparse point set observations at multiple
resolutions. Our method improves over the existing rotation-equivariant implicit
function from 0.69 to 0.89 (IoU) on the ShapeNet reconstruction task. We also
show that our equivariant implicit function can be extended to other types of
similarity transformations and generalizes to unseen translations and scaling.

1 Introduction

Neural implicit representations are effective at encoding 3D shapes of arbitrary topol-
ogy [27,25,8]. Their key idea is to represent a shape by a given latent code in the learned
manifold and for each point in space, the neural implicit function checks whether a
given coordinate location is occupied within the shape or not. In contrast to traditional
discrete 3D representations such as triangle meshes or point clouds, this new paradigm
of implicit neural representations has gained significant popularity due to the advantages
such as being continuous, grid-free, and the ability to handle various topologies.

Despite their success, latent-code-conditioned implicit representations have two
key limitations. First, the latent code of the shape captures coarse high-level shape
details (i.e., the global structure) without any explicit local spatial information, hence
it is not possible to learn correlations between the latent code and local 3D structural
details of the shape. As a result, the surface reconstruction from latent-code-conditioned
implicit functions tends to be over-smoothed and they are not good at capturing local
surface detail [29,9,21,18,16]. Second, implicit representations are sensitive to various
geometric transformations, in particular to rotations [14]. The performance of the implicit
representations heavily relies on the assumption that shape instances in the same category
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Fig. 1: Our equivariant graph implicit function infers the implicit field F (·|X) for a
3D shape, given a sparse point cloud observation X. When a transformation Tg (rotation,
translation, or/and scaling) is applied to the observation X, the resulting implicit field
F (·|Tg(X)) is guaranteed to be the same as applying a corresponding transformation
T ∗
g to the inferred implicit field from the untransformed input (middle). The property

of equivariance enables generalization to unseen transformations, under which existing
models such as ConvONet [29] often struggle (right).

are required to be in the same canonical orientation such that shape structures of planes
and edges are in line with the coordinate axes. While data augmentation loosely addresses
this second issue to some degree, a principled approach is to enable the representations
to be inherently aware of common geometric operations such as rotations, translations,
and scaling, which are found commonly in real-world 3D objects.

To address the first challenge of modeling local spatial information, recent meth-
ods [29,9] first discretize 3D space into local 2D or 3D grids and then store implicit
codes locally in the respective grid cells. However, these methods are still sensitive to
transformations as the grid structure is constructed in line with the chosen coordinate
axes. This results in deteriorated performance under transformations as shown in Fig. 1.
In addition, the grid discretization often has to trade fine details of the shape, hence
the quality of shape reconstruction, for better computational efficiency through a low
resolution grid. Deng et al. [15] propose VN-ONet to tackle the second challenge of
pose-sensitivity with a novel vector neuron formulation, which enables the network ar-
chitecture to have a rotation equivariant representation. Nevertheless, similar to implicit
representations, the VN-ONet encodes each shape with a global representation and hence
fails to capture local details. As grid discretization is not robust to transformations, this
solution is not compatible with the grid-based local implicit methods. Thus, integrating
VN-ONet with grid-approach is not a feasible solution.

In this work, our goal is to simultaneously address both challenges of encoding
local details in latent representations and dealing with the sensitivity to geometric
transformations such as rotations, translations, and scaling. To this end, we propose a
novel equivariant graph-based local implicit function that unifies both of these properties.
In particular, we use graph convolutions to capture local 3D information in a non-
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Euclidean manner, with a multi-scale sampling design in the architecture to aggregate
global and local context at different sampling levels. We further integrate equivariant
layers to facilitate generalization to unseen geometric transformations. Unlike the grid-
based methods [29,9] that requires discretization of 3D space into local grids, our
graph-based implicit function uses point features from the input point cloud observation
directly without interpolation from grid features. Our graph mechanism allows the model
to attend detailed information from fine areas of the shape surface points, while the
regularly-spanned grid frame may place computations to less important areas. In addition,
our graph structure is not biased towards the canonical axis directions of the given
Cartesian coordinate frame, hence less sensitive than the grid-local representations [29,9].
Therefore, our graph representation is maximally capable of realizing an equivariant
architecture for 3D shape representation. In summary, our contributions are as follows:

– We propose a novel graph-based implicit representation network that enables effective
encoding of local 3D information in a multi-scale sampling architecture, and thus mod-
eling of high-fidelity local 3D geometric detail. Our model features a non-Euclidean
graph representation that naturally adapts with geometric transformations.

– We incorporate equivariant graph layers in order to facilitate inherent robustness
against geometric transformations. Together with the graph embedding, our equivari-
ant implicit model significantly improves the reconstruction quality from the existing
rotation equivariant implicit method [15].

– We extend our implicit method to achieve a stronger equivariant model that handles
more types of similarity transformations simultaneously with guaranteed perfect
generalization, including rotation, translation and scaling.

2 Related Work

Implicit 3D representations. Neural implicits have been shown to be highly effective
for encoding continuous 3D signals of varying topology [27,25,8]. Its variants have
been used in order to reconstruct shapes from a single image [32,42,43], or use weaker
supervision for raw point clouds [1,2,3] and 2D views [24,26,22].

Local latent implicit embeddings. ConvONet [29] and IF-Net [9] concurrently propose
to learn multi-scale local grid features with convolution layers to improve upon global
latent implicit representations. Other variants of grid methods [21,5] takes no global cues,
hence restricted by requiring additional priors during inference such as normals [21] or
the partial implicit field [5]. While grid approaches are sensitive to rotations, non-grid
local implicit embeddings are not well explored. E.g. [16] constructs local patches from
the shape and apply one PointNet [30] on each of them, while the boosted computation
cost by two orders of magnitude from using numerous PointNets restricts applications
on large-scale datasets e.g. ShapeNet [6]. In contrast to these methods, we use a hier-
archical graph embedding that effectively encodes multi-scale context to address the
pose-sensitivity of grid approaches.

Pose-sensitivity in implicit functions. As generalization becomes a concern for latent-
coded implicit functions [35,4,7], Davies et al. [14] first point out that the implicit 3D
representations are biased towards canonical orientations. Deng et al. [15] introduce
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a rotation equivariant implicit network VN-ONet that generalises to random unseen
rotations, but yet with the restrictions from the global latent. As grid embeddings are
sensitive to rotation, seeking a compatible local latent embedding is a non-trivial problem.
Rotation equivariance with 3D vector features. Equivariance has drawn attention in
deep learning models with inductive priors of physical symmetries, e.g., the success of
ConvNets are attributed to translation equivariance. Advanced techniques are developed
for equivariance to rotation [12,41,37], scale [36,46] and permutation [45,30]. Recently,
a new paradigm for rotation equivariance uses 3D vectors as neural features [15,34]
with improved effectiveness and efficiency upon methods based on spherical harmon-
ics [41,37,40,39,17]. Shen et al. [34] first introduced pure quaternion features that are
equivalent to 3D vectors. Deng et al. [15] proposed a similar design with improved
nonlinear layers. Satorras et al. [33] proposed to aggregate vector inputs in graph
message passing, but without vector nonlinearities involved. Leveraging on existing
work [34,15,33], we introduce hybrid vector and scalar neural features for better perfor-
mance and efficiency. We also adapt the paradigm for scale equivariance, for the first
time in literature.

3 A Definition of Equivariance for Implicit Representations

While equivariance to common geometric transformations is widely studied for explicit
representations of 2D and 3D data [11,41,37], the property for implicit representations
that encode signals in a function space is more challenging since continuous queries
are involved, yet an important problem for 3D reconstruction. We discuss standard 3D
implicit functions and then define equivariance for the representation.
3D implicit representations. We build our model on neural 3D occupancy field func-
tions [25], widely used as a shared implicit representation for a collection of 3D shapes.
Given an observation X ∈ X of a 3D shape, the conditional implicit representation
of the shape, F (·|X) : R3 → [0, 1], is a 3D scalar field that maps the 3D Euclidean
domain to occupancy probabilities, indicating whether there is a surface point at the
coordinate. In this work, we consider X as a sparse 3D point cloud, such that the in-
formation from the observation is indifferent under an arbitrary global transformation,
as required for equivariance. For each 3D query coordinate p⃗ ∈ R3, the conditioned
implicit representation is in the form of

F (p⃗|X) = Ψ(p⃗, z⃗) = Ψ(p⃗, Φ(X)), (1)

where Φ(X) = z⃗ ∈ RCz⃗ is the latent code in the form of a Cz⃗-dimensional vector from
the observation X, and Φ is the latent feature extractor that encodes the observation
data X. Ψ is the implicit decoder implemented using a multi-layered perceptron with
ReLU activations. Occupancy probabilities are obtained by the final sigmoid activation
function of the implicit decoder. Following [25,29], the model is trained with binary
cross-entropy loss supervised by ground truth occupancy. The underlying shape surface
is the 2-manifold {p⃗′|F (p⃗′|X) = τ}, where τ ∈ (0, 1) is the surface decision boundary.
Preliminary of equivariance. Consider a set of transformations Tg : X → X on a
vector space X for g ∈ G, where G is an abstract group. Formally, Tg = T (g) where
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T is a representation of group G, such that ∀g, g′ ∈ G,T (gg′) = T (g)T (g′). In the
case that G is the 3D rotation group SO(3), Tg instantiates a 3D rotation matrix for a
rotation denoted by g. We say a function Ξ : X → Y is equivariant with regard to group
G if there exists T ∗

g : Y → Y such that for all g ∈ G: T ∗
g ◦ Ξ = Ξ ◦ Tg. We refer to

[11,37] for more detailed background theory. Next, we define equivariance for implicit
representations as follows:

Definition 1 (Equivariant 3D implicit functions). Given a group G and the 3D trans-
formations Tg with g ∈ G, the conditioned implicit function F (·|X) is equivariant with
regard to G, if

F
(
· |Tg(X)

)
= T ∗

g

(
F (·|X)

)
, for all g ∈ G,X ∈ X . (2)

where the transformation T ∗
g applied on the implicit function associated to Tg is applying

the inverse coordinate transform on query coordinates T ∗
g (F (·|X)) ≡ F (T−1

g (·)|X).

Remark 1 Eq. (2) can be reformulated more intuitively as:

F (·|X) = F
(
Tg(·)|Tg(X)

)
, for all g ∈ G,X ∈ X . (3)

Eq. (3) indicates that the equivariance is satisfied if for any observation X and query p⃗,
the implicit output of F (p⃗|X) is locally invariant to any Tg applied jointly to X and p⃗ in
the implicit model.

4 Transformation-robust Graph Local Implicit Representations

Our goal is to design an equivariant implicit function model using local feature embed-
dings to capture fine details of the 3D geometry. However, existing grid-based local
implicit functions are sensitive to geometric transformations such as rotations, thus not
suitable for equivariant implicit representations. To address this limitation, we propose a
graph-based local embedding which is robust to geometric transformations.

Background: grid local implicit representations. To overcome the limitation of a
global latent feature, recent methods, such as ConvONet [29] and IF-Net [9], propose
to learn spatially-varying latent features z⃗p⃗ = Φgrid(p⃗;X). The main idea is to partition
the 3D space into a grid and compute latent codes locally. Specifically, these methods
formulate the local latent implicit function on the grid as Fgrid(p⃗|X) = Ψ(p⃗, z⃗p⃗) =
Ψ(p⃗, Φgrid(p⃗;X)), where the grid local latent extractor Φgrid is further decomposed as
Φgrid(p⃗;X) = ψgrid (p⃗, ϕgrid(X)). The function ϕgrid is the grid feature encoder that
learns to generate a 2D or 3D grid-based feature tensor M from the entirety of point
observations X. For each grid location, point features are aggregated for all x⃗i ∈ X in
the corresponding bin. Convolutional layers are applied to the grid-based M to capture
multi-scale information and maintain translation equivariance. Given the local 3D feature
tensor M, the local latent aggregator ψgrid computes local latent feature z⃗p⃗ on any off-
the-grid query coordinate p⃗ using a simple trilinear interpolation. We refer to [21,5]
for other variants of grid-based representations using purely local information without
global cues, while restricted by requiring additional priors during inference such as
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Fig. 2: Graph (left) vs. grid (right) local implicit feature embeddings under rotation.
Φgraph extracts k-NN graphs and applies graph convolutions; Φgrid partitions points into
regular grids and applies regular convolutions. Left: given a point cloud observation
X (navy) (i), our method aggregates the local latent feature at any query coordinate p⃗
(orange) from a local k-NN graph connecting its neighbours in X (ii). Moreover, when a
transformation Tg , e.g. rotation, is applied to the shape, (iv) the constructed local graph
is in the same structure as (v) applying Tg to the graph from untransformed data. Right:
in contrast, (vi) visualizes discretized grid features. (vii) The off-the-grid query location
p⃗ interpolates the neighboring on-grid features. However, (viii) with Tg applied to the
raw observation, often (ix) the sub-grid point patterns for the local features are different
from (x) applying Tg to the untransformed local grids. This makes the grid local implicit
models sensitive to transformations such as rotation.

the normals. Overall, grid partitioning is not robust to general transformations such as
rotations, especially when the sub-grid structure is considered for the resolution-free
implicit reconstruction. Fig. 2 (right) shows an illustration of this limitation, which we
will address in our method.

4.1 Graph-structured local implicit feature embeddings

We propose to use graphs as a non-regular representation, such that our local latent
feature function is robust to these transformations and free from feature grid resolutions.
The graph-local implicit function extends the standard form of Eq. (1) to

Fgraph(p⃗|X) = Ψ(p⃗, z⃗p⃗) = Ψ(p⃗, Φgraph(p⃗;X)) = Ψ(p⃗, ψ (p⃗, ϕ(X)) . (4)

Φgraph is a deep network that extracts local latent features z⃗p⃗ on the graph, composed
of two sub-networks ϕ and ψ. The point feature encoder ϕ maps the point set X =
{x⃗i} to the associated features {h⃗i}, and is invariant to the sampled query location p⃗.
The graph local latent feature aggregator ψ propagates the input point feature to the
query coordinate p⃗. Unlike grid-based methods, we directly aggregate local information
from the point cloud feature {(x⃗i, h⃗i)} without an intermediate grid feature tensor. In
particular, we construct a local k-nearest neighbor (k-NN) graph (V, E) for every query
point p⃗, where the vertices V = X ∪ {p⃗} include the point set elements and the query
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Fig. 3: Multi-scale design, with enlarged receptive fields of local k-NN graphs for the
graph point encoder ϕ (orange) and the graph local latent aggregator ψ (violet).

coordinate. The edges E = {(p⃗, x⃗i)} are between the query point p⃗ and its k-NN points
from the observation point set x⃗i′ ∈ Nk(p⃗,X), with Nk(p⃗,X) denoting the set of the
k-NN points of p⃗ from X. Last, with graph convolutions, we aggregate into the local
feature vector z⃗p⃗ the point features of the neighbors of p⃗. We adopt a simple spatial
graph convolution design in the style of Message Passing Neural Network (MPNN) [19],
which is widely used for 3D shape analysis [38,20]. For each neighboring point x⃗i′ from
the query p⃗, messages are passed through a function η as a shared two-layer ReLU-MLP,
where the inputs are the point features h⃗i′ and the query coordinate p⃗ as node feature as
well as the displacement vector x⃗i′ - p⃗ as the edge feature, followed by a permutation-
invariant aggregation AGGRE over all neighboring nodes, e.g., max- or mean-pooling:

z⃗p⃗ = AGGRE
i′

η(p⃗, h⃗i′ , x⃗i′ − p⃗). (5)

For each neighboring point as a graph node, the edge function η take as inputs, the query
coordinate p⃗, the node point feature h⃗i′ , and the relative position x⃗i′ − p⃗.

As all the graph connections are relative between vertices, the local latent feature
aggregation is robust to transformations like rotations, as illustrated in Fig. 2 (left).

4.2 Learning multi-scale local graph latent features

To capture the context of the 3D geometry at multiple scales, both ConvONet [29] and
IF-Net [9] rely on a convolutional U-Net [31], with progressively downsampled and then
upsampled feature grid resolutions to share neighboring information at different scales.
Our graph model enables learning at multiple scales by farthest point sampling (FPS).
That is, we downsample the point set X to X(l) at sampling levels l = 1, . . . , L with a
progressively smaller cardinality |X(l)| < |X(l−1)|, where X(0) = X is the original set.

Moreover, we use a graph encoder for the point encoder ϕ, instead of PointNet [30].
This way, without involving regular grid convolutions, we can still model local features
and facilitate a translation-equivariant encoder, which is beneficial in many scenarios,
especially for learning scene-level implicit surfaces [29]. Next, we sketch the multi-scale
graph point encoder and latent feature aggregator, with Fig. 3 as a conceptual illustration.

The graph point encoder ϕ learns point features {h(l)i } for the corresponding points
xi ∈ X(l) at each sampling level l = 0 . . . , L. The encoder starts from the initial
sampling level l = 0 where the input features are the raw coordinates. At each sampling
level, a graph convolution is applied to each point to aggregate message from its local
k-nearest neighbor point features, followed by an FPS operation to the downsampled



8 Y. Chen et al.

level l + 1. The graph convolution is similar to that in Eq. (5), with the point features
from both sides of the edge and the relative position as inputs. The graph convolutions
and FPS downsampling are applied until the coarsest sampling level l = L. Then the
point features are sequentially upsampled back from l = L to l = L− 1, until l = 0. At
each sampling level l, the upsampling layer is simply one linear layer followed by ReLU
activation. For each point, the input of the upsampling layer is the nearest point feature
from the last sampling level l + 1, and the skip-connected feature of the same point at
the same sampling level from the downsampling stage. Thus far, we obtain multi-scale
point features {(x⃗i, h⃗(l)i )} for x⃗i ∈ X(l) at sampling levels l = 0, . . . , L, as the output
from the graph point encoder ϕ.

For the graph latent feature aggregator ψ, at each query coordinate p⃗, we use graph
convolutions to aggregate the k-neighboring features {(x⃗i, h⃗(l)i )} at different sampling
levels l, as described in Sec 4.1. The aggregated features from all sampling levels l are
concatenated to yield the local latent vector z⃗p⃗ as output. The detailed formulations of ϕ
and ψ are provided in the supplementary material.

5 Equivariant Graph Implicit Functions

The local graph structure of the proposed implicit function, with X ∪ {p⃗} as the set of
vertices, is in line with the requirement of equivariance in Sec. 3 and Eq. (3). As a result,
the local graph implicit embedding can be used for an equivariant model to achieve
theoretically guaranteed generalization to unseen transformations. To do this, we further
require all the graph layers in the latent extractor Φgraph to be equivariant in order to
obtain equivariant local latent feature. In addition, we remove the query coordinate input
p⃗ to ensure the implicit decoder Ψ spatially invariant in Eq. (4), as the local spatial
information is already included in the latent z⃗p⃗. See Appendix A for details.

We first look into the equivariant layers for 3D rotation group G = SO(3), a difficult
case for implicit functions [14]. Then, we discuss how to extend the method to other
similarity transformations, such as translation and scaling.

5.1 Hybrid feature equivariant layers

Our equivariant layers for the graph convolution operations is inspired by recent methods
[15,34] that lift from a scalar neuron feature h ∈ R to a vector v⃗ ∈ R3 to encode rotation,
and the list of 3D vector features V = [v⃗1, v⃗2, . . . , v⃗Cv ]

⊤ ∈ RCv×3 that substitutes
the scalar features h⃗ ∈ RCh . However, using only vector features in the network is
non-optimal for both effectiveness and efficiency, with highly regularized linear layers
and computation-demanding nonlinearity projections.

To this end, we extend the method and propose hybrid features {h⃗,V}, where vector
features V encode rotation equivariance, and scalar features h⃗ are rotation-invariant. In
practice, hybrid features show improved performance and computation efficiency by
transferring some learning responsibility to the scalar features through more powerful
and efficient standard neural layers.
Linear layers. For input hybrid hidden feature {h⃗,V} with h⃗ ∈ RCh , and V =
[v⃗1, v⃗2, . . . , v⃗Cv ]

⊤ ∈ RCv×3, we define a set of weight matrices, Wh ∈ RC′
h×Ch ,
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Fig. 4: Hybrid feature equivariant layers. Visualization of how vector and scalar
features share information in linear and nonlinear layers. Vector features go through an
invariant function Ω that is added to the scalar part. Scalar features are transformed with
normalizing ·/∥ · ∥ to scale the vector feature channels.

Wv⃗ ∈ RC′
v⃗×Cv⃗ , Whv⃗ ∈ RC′

v⃗×Ch , and Wv⃗h ∈ RC′
h×Cv⃗ for the linear transformation,

with information shared between scalar and vector features in the inputs. The resulting
output features {h⃗′,V′} become:

h⃗′ = Whh⃗+Wv⃗h Ω(V) (6)

V′ = Wv⃗V ⊙
(
Whv⃗ h⃗ / ∥Whv⃗ h⃗∥

)
(7)

where ⊙ is channel-wise multiplication between Wv⃗V ∈ RC′
v⃗×3 and Whv⃗h⃗ ∈ RC′

v⃗×1,
and the normalized transformed scalar feature Whv⃗ h⃗ / ∥Whv⃗ h⃗∥ learns to scale the
output vectors in each channel; Ω(·) is the invariance function that maps the rotation
equivariant vector feature V ∈ RCv⃗×3 to the rotation-invariant scalar feature Ω(V) ∈
RCv⃗ , to be added on the output scalar feature. The design of the invariance function Ω(·)
is introduced later in Eq. (9).

Nonlinearities. Nonlinearities apply separately to scalar and vector features. For scalar
features, it is simply a ReLU(·). For vector features, the nonlinearity v⃗-ReLU(·) adopts
the design from Vector Neurons [15]: the vector feature v⃗c at each channel c takes an
inner-product with a learnt direction q⃗ = [Wq⃗V]⊤ ∈ R3 from a linear layer Wq⃗ ∈
R1×Cv⃗ . If the inner-product is negative, v⃗c is projected to the plane perpendicular to q⃗.

[v⃗-ReLU(V)]c =

v⃗c if
〈
v⃗c,

q⃗
∥q⃗∥

〉
≥ 0,

v⃗c −
〈
v⃗c,

q⃗
∥q⃗∥

〉
q⃗

∥q⃗∥ . otherwise.
(8)

Invariance layer. The invariance function Ω(·) maps the rotation equivariant vector
feature V ∈ RCv⃗×3 to a rotation-invariant scalar feature Ω(V) ∈ RCv⃗ with the same
channel dimension Cv⃗. At each layer c = 1, . . . , Cv⃗, [Ω(V)]c ∈ R takes the inner
product of v⃗c with the channel-averaged direction:

[Ω(V)]c =

〈
v⃗c,

v⃗

∥v⃗∥

〉
, (9)

where v⃗ = 1
Cv⃗

∑Cv⃗

c′=1 v⃗c′ is the channel-averaged vector feature. One can verify that
applying any rotation on the vector feature does not change the inner product. Our Ω
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Table 1: ShapeNet implicit reconstruction from sparse noisy point clouds. The grid
resolutions are marked for ConvONet and IF-Net.

SO(3) equiv. Mean IoU ↑ Chamfer-ℓ1 ↓ Normal consist. ↑

ONet × 0.736 0.098 0.878
ConvONet-2D (3×642) × 0.884 0.044 0.938

ConvONet-3D (323) × 0.870 0.048 0.937
IF-Net (1283) × 0.887 0.042 0.941

GraphONet (ours) × 0.904 0.038 0.946

VN-ONet ✓ 0.694 0.125 0.866
E-GraphONet-SO(3) (ours) ✓ 0.890 0.041 0.936

adopts from [15] with modification. Ours is parameter-free using averaged direction,
while [15] learns this vector.

The invariance function is applied in each linear layer in Eq. (7) to share the informa-
tion between vector and scalar parts of the feature. In addition, at the end of equivariant
graph feature network Φgraph, Ω(V) is concatenated with the scalar feature as the final
invariant local latent feature z⃗p⃗ = Ω(V)∥h⃗ , as to be locally invariant with transformed
p⃗ and X in line with Eq. (3).

5.2 Extension to similarity transformations

While existing vector-based equivariance methods [15,34] apply only to the SO(3)
group5, we extend our method to be equivariant to the similarity transformation group
that further includes translation and scale transformations as subgroups.
Translation. The local graph structure is robust to rotation by design. The method can
further achieve numerically guaranteed translation equivariance simply by removing the
absolute coordinates input p⃗ from the graph layers in Eq. (5), keeping only the relative
positions as the spatial cue.
Scale. As vectors hold scale information from their norms, we extend the method
for scale equivariance by modifying to normalize the invariance function Ω(V) ←
Ω(V)/∥Ω(V)∥ based on Eq. (9). Likewise, in each layer the scalar features are scale
invariant and the vectors are scale equivariant.

6 Experiments

We experiment on implicit surface reconstruction from sparse and noisy point observa-
tions. In addition, we evaluate the implicit reconstruction performance under random
transformations of rotation, translation and scaling. Our method is referred to as Graph
Occupancy networks, or GraphONet, while E-GraphONet is the equivariance model
with 3 variants: SO(3), SE(3) and similarity transformations (Sim.).
Implementation details. We implement our method using PyTorch [28]. The number of
neighbours in k-NN graph is set as 20. For the multi-scale graph implicit encoder, we
take L = 2, i.e., the point set is downsampled twice with farthest point sampling (FPS) to

5 More generally, it is the O(3) group. Reflection is handled as well.
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Input GT ONet ConvONet-2D ConvONet-3D IF-Net GraphONet
(ours)

VN-ONet E-GraphONet
(ours)

Non-equivariant models Equivariant models

Fig. 5: ShapeNet object reconstruction in canonical space. GraphONet is among
the best performing non-equivariant implicit representation methods; E-GraphONet
significantly improves on the existing equivariant method VN-ONet [15].

Table 2: Implicit surface reconstruction with random rotation, IoU↑. The left table
evaluates non-equivariant methods, and the right one compares the best performing
model with equivariant methods. I denotes canonical pose and SO(3) random rotation. I
/ SO(3) denotes training with canonical pose and test with random rotation, and so on. ∗:

models not re-trained with augmentation due to guaranteed equivariance.

training / test I / I I / SO(3) SO(3) / SO(3)

ONet 0.742 0.271 [-0.471] 0.592 [-0.150]

ConvONet-2D 0.884 0.568 [-0.316] 0.791 [-0.093]

ConvONet-3D 0.870 0.761 [-0.109] 0.838 [-0.032]

GraphONet (ours) 0.904 0.846 [-0.058] 0.887 [-0.017]

training / test equiv. I / I I / SO(3) SO(3) / SO(3)

GraphONet (ours) × 0.904 0.846 [-0.058] 0.887 [-0.017]

VN-ONet SO(3) 0.694 0.694 [-0.000] 0.694∗ [-0.000]

E-GraphONet (ours) SO(3) 0.890 0.890 [-0.000] 0.890∗ [-0.000]

20% and 5% of the original cardinality respectively. The permutation invariant function
AGGRE adopts mean-pooling for vector features and max-pooling for scalar features.
We use an Adam optimizer [23] with γ = 10−3, β1 = 0.9 and β2 = 0.999. Main
experiments are conducted on the ShapeNet [6] dataset with human designed objects,
where the train/val/test splits follow prior work [10,29] with 13 categories. Following
[29], we sample 3000 surface points per shape and apply Gaussian noise with 0.005
standard deviation. More details are provided in the supplementary material.

6.1 Canonical-posed object reconstruction

We experiment on ShapeNet object reconstruction following the setups in [29]. For
quantitative evaluation in Table 1, we evaluate the IoU, Chamfer-ℓ1 distance and normal
consistency, following [25,29]. The qualitative results are shown in Fig. 5. Our Gra-
phONet outperforms the state-of-the-arts methods ConvONet [29] and IF-Net [9], as our
graph-based method aggregates local feature free of spatial grid resolution and captures
better local details. IF-Net is better than ConvONet but at large memory cost per batch
with 1283 resolution grid feature. For rotation equivariant models, our E-GraphONet
significantly outperforms VN-ONet [15], benefiting from the graph local features.
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Table 3: Implicit surface reconstruction performance under various types of
seen/unseen transformations, mIoU↑.

Transformation(s)
equiv.

- translation scale rot. & transl. rot. & scale transl. & scale all
Training augmentation - × ✓ × ✓ × ✓ × ✓ × ✓ × ✓

ONet × 0.738 0.221 0.716 0.423 0.685 0.154 0.585 0.235 0.591 0.202 0.713 0.121 0.573
ConvONet-2D (3×1282) ×‡ 0.882 0.791 0.878 0.812 0.850 0.532 0.771 0.542 0.789 0.723 0.838 0.481 0.728

ConvONet-3D (643) ×‡ 0.861 0.849 0.856 0.797 0.837 0.759 0.836 0.742 0.832 0.771 0.835 0.721 0.803
GraphONet (ours) ×‡ 0.901 0.884 0.898 0.857 0.893 0.837 0.881 0.798 0.880 0.852 0.888 0.798 0.874

VN-ONet SO(3) 0.682 0.354 0.667 0.516 0.662 0.357 0.658 0.511 0.666 0.360 0.638 0.309 0.615
E-GraphONet (ours) SO(3)‡ 0.887 0.823 0.876 0.824 0.880 0.825 0.877 0.825 0.882 0.726 0.872 0.729 0.870
E-GraphONet (ours) SE(3) 0.884 0.884 0.884∗ 0.840 0.880 0.884 0.884∗ 0.838 0.880 0.841 0.878 0.840 0.878

E-GraphONet (ours) Sim.† 0.882 0.882 0.882∗ 0.882 0.882∗ 0.882 0.882∗ 0.882 0.882∗ 0.882 0.882∗ 0.882 0.882∗

†Similarity transformation group. ‡ The (graph) convolution subnetwork is translation equivariant. ∗with no augmentation due to guaranteed equivariance.

w/o
transformations

Rotation

Translation

Scale

ONet ConvONet-2D ConvONet-3D VN-ONet 
SO(3) 

GraphONet 
(ours) 

E-GraphONet 
SO(3) (ours) 

E-GraphONet 
SE(3) (ours) 

E-GraphONet 
Sim. (ours) 

Fig. 6: Implicit surface reconstruction under unseen transforms. Visualizing back-
transformed shapes. Shapes are scaled by a factor of 0.25, and translation is from the unit
cube center to the corner. E-GraphONet-Sim is robust to all similarity transformations.
See the appendix video for reconstructions under different poses and scales.

6.2 Evaluation under geometric transformations

Rotation. First, we investigate how implicit models perform under random rotations,
which is challenging for neural implicits [14]. In Table 2 left, GraphONet shows the
smallest performance drop among all non-equivariant methods under rotations, either
with (SO(3) / SO(3)) or without augmentation (I / SO(3)) during training, since the graph
structure is more robust to rotations. ConvONet [29]-2D is more sensitive than the 3D
version, as 3D rotation would lead to highly distinct 2D projections. In Table 2 right,
E-GraphONet, equipped with equivariant layers, achieves better performance under
random rotations, even when the non-equivariant methods are trained with augmentation.
It also outperforms the previous equivariant method VN-ONet [15] by a large margin.

Scale, translation and combinations. We evaluate how implicit methods perform under
various similarity transformations besides SO(3) rotation, including scale, translation and
combinations. We apply random scales and rotations in a bounded unit cube [−0.5, 0.5]3,
as assumed by grid methods, and set the canonical scale to be half of the cube. ConvONet
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Table 4: Parameter- and data-efficiency.
Evaluated on the full test set with 5 runs of
130 randomly sampled training examples.

#param. IoU↑

ConvONet-2D 2.0× 106 0.727 ±0.009
ConvONet-3D 1.1× 106 0.722 ±0.008

GraphONet (ours) 1.9× 105 0.867 ±0.004
E-GraphONet (ours) 6.5× 104 0.873 ±0.002
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Fig. 7: Ablation on hybrid feature chan-
nels. Mixed vectors and scalars are more
effective and efficient than pure vectors.

resolutions are doubled to keep the effective resolution. Random scaling and translation
are added under the constraint of the unit bound, with the minimum scaling factor of 0.2.

From the results in Table 3, GraphONet is more robust to transformations than other
non-equivariant models. For equivariant models, VN-ONet and the SO(3) E-GraphONet
models perform poorly on other types of transformations, as they are optimized towards
the rotation around origin only. Similarly, the SE(3) E-GraphONet does not generalize to
scaling. Our model with full equivariance performs well on all similarity transformations
with numerically the same performance. Fig 6 shows qualitative examples, where our
E-GraphONet-Sim handles all types of unseen similarity transformations.

6.3 Analysis

We show some ablation experiments while more results are provided in the Appendix.
Learning from very few training examples. We show that our graph method is both
parameter- and data-efficient, and the transform-robust modeling inherently benefits gen-
eralization. As reported in Table 4, we use less than 10% of the parameters of ConvONet
as the graph conv kernel shares parameters for all directions. We evaluate the test set per-
formance when training on only 130 examples - 10 per class - instead of the full training
set size of 30661. While ConvONets fail to achieve good performance, GraphONets does
not drop by far from the many-shot results in Table 1.The E-GraphONet demonstrates
even better performance, with more parameter-sharing from the equivariance modeling,
indicating better power of generalization.
Ablation on vector and scalar feature channels. We validate our design of hybrid
features by experimenting different ratio of vector and scalar channels. We constrain in
total 48 effective channels, with one vector channel counted as three scalars. In Fig. 7,
using both vectors and scalars with a close-to-equal ratio of effective channels obtains
higher performance with less memory cost than using pure vectors, i.e., in the Vector
Neurons [15]. This indicates the expressive power of the scalar neuron functions. We
provide additional results for non-graph-based equivariant models in the Appendix.

6.4 Scene-level reconstructions

In addition to the ability of handling object shape modeling under transformations, our
graph implicit functions also scale to scene-level reconstruction. We experiment on two
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ConvONet-3D ConvONet-2D

GraphONet (ours) E-GraphONet SE(3) (ours)

GT ONetInput

GT

ConvONet-3D

Input

GraphONet (ours)

Fig. 8: Indoor scene reconstructions on Synthetic rooms (left) and ScanNet (right).
Our GraphONet produces shaper edges and better finer details.

datasets: (i) Synthetic Rooms [29], a dataset provided by [29], with rooms constructed
with walls, floors, and ShapeNet objects from five classes: chair, sofa, lamp, cabinet
and table. (ii) ScanNet [13], a dataset of RGB-D scans of real-world rooms for testing
synthetic-to-real transfer performance.

Table 5: Indoor scene reconstructions.

Dataset Synthetic room ScanNet
IoU↑ Chamfer↓ Normal↑ Chamfer↓

ONet 0.514 0.135 0.856 0.546
ConvONet-2D (3×1282) 0.802 0.038 0.934 0.162

ConvONet-3D (643) 0.847 0.035 0.943 0.067
GraphONet (ours) 0.883 0.032 0.944 0.061

E-GraphONet (ours) 0.851 0.035 0.934 0.069

We train and evaluate our model on Syn-
thetic room dataset [29] using 10,000 sampled
points as input. The quantitative results are
shown in Table 5 and qualitative results in
Fig. 8 (left). Our GraphONet performs better
than ConvONets [29] at recovering detailed
structures. We evaluate the SE(3) variant of
our equivariance model, and it performs gen-
erally well, but less smooth at flat regions. In addition, we evaluate the model transfer
ability of our method on ScanNet [13] with the model trained on synthetic data, for
which we report the Chamfer measure in Table 5. Our GraphONet ourperforms other
methods. Fig. 8 (right) shows a qualitative example of our reconstructions.

6.5 Limitations and future work

A limitation that comes with equivariance is that, by constraining the model complexity
to conform to equivariant designs, expressive power may be affected as well. As a
consequence, accuracy drops in stylized settings and datasets. In particular, we observe
that the shapes generated from equivariance models are usually less smooth than non-
equivariant methods. We argue that the restricted power of equivariance models limits
the ability to identify the denoised geometry from the noisy point observations, while at
the same time, the equivariant model are designed to avoid leveraging the prior of the flat
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planar structures. To this end, relevant future directions include exploring more powerful
equivariant models, or incorporating filtering techniques for implicit fields [44].

7 Conclusion

In this paper, we introduce graph implicit functions, which learn local latent features from
k-NN graph on sparse point set observations, enabling reconstruction of 3D shapes and
scenes in fine detail. By nature of graphs and in contrast to regular grid representations,
the proposed graph representations are robust to geometric transformations. What is
more, we extend the proposed graph implicit functions with hybrid feature equivariant
layers, thus guarantee theoretical equivariance under various similarity transformations,
including rotations, translations and scales, and obtain models that generalize to arbitrary
and unseen transformations.
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A Discussion and proof of the equivariance model

We discuss the equivariance properties of proposed graph equivariant implicit functions
and present the mathematical proof for the equivariant layers.

A.1 Relevance of layer equivariance and model equivariance

We review the definition of the equivariance of the implicit function model in Section 3.
In Eq. (3), we show that equivariance is satisfied if the implicit function is locally
invariant to any Tg applied jointly to the observation X and the query p⃗, for any X
and p⃗. Invariance is a special case of equivariance, where the transformation T ∗

g on the
output domain is the identity function, i.e., the output is invariant regardless of the input
transformation Tg .

In this section, we clarify the use of layer equivariance in creating the equivariant
implicit function model. As in Eq. (4), the graph implicit function model Fgraph is
composed of the graph latent feature extractor Φgraph and the implicit decoder Ψ , where
Φgraph can be further decomposed to the point encoder ϕ and the graph local latent
aggregator ψ. We integrate the equivariant layers in ϕ and ψ that process the input point
set X and the queries p⃗. As shown by the literature, the composition of two equivariant
functions is also an equivariant function [37]. Thus, the graph local feature extractor
Φgraph that stacks sequential equivariant graph layers in ϕ and ψ is equivariant. Note that
all the operations other than the graph convolutions involved in ϕ and ψ, such as the
k-NN graph extration and the farthest-point-sampling for the multi-scale feature, are
equivariant to the similarity transformations as well. At the end of all the equivariant
graph layers in ϕ and ψ, we apply the invariance function Ω to obtain the locally
invariant latent feature. The implicit decoder Ψ , which processes the invariant local
latent feature and predicts the occupancy probability, is simply a standard ReLU-MLP
as the non-equivariant implicit models. We do not include the query coordinate input
p⃗ in the implicit decoder Ψ in order to satisfy translation equivariance, while the local
latent feature already contains the position information. Since the local latent feature is
locally invariant, the output is locally invariant as well, which satisfies Eq. (3). Thus far,
we have shown how the equivariant graph layers help to build the equivariant implicit
function model.

A.2 Proof of translation equivariance

We discuss the translation equivariance property in separate from other transformation
groups. Because the translation equivariance property in our method is from the use of the
local graph structure, while the equivariant properties of other similarity transformations,
including rotations, reflections and scaling, rely on the hybrid features, especially the
vector part. Each of the graph layers are locally invariant to the continuous translation
group.

For any input points and queries, we discard the absolute global coordinate inputs,
and manipulate on the relative positions within a local graph structure in all graph
layers in ϕ and ψ. We consider an edge connects an input point x⃗i′ and a query p⃗ in an
equivariant graph layer in the graph latent aggregator ψ, then the input vector feature
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is x⃗i′ − p⃗. if a translation vector t⃗ is applied on all the points, then the input feature
becomes

(x⃗i′ − t⃗)− (p⃗− t⃗) = x⃗i′ − p⃗. (10)

Thus, the input is invariant to the translation t⃗, so is the output of the graph layer. And
similarly for the graph layers in the point encoder ϕ. Therefore, the whole graph function
is translation-invariant for local predictions from any 3D point inputs, which means that
our graph implicit function, local to each of the query locations, is translation equivariant.

A.3 Proof of rotation, scaling and reflection equivariance

Next, we show the equivariance properties on other transformations including rotations,
reflections and scaling. We assume that the scalar feature h⃗ is invariant to these transfor-
mations, while the vector feature V is equivariant, before the invariance function Ω is
applied. Formally, we consider an arbitrary orthogonal matrix Q ∈ R3×3 encoding a 3D
rotation with a possible reflection, and an arbitrary positive scalar s ∈ R+ for the scale
transformation applied on the features. The scalar and vector features h⃗ and V are then
transformed into sVQ⊤ and h⃗ respectively. Note here the orthogonal matrix applying to
a stack of vector features V = [v⃗1, v⃗2, . . . , v⃗Cv ]

⊤ ∈ RCv×3 returns (QV⊤)⊤ = VQ⊤.
We study how the output of each layer changes with the change of the inputs.

Invariance layer We first show that the invariance function works for any 3× 3 orthogo-
nal matrix Q ∈ R3×3 encoding 3D rotation and reflection and any random scaling factor
s ∈ R, such that Ω(sVQ⊤) = Ω(V):

Ω(sVQ⊤) =

〈
sVQ⊤, sQv⃗

∥sQv⃗∥

〉
∥∥∥〈sVQ⊤, sQv⃗

∥sQv⃗∥

〉∥∥∥ =
s
〈
VQ⊤, Qv⃗

∥v⃗∥

〉
s
∥∥∥〈VQ⊤, Qv⃗

∥v⃗∥

〉∥∥∥
=

〈
Q−1QV, v⃗

∥v⃗∥

〉
∥∥∥〈Q−1QV, v⃗

∥v⃗∥

〉∥∥∥ =

〈
IV, v⃗

∥v⃗∥

〉
∥∥∥〈IV, v⃗

∥v⃗∥

〉∥∥∥
=

〈
V, v⃗

∥v⃗∥

〉
∥∥∥〈V, v⃗

∥v⃗∥

〉∥∥∥
= Ω(V),

(11)

where in the second row of Eq. (11), the orthogonal matrices Q are cancelled out in
the inner product. Here we adopt a slightly abused notation to have the inner product
between a stack of vector features V = [v⃗1, v⃗2, . . . , v⃗Cv ]

⊤ and the average vector v⃗,
such that

〈
V, v⃗

〉
= [

〈
v⃗1, v⃗

〉
,
〈
v⃗2, v⃗

〉
, . . . ,

〈
v⃗Cv , v⃗

〉
]⊤.

Linear layer Next, we show that our hybrid feature linear layer is equivariant to the
rotation, reflection, and scaling transformations, encoded by arbitrary Q and s. Without
these transformations, we consider {h⃗′,V′} as the outputs for {h⃗,V} from the layer
denoted by f , i.e., {h⃗′,V′} = f

(
{h⃗,V}

)
; while under the transformations encoded by
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Q and s, we denote the outputs as {h⃗′′,V′′} = f
(
{h⃗, sVQ⊤}

)
. For the equivariance

of f , we need to show that:

h⃗′′ = h⃗′, and V′′ = sV′Q⊤, (12)

in which we assume that the vector feature V is equivariant for rotations, reflections and
scaling, while the scalar feature h⃗ is invariant to these transformations.

For the scalar feature output in Eq. (6), one can simply verify the invariance

h⃗′′ = Whh⃗+Wv⃗h Ω(sVQ⊤)

= Whh⃗+Wv⃗h Ω(V)

= h⃗′.

(13)

Here the invariance function returns

Ω(sVQ⊤) = Ω(V), (14)

as shown in Eq. (11). For the vector feature output in Eq. (6),

V′′ = Wv⃗ (sVQ⊤)⊙
(
Whv⃗ h⃗ / ∥Whv⃗ h⃗∥

)
= s

(
Wv⃗V ⊙

(
Whv⃗ h⃗ / ∥Whv⃗ h⃗∥

))
Q⊤

= sV′Q
⊤

(15)

Thus far we have shown the equivariance of the linear layers.

Non-linearity For the non-linearity, the scalar features take simple ReLU activation,
hence the invariance is easily ensured as no equivariant vector feature is involved for the
output scalar feature.

For the vector non-linearity v⃗-ReLU in Eq. (8), we first reason that the transforma-
tions Q and s does not influence whether the vector feature v⃗c at each channel c falls in
the positive or the negative part of the piecewise non-linearity. With the untransformed
feature v⃗c, the positive case is judged by

〈
v⃗c,

q⃗
∥q⃗∥

〉
≥ 0; while with the transformed

feature vector sQv⃗c, the learned direction vector q⃗ is transformed accordingly into
sQq⃗. Then, the condition of the positive case becomes

〈
sQv⃗c,

sQq⃗
∥sQq⃗∥

〉
≥ 0, which is

equivalent to the condition without the transformations, as the orthogonal matrices Q
are cancelled out and the positive scaling factor s does not change the sign. The same
for the negative case.

Next, we show the equivariance in both positive and negative cases of the non-
linearity in Eq. (8). When transformations Q and s are applied, in the positive case,

[v⃗-ReLU(sVQ⊤)]c = sQv⃗c

= sQ[v⃗-ReLU(V)]c;
(16)
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while in the negative case,

[v⃗-ReLU(sVQ⊤)]c = sQv⃗c −
〈
sQv⃗c,

sQq⃗

∥sQq⃗∥

〉
sQq⃗

∥sQq⃗∥

= sQ

(
v⃗c −

〈
v⃗c,

q⃗

∥q⃗∥

〉
q⃗

∥q⃗∥

)
= sQ[v⃗-ReLU(V)]c

(17)

Thus,

v⃗-ReLU(sVQ⊤) = s (v⃗-ReLU(V))Q⊤, or (18)

V′′ = sV′Q
⊤ (19)

has been proven in both the positive and the negative cases of the vector ReLU function,
indicating the equivariance of the non-linear layer with regard to rotation, reflection and
scaling.

B Detailed formulations of graph fuctions in multiple scales

We provide the detailed formulation of the layers in the multi-scale graph point encoder
ϕ and the multi-scale graph latent feature decoder ψ in Sec 4.2. Here we show the
formulations with only the scalar features for the non-equivariant graph implicit model.
All these formulations can be easily adapted to the equivariant model by replacing the
scalar features to the hybrid features of both scalars and vectors.

Graph point encoder. The point encoder ϕ is composed of graph convolution layers
in the downsampling stage, starting from l = 0 to l = L, followed by the upsampling
layers from l = L− 1 back to l = 0.

In each graph convolution layer with the sampled point set X(l) by farthest-point-
sampling in the downsampling stage, we obtain the hidden feature h⃗(l)i for any sampled
point at this level x⃗i ∈ X(l). To do this, we use graph convolution to aggregate infor-
mation from the k-nearest neighbor points of x⃗i, denoted as x⃗i′ . The information from
the neighboring points to be aggregated is the hidden feature from the previous layer
h⃗
(l−1)
i′ . Within the local k-NN graph structure, messages are passed through η(l)↓ , hence

concatenating the inputs for a shared two-layer ReLU-MLP, and a permutation-invariant
aggregation function AGGRE; e.g., max- or mean-pooling operator:

h⃗
(l)
i = AGGRE

i′
η
(l)
↓ (⃗h

(l−1)
i , h⃗

(l−1)
i′ , x⃗i′ − x⃗i). (20)

Note that there is an exception in Eq. 20 with l = 0, where the input features are the raw
coordinates.

In each upsampling layer, the point feature h⃗(l)i for any x⃗i ∈ X(l) at a finer sampling
level l takes information from h⃗

(l+1)
i′ , the hidden feature associated to x⃗i’s 1-nearest

neighbor point x⃗i′ from the sampled point set X(l+1) from the previous sampling level.
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In addition, we skip-connect h⃗(l)i , the feature at the same level from the downsampling
stage, which is akin to the U-Net structure in grid-based methods:

h⃗
(l)
i ← η

(l)
↑ (⃗h

(l+1)
i′ , h⃗

(l)
i ), (21)

where η(l)↑ is a linear layer with a ReLU activation for the concatenation of inputs.

Graph local latent feature aggregator. Given the query coordinate p⃗, we use graph
convolutions to aggregate the k-neighboring features {(x⃗i′ , h⃗(l)i′ )} at different sampling
levels l. The aggregated features z⃗(l)p⃗ from all sampling levels l are concatenated to yield
the local latent vector z⃗p⃗ as output:

z⃗p⃗ =
L

∥
l=0

z⃗
(l)
p⃗ , where (22)

z⃗
(l)
p⃗ = AGGRE

i′
η(l)(p⃗, h⃗

(l)
i′ , x⃗

(l)
i′ − p⃗), (23)

Likewise, η(l) is a two-layer ReLU-MLP for the concatenated inputs, and ∥ denotes
concatenation over sampling levels.

C Implementation details

We use PyTorch [28] to implement our method and run experiments on a single NVIDIA
GeForce GTX 1080 Ti GPU. We train the network using the Adam optimizer [23] with
the initial learning rate is set as 10−3 for fast convergence for 200K iterations, followed
by a finetuning of 100K iterations with the learning rate 10−4. Other hyperparameters
and initializations follow the default setups in PyTorch.

The number of neighbors in k-NN graphs is set as k = 20 for all the graph convo-
lution layers. For the multi-scale graph structure, the point set is downsampled twice
with farthest point sampling (FPS) to 20% and 5% of the original cardinality respec-
tively. The permutation invariant function AGGRE is a mean-pooling aggregation for
vector features and a max-pooling for scalar features. Empirically, we find that using
vector max-pooling function as in [15] generates artifacts in the qualitative results, so
we simply take the average of the vector features. For the non-equivariant GraphONet,
the number of output feature channels is set as 64 for all the layers in the graph latent
feature extractor function Φ. For the equivariance model E-GraphONets with hybrid
features, the number of output channels for the vector features is 8, and 32 for scalar
features. For the input geometric features, the 3D coordinates or the relative position are
considered as 3 channels for the GraphONet, or 1 vector channel and 0 scalar channel
for the equivariant layer. For both equivariant and non-equivariant models, the implicit
decoder F is the same as that in the ConvONet [29], which is a light-weight ReLU-MLP
architechture with skip-connections.
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D Additional experiments and results

D.1 Vector vs. scalar channels in hybrid feature equivariant layers.

We extend the ablation experiments on hybrid feature channels in Fig. 7 of the main paper.
Here we show that our hybrid feature paradigm benefits different architectures and tasks.
For implicit surface reconstruction, we evaluate the equivariant implicit model without a
graph embedding. We follow the VN-ONet architecture and the implementation details
from [15], and use hybrid layers instead of pure vector neuron layers. In addition, we
evaluate point cloud classification on the ModelNet40 dataset. Similarly, the architecture
and the experimental setups follow VN-PointNet from [15], and we replace a portion of
vector channels with scalars in each layer. We evaluate the performance with different
ratios of vector channels, where one vector channel is equivalent to three scalar channels.

In Table 6, we report the performance with different ratio of vector channels, where
one vector channel is considered equivalent to three scalar channels. In both cases, our
method with hybrid features achieves higher accuracy than pure vector features (100%)
as in [15]. The conclusion is consistent with the ablation experiments in Fig. 7 of the
main paper, and our hybrid feature paradigm is advantageous in general cases.

Table 6: Ablation on vector vs. scalar channels. We evaluate on ShapeNet surface
reconstruction with non-graph structured equivariant implicit models, and ModelNet40
point cloud classification with equivariant point cloud networks, for which we follow
the VN-PointNet and the VN-ONet architectures in [15] and use hybrid layers instead of
pure vector neuron layers.

Ratio of vector channels 0% 12.5% 25% 50% 75% 87.5% 100%

ShapeNet implicit surface reconstruction (mIoU) 0.408 0.630 0.707 0.719 0.719 0.704 0.694
ModelNet40 point cloud classification (mAcc) 0.808 0.830 0.852 0.856 0.855 0.852 0.847

D.2 Ablation on the architecture.

We ablate the implementation choices of our models. First, we explore how our models
perform without the multi-scale sampling design on the ShapeNet object reconstruction
and the Synthetic Room (SynRoom) scene reconstruction tasks. In Table 7, we show that
the scene reconstruction performance drops more without the multi-scale architecture,
while the difference in object reconstruction performance is subtle. We argue that scene
reconstruction is a more complex task, so the multi-scale design plays a more important
role to aggregate global and local context in different scales.

Then, we show the effect of using different point cloud encoders in our graph models
and the baseline methods ConvONets [29]. The results are in Table 8. For the graph
models, the scene-level reconstruction performance drops much more when the graph
encoder is replaced by a PointNet encoder. The results indicate that both the locality
modelling and the awareness of the translation equivariance from the graph encoder
are more crucial for scene-level reconstruction as a more comlex task. However, in
ConvONets, using the graph point encoder instead of the PointNet encoder does not
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Table 7: Graph functions with and without multi-scale graph neighbor samplings.
The multi-scale structure improves more on scene reconstruction performance.

Model GraphONet E-GraphONet
Dataset ShapeNet SynRoom ShapeNet SynRoom

Multi-scale sampling 0.904 0.883 0.890 0.848
Single-scale sampling 0.897 [-0.007] 0.859 [-0.024] 0.884 [-0.006] 0.814 [-0.034]

Table 8: Implicit functions with different point encoders. Graph models with graph
point encoders replaced by PointNets would lead to more performance drop on scenes
than on objects, because PointNet models no locality or translation equivariance which
are more crucial for scenes; ConvONets with different point encoders show similar
performance, because in such methods, feature embedding relies more on the grid
encoder than the point encoder.

Model GraphONet E-GraphONet ConvONet-2D ConvONet-3D
Dataset ShapeNet SynRoom ShapeNet SynRoom ShapeNet SynRoom ShapeNet SynRoom

Graph encoder 0.904 0.883 0.890 0.848 0.881 [-0.003] 0.803 [+0.001] 0.872 [+0.002] 0.853 [+0.006]

PointNet encoder 0.887 [-0.017] 0.826 [-0.057] 0.879 [-0.011] 0.797 [-0.051] 0.884 0.802 0.870 0.847

lead to a significantly improved performance. Unlike our graph methods, ConvONets
learn the latent feature with an intermediate grid feature tensor. So feature embedding
in ConvONet relies more on the regular convolution layers applied on the grid feature,
while the point encoder plays a less important role.

D.3 Learning curve with limited training data.

We explore how the implicit model performs with very few training data of 130 examples,
and provide the validation loss curve, as illustrated in Fig. 9. This result is a supplement
to the test performance in Table 4 of the main paper. Both ConvONet-2D and ConvONet-
3D suffer from overfitting in the very early stage of training, prior to 500 training steps.
By contrast, our graph methods are able to learn properly from very few training data.
The equivariant model is with better validation loss and more stable learning curve,
which indicates that the equivariance property works as a regularization that controls the
model complexity.

D.4 More qualitative and quantitative results.

We evaluate ShapeNet reconstruction performance by each object category. The results
are shown in Table 9, where our graph model shows better performance with most of the
object categories.

In Fig. 10, we show some additional ShapeNet reconstruction examples under
transformations. Our final equivariance model guarantees equivariance to all kinds of
similarity transformations.

Though not the main focus of this paper, our method scale to scene-level reconstruc-
tions, and we show some more room reconstruction examples in Fig. 11. Our GraphONet
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models better details. The equivariant model E-GraphONet achieves relatively good
performance but generates more noisy artifacts, especially on the synthetic-to-real evalu-
ation on the ScanNet dataset with corrupt areas in the point cloud scans. We argue that
the restricted representation power of the equivariant layers limits the model to learn
denoising and completion alongside reconstruction while generalize to more complex
corrupted scenes. See the discussion on the limitation in the main paper.
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Fig. 9: Learning curve with 130 training examples. We show the validation loss curves.
Graph methods can learn properly from very few training data, while ConvONets suffer
from overfitting.

Table 9: Category-specific ShapeNet reconstruction performance. We evaluate our
methods and compare with the baseline implicit representation models.

ConvONet-2D [29] ConvONet-3D [29] IF-Net [9] GraphONet E-GraphONet-SO(3)
IoU Chamfer Normal IoU Chamfer Normal IoU Chamfer Normal IoU Chamfer Normal IoU Chamfer Normal

airplane 0.849 0.034 0.931 0.849 0.033 0.932 0.862 0.031 0.936 0.881 0.027 0.941 0.867 0.028 0.930
bench 0.830 0.035 0.921 0.791 0.041 0.911 0.815 0.037 0.915 0.836 0.034 0.924 0.807 0.037 0.906
cabinet 0.940 0.046 0.956 0.923 0.054 0.953 0.936 0.048 0.956 0.943 0.047 0.958 0.927 0.050 0.944

car 0.886 0.075 0.893 0.877 0.080 0.891 0.890 0.072 0.894 0.897 0.068 0.895 0.890 0.072 0.886
chair 0.871 0.046 0.943 0.853 0.049 0.942 0.878 0.043 0.946 0.895 0.039 0.951 0.879 0.043 0.939

display 0.927 0.036 0.968 0.904 0.042 0.965 0.923 0.036 0.968 0.936 0.034 0.972 0.922 0.036 0.963
lamp 0.785 0.059 0.900 0.792 0.066 0.910 0.820 0.047 0.916 0.847 0.042 0.922 0.848 0.040 0.915

loudspeaker 0.918 0.064 0.939 0.914 0.065 0.942 0.928 0.056 0.945 0.938 0.053 0.946 0.936 0.055 0.941
rifle 0.846 0.028 0.929 0.826 0.031 0.924 0.842 0.028 0.928 0.877 0.022 0.943 0.868 0.023 0.933
sofa 0.936 0.042 0.958 0.923 0.046 0.956 0.938 0.040 0.959 0.946 0.037 0.963 0.931 0.041 0.951
table 0.888 0.038 0.959 0.860 0.043 0.956 0.880 0.038 0.959 0.896 0.036 0.963 0.869 0.040 0.950

telephone 0.955 0.027 0.983 0.942 0.030 0.981 0.949 0.027 0.983 0.954 0.026 0.983 0.946 0.027 0.979
vessel 0.865 0.043 0.919 0.860 0.045 0.919 0.876 0.040 0.923 0.901 0.033 0.934 0.892 0.035 0.924

mean 0.884 0.044 0.938 0.870 0.048 0.937 0.887 0.042 0.941 0.904 0.038 0.946 0.890 0.041 0.936



26 Y. Chen et al.

Rotation

Translation

Scale

ONet ConvONet-2D ConvONet-3D VN-ONet
SO(3)

GraphONet
(ours)

E-GraphONet
SO(3) (ours)

E-GraphONet
SE(3) (ours)

E-GraphONet
Sim. (ours)

Rotation

Translation

Scale

ONet ConvONet-2D ConvONet-3D VN-ONet
SO(3)

GraphONet
(ours)

E-GraphONet
SO(3) (ours)

E-GraphONet
SE(3) (ours)

E-GraphONet
Sim. (ours)

Rotation

Translation

Scale

ONet ConvONet-2D ConvONet-3D VN-ONet
SO(3)

GraphONet
(ours)

E-GraphONet
SO(3) (ours)

E-GraphONet
SE(3) (ours)

E-GraphONet
Sim. (ours)

Fig. 10: More examples on ShapeNet object reconstruction under unseen transfor-
mations. With transformations we show the back-transformed shapes.
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Fig. 11: More scene reconstruction examples. The left three columns are from the
Synthetic Room dataset. The right two columns are from ScanNet.
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