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Abstract

Recently, neural implicit functions have achieved
impressive results for encoding 3D shapes. Con-
ditioning on low-dimensional latent codes gener-
alises a single implicit function to learn shared
representation space for a variety of shapes, with
the advantage of smooth interpolation. While the
benefits from the global latent space do not corre-
spond to explicit points at local level, we propose
to track the continuous point trajectory by match-
ing implicit features with the latent code interpo-
lating between shapes, from which we corroborate
the hierarchical functionality of the deep implicit
functions, where early layers map the latent code
to fitting the coarse shape structure, and deeper
layers further refine the shape details. Further-
more, the structured representation space of im-
plicit functions enables to apply feature matching
for shape deformation, with the benefits to han-
dle topology and semantics inconsistency, such as
from an armchair to a chair with no arms, without
explicit flow functions or manual annotations.

1. Introduction

In recent years neural implicit functions for 3D represen-
tations (Park et al., 2019; Mescheder et al., 2019; Chen
& Zhang, 2019; Michalkiewicz et al., 2019) have gained
popularity with benefits including continuous resolution-
free representation and handling complicated topologies.
Moreover, a single implicit function can be generalised to
encode a variety of shapes, by representing each shape with
a low-dimensional latent code that conditions the function.
This is advantageous in terms of the better reconstruction
performance as well as better smoothness and reasonable
interpolations between shapes (Park et al., 2019; Chen &
Zhang, 2019; Chen et al., 2019b) compared to explicit rep-
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Figure 1. Feature Matching applied to mesh deformation.
Appearance-fitting methods overfit to the raw geometry of the
target shape and fail with inconsistent semantics or topologies
easily. Showing MeshODE (Huang et al., 2020) as an example
when deforming an armchair to a no-arm chair. Instead, feature
matching helps to resolve the semantic inconsistency issue and
generate meaningful shapes with no extra annotations.

resentations (Yang et al., 2018; Fan et al., 2017; Groueix
et al., 2018b; Chen et al., 2020).

Intuitively, implicit functions enjoy smooth interpolations
because they rely on continuous coordinates as query point
inputs. However, due to the nature of the encoding, the
learned representations are global and do not correspond
to any explicit local points. Thus, the advantage of smooth
interpolations cannot be applied to shape manipulation of
explicit 3D representations like meshes or CAD models.

We propose to extract point-level transformations from the
deep features and the gradients with regard to the coordinate
input in implicit functions. We track the continuous point
trajectory that matches with the minimum change in point-
wise features from implicit function with interpolated latent
code. These can be considered as “generalised” correspon-
dences, in the sense that the point does not necessarily lie
on the interpolated shape surface but can be at any spatial
location for the implicit function input.

The resulting transformed shapes will reflect the character-
istics of the layer where we collect features. This provides
insights of what each layer learns, which was not possible
before. By analyzing the hierarchy in standard deep implicit
functions, we find that early layers gradually map the latent
code to coarse shapes, while deeper layers refine finer de-
tails. Mid-layer features are semantically distinctive that
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encodes high-level information. We postulate that the hierar
chical nature of implicit functions with latent codes is whai
facilitates generalisation over various styles of geometry.

The inherent structure in the implicit functions allows us
to apply our method on mesh deformation, which requires
to fit a source to a target shape while preserving the local
structure (the edge connectivities) from the source shape.
Existing learning-based deformation methods (Jiang et al.,
2020a; Huang et al., 2020; Wang et al., 2019) follow the
appearance-fitting paradigm, where the deformed source
shape is enforced to fit the target shape as the training objec-
tive. Instead, we rather rely on a pre-trained shape autoen-
coding implicit function, where it learns to fit single shapes
with a standard implicit function. The point transformation
is later extracted via feature matching at inference time. As
illustrated in Figure 1, feature matching can be favourable
even though appearance fitting looks a more natural choice
for such a task. The reason is that by having to optimally
fit to different target shapes featuring their own fine details,
appearance fitting can be harmful and lead to inconsistent
semantics or topologies. Differently, feature matching does
not enforce fitting too strictly to the target geometry. We
rather match the implicit features with high-level informa-
tion, helping to resolve the semantic inconsistency issue
and generate meaningful shapes without any external part
segmentation annotations.

In this work we make the following contributions.

* We propose a way to extend latent-coded implicit func-
tions, so that they can be used for matching boundary
points between a pair of examples with minimum fea-
ture difference at different scales.

* We find out that features at different scales capture hi-
erarchically different characteristics, with earlier layers
capturing the coarser shape outlines and later layers
encoding finer shape details.

* We propose a novel shape deformation method that
matches point features. The proposed method han-
dles the challenging inconsistencies in topology and
semantics, as our approach benefits from the structured
feature space from implicit functions.

2. Method

2.1. Preliminaries on implicit functions

A neural implicit representation for a single 3D shape is a
function fp : R? — R which takes as input a 3D coordinate
of any query point from the Euclidean space z € R? and
predicts a scalar value indicating if « is inside or outside
the shape. A latent-coded implicit function Fy : R? x
R*¥ — R further generalises the function to representing
a variety of shapes by conditioning the network on a k-
dimensional latent code z € R¥ as shape identity, which is

Figure 2. Illustration of the method. left: for source shape surface
M 4 (blue) and target shape surface M p (purple), we sample
point z;—9 ~ M4 and solve the trajectory with equation (3)
and (4). Note that z:—; does not necessarily lie on M p. right:
Sampling dense points from M 4 for feature matching returns the
transformed shape 7 (M 4) (blue dashed curve).

either regressed by an encoder Ey, or jointly optimised in
the auto-decoder framework (Park et al., 2019).

For a shape M with the latent code z given, Fy(-,z)
is a scalar field being either a signed distance field
(SDF) (Park et al., 2019) or a [0, 1] occupancy probabil-
ity field (Mescheder et al., 2019; Chen & Zhang, 2019) that
represents the shape. The explicit shape surface M :=
{x € R3|Fy(x;z) = 7} is then extracted by marching-
cubes (Lorensen & Cline, 1987), with 7 the decision bound-
ary whether the query point is inside or outside the shape.
Typically 7 = .5 for occupancy fields and 7 = 0 for SDFs.

Architecture. Inasimple form, Fy is an L-layer multilayer
perceptron (MLP) network

Fop(z;2) =Wpooo---ocoWy (x®2), (1)

where o is a piecewise linear activation function (Arora
et al., 2018) (e.g. ReLU), & denotes concatenation, and for
l=1,...,L, W; : R¥~1 — R is the affine mapping
corresponding to the [-th layer weights, and wy is the width
of the [-th layer. Note that wy = k + 3 for the input layer
with the concatenation of x and z, and w;, = 1 for the
output layer. Moreover, for [ = 1,...,] — 1, we denote

@l : R3 x RF — R™! to be the first I layers of Fy

D (z;2) :=00oWjo00---00oWi (2@ 2). (2)

We refer to the output of @él) (2; 2) (or simply ®y(x; 2)) as

the implicit features at = with latent code z.

Training. Given a set of training examples {M}. The
network parameter is usually optimised with a supervised
regression loss, or a classification loss in (Mescheder et al.,
2019).. With an encoder-decoder design, it is £(6,) =
Z]\/[7$ |F9(I; Ew (M))*SMV@L with 2z = Ew(M) and SM,x
is the ground-truth signed distance or occupancy probability
value. We omit the term 6 in the following of the section for
simplicity as € is fixed after training.
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2.2. Implicit Feature Matching

The literature on unsupervised correspondence on the image
domain (Aberman et al., 2018; Choy et al., 2016), consider
as corresponding points those pixels with similar deep fea-
tures. As inspired, we track the continuous point trajectory
that minimises the change in the pointwise implicit features
with the latent code interpolation, yielding matching fea-
tures iteratively with small steps of interpolated latent code.

Given a source shape A, a target shape B and their latent
codes z4 and zp in association with a trained implicit func-
tion F, Ma = {z € R3|F(z;24) = 7} is the source
shape surface represented by F'. Our objective is to find
a shape transformation 7 which can be decomposed into
point transformations 7, such that the collection of local
transformations 7 (M) = {Tx(x)|x ~ My} yields a
reasonable shape in accordance with shape B.

Inspired by the smooth interpolated shapes with implicit
functions, we linearly interpolate the latent code as inspired
by the smooth shape interpolations from implicit functions.
2zt := (1 —1t) - z4 +t - zp yields the interpolation path of z,
with the interpolation rate ¢ € [0, 1]. Note that zp = z4 and
z1 = zp. Att = 0, the initial point coordinate is sampled
from the source shape surface xy ~ M 4. For a continuous
point trajectory initiated at x(, for any infinitesimal time
step between ¢ and ¢ + d¢, we define the displacement §; =
Ti4+dt — Xt required to achieve minimum feature difference:

5t = a”I‘gﬁnHl ||(I)(J)t + (5,;, Zt—i—dt) — (I)(ﬂft, Zt)H (3)
o <o

o is a small positive value defining a ball search region
Z14+4d¢ around x4. Our assumption is that the point trajectory
is smooth and continuous, because F' or ®, modelled as
piecewise linear functions, are continuous with the inputs z
and z (Arora et al., 2018; Atzmon et al., 2019). While an
analytical solution to the path x; is intractable, we resort to
numerical integration

t'=t
2y = 70 + / 50 @)
t/

=0

over small displacements J; iteratively achieved from Equa-
tion (3) within a small time step d¢ , until reaching ¢ = 1 for
the desired point transformation to be Ty (z¢) = xo+ fol Oy

We illustrate the main idea of our method in Figure 2.

Gauss-Newton solution. The numerical integration in
equation (4) rests upon an efficient and robust optimization
of equation (3). Viewing equation (3) as an over-constrained
(w; > 3) nonlinear equation system ®(z; + 97, z¢1dt) —
O (x, z) = 0, we resort to Gauss-Newton algorithm for a
least square solution that takes into account all first-order
partial derivatives when computing local updates and ef-
fectively performs an approximation of the second-order

no regularisation w/ regularisation

Figure 3. Regularisation. left: Nearby points on flat surface have
similar features which could cause mismatch. right: Adding small
penalty on displacement resolves the issue.

derivatives. The Newton’s optimisation has quadratic con-
vergence and empirically requires less hyperparameter tun-
ing compared to gradient descent.

The numerical solution of equation (3) is obtained by
performing N Gauss-Newton iterations. We denote the
displacement at the n-th iteration as [d],, initialised at
[5t]0 = [07 0, O}T’

[5t]n = [5t]n—1 - (JTJ}*lJT[d(D]nv )

where J = V5, ® (2 + 0p, 201a¢) = V@ (245 24) € RWX3
is the partial derivative of ® with respect to the input coordi-
nates and [d®],,_; is the feature difference with an infinites-
imal change in the input at current estimation of [d¢],,—1,

[d®]—1 = ®(x¢ + [0t]n—1, Ze4ar) — Pz, 2¢). (6)

Optimization is run for N iterations such that d; < [0y
We emphasize again that all above optimizations in equa-
tions (3), (4) and (5) are per point coordinate x.

Regularisation on displacement. Due to that the implicit
feature field ®(-;z) is highly nonconvex, especially in
deeper layers, the gradient fields V,®(-; z) show erratic
changes under small disturbances in input x. This happens
more often on flat surfaces where adjacent points share simi-
lar features, and therefore more sensitive to noise and easily
drift aside during feature matching, as illustrated in Figure 3.

To address this, we propose to add a regularisation penalty
on the norm of the displacement §. In our iterative op-
timizer, this boils down to adding the regularisation that
minimises ||[0¢], ], given ||[0¢]o|| = 0. Note the difference
from Levenberg—Marquardt algorithm, which minimises

118¢]n = 6e]n—all-

In the iterative scheme, equation (5) is in the form of the
generalised Newton’s iteration (Ben-Israel, 1966), where
we understand ([0¢],, — [0¢]n—1) as the actual target vari-
able, with equation (5) reformed as [6¢], — [0¢]n_1 =
—(JTJ)=1JT[d®],_1. Therefore, minimising is equiva-
lent to optimising for ([0¢),, — [0¢]n—1) = (—[0¢]n—1). Then
we solve it together within the same iteration by modifying
equation (5) with:

J <+ J@ \-diag(1,1,1), and (7)

[d@]n,1 — [d@]n71 DN (_[6t]nfl)a (8)
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where ) is the weighting factor for the regularisation and
diag(1, 1,1) is indeed the counterpart of the Jacobian.

2.3. Application to mesh deformation

Implicit feature matching can be applied to deforming one
source mesh to a target shape. With the source mesh as a
set (V, &, F) of vertices V and the edges £ or faces F, we
transform vertices V' with feature matching but not the edges
or faces, yeilding the deformed mesh as (7(V), £, F).

Freedom of self-intersections. Notably, an important ad-
vantage for application to mesh deformation is that our
method naturally prevents self-intersections, which implies
the existence of at least two point trajectories u; and vy
intersects at a certain intermediate time ¢*.At this moment,
ug+ = vy~ are at the same spatial location. Then for any
t’ > t*, uy = vy holds. So in the worst case there can be
some mesh vertices that collapse to be at the same position,
however, self-intersections are naturally avoided.

We clarify that may still exist due to discrete processing.
However, when the set of hyperparameters are properly
chosen in our experiments, self-intersection hardly hap-
pens with discrete tracking even in the presence of noise,,
probably due to the implicit regularisation (e.g. spectral
bias (Rahaman et al., 2019)) of the ReLU-MLP network
with coordinate inputs.

3. Related Work

Neural implicit 3D representations. Deep implicit func-
tions for 3D shapes have been shown to be highly effec-
tive for reconstruction (Park et al., 2019; Mescheder et al.,
2019; Chen & Zhang, 2019; Michalkiewicz et al., 2019).
Compared to other methods working on explicit representa-
tions (Wu et al., 2016; Fan et al., 2017; Groueix et al., 2018b;
Yang et al., 2019; 2018), they incorporate 3D coordinates
as input to the network which enables resolution-free repre-
sentation for all topologies.The applications include recon-
structing shapes from single images (Saito et al., 2019; Xu
et al., 2019; 2020), raw point clouds (Atzmon et al., 2019;
Atzmon & Lipman, 2020a;b), 4D reconstruction (Niemeyer
et al., 2019), and view synthesis (Sitzmann et al., 2019;
Mildenhall et al., 2020). Some recent advances enable to
include structural and hierarchical designs (Genova et al.,
2019; Jiang et al., 2020b; Chibane et al., 2020; Peng et al.,
2020) with implicit function models in order to be aware
of information from the local neighbourhood (Chen et al.,
2019a) of the query point. We show the inherent hierarchy
emerges in a simple latent-coded implicit function.

Learning-based shape deformation. Deformation be-
tween shapes with varying topology is a challenging prob-
lem. Recent learning-based solutions include learning the
offset of each mesh vertices (Wang et al., 2019), free-form

deformation grids (Kurenkov et al., 2018) and deformation
cages (Yifan et al., 2020). Current state-of-the-art methods
use invertible flows (Rezende & Mohamed, 2015; Kingma &
Dhariwal, 2018; Dinh et al., 2014; 2016; Chen et al., 2018)
to model the shape deformation field (Huang et al., 2020;
Jiang et al., 2020a), which enables bijective transformation
and is free of intersection by nature.

All above methods follow the appearance-fitting paradigm
which could be harmful with inconsistent topology or se-
mantics, unless the segmentation ground truth is available,
as in Huang et al. 2020; Gao et al. 2019. By contrast, we
rely on the generalisable latent space and implicit features
to resolve the problem with no extra annotations.

4. Experiments and Evaluations

Implementation details. For implicit function architecture,
we follow IM-Net (Chen & Zhang, 2019) and use a 7-layer
MLP with Leaky-ReLU activations, taking as input a 3D
coordinate and a 256-dim latent code, and outputs an occu-
pancy probability. The latent code is obtained from a voxel
encoder. we train one network per shape category with the
same architecture, following the coarse-to-fine progressive
training scheme from Chen & Zhang 2019. !

We use objects from the ShapeNet dataset (Chang et al.,
2015). The optimisation uses the following settings: we use
t = 0.02 for a total of 50 intermediate steps with latent code
interpolation. For the number of Newton’s iterations at each
time step we use /N = 3. The regularisation factor A is set
as 0.01. See supplementary material for more details.

4.1. Analysis and ablation

We first study the effect of matching features from different
layers. This can help us obtain insights and better under-
standing in per layer features in the implicit function.

We densely sample points from the reconstructed shape
surface represented by implicit functions and solve the point
trajectory of the set of surface points. Then we observe what
the set of transformed points forms.

Matching features in different layers We test the match-
ing performance of implicit features for each of the six
intermediate layers in the network, as the example in Fig-
ure 4. For deeper layers, the transformation gets closer to
the target. While for early until mid-layers, the fine geomet-
rical details of the source shape are preserved. In contrast,
when deeper layer features are used, the model fits the target
shape more in detail. Here some points fail to reach the
target surface, because of the largely varied geometry such

"We use the improved implementation from the authors at
https://github.com/czql42857/IM-NET-pytorch,
which has some subtle differences from the original paper.
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source layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 v target

Figure 4. Implicit feature matching applied to different layers. From the source shape transformed to match the target shape in two
viewpoints, one per row. This is not interpolation over time. We observe that matching with implicit features in earlier layers focuses on
fitting the outline, while matching with implicit layers in later layers focuses on fine-grained details. See for example how from layer 1 to
layer 4 the model deforms to the coarse geometry of the target in a rigid way, while in layer 6 the model matches almost the exact surface
of the target. Empirically matching features from early and mid-level layers leads to no breaking the topology or local details so to be
applicable for mesh deformation.

Figure 5. t-SNE visualisation of corresponding point features at different levels, from level 1 (leff) to level 6 (right). Colours represent
different groups of corresponding points across 100 chairs. We observe, from early to mid-layers, implicit features become more
distinctive, however, the last layers, as closed to the final output that maps all surface points to the same value (7), hence surface point
features become more uniform distributed. We conclude that the mid-level layers encode more high-level semantics, while the last layers,
focusing on fitting local shape details, lose global information.
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Figure 7. Edge preserveness. Higher value means less edges are

(a) Distance to source SO . -
broken from the source mesh, which implies that the finer detail is

(b) Distance to target

Figure 6. Chamfer distance to source and target shapes when trans-
forming shapes using different layers for matching features. Aver-
aged on transformation between 100 random pairs of chairs. We
observe that the feature matching in the earlier layers preserves to
not deviate from the source while in deeper layers it matches better
the target. This is consistent with the observations from Figure 4.

that the model perceives that the corresponding point does
not exist on the target at detail-level.

We further corroborate the results quantitatively using a
large number of pairs. Figure 6 shows the Chamfer dis-
tance from the transformed point set to the source and the
target shapes. The transformed shapes from deeper layers

more preserved. Averaged on transformation between 100 random
pairs of chairs. Earlier layers (1-3) preserve the detail of the source
shape with all 100% edges preserved, and the details are much
changed in deeper layers. This is consistent with the observations
from Figure 4.

are closer to the target and far away from the source. In
Figure 7, we evaluate how much the finer detail is preserved
by measuring the edge preserveness using mesh data with
known edges ¢ € £ as the source shape (See §2.3). T¢(¢)
is the transformed edge of source edge €. Edge preserve-
ness is defined as the percentage (%) of € € £ subject to

1
— - le| < |Te(e)| < 5- e, i.e., when the length of the edge
5 g g
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Figure 8. Necessity of matching with interpolation. Direct match-
ing from source and target implicit fields with no intermediate
steps from latent code interpolation fails.

with regularisation no regularisation

layer 6

layer 3 layer 6 layer 3
Figure 9. Effect of regularisation. Without regularisation, some
points (especially those on the planar regions) do not move to the
correct position. Since on the planar region the adjacent points are
expected to have similar features, J; can easily drift away until the
points reach the non-flat part of the shape, where the gradients of
the point features has stronger values, and therefore less influenced
from the noise. Layer 6 features suffer more from the absence
of regularisation because the gradient field is more complex and
non-smooth.

does not change more than five times longer or shorter .
From Figure 7 we conclude that the transformed shape from
early and mid layers preserves well the finer details with
regard to the source shape, while in deeper layers the details
of local connectivity details are changed significantly. These
conclusions are all consistent with the observations from
Figure 4.

Hierarchy in implicit function We interpret Figure 4 as
reflecting the hierarchy of the layers in the network. The
early layers learn gradually the outline of the rough shape
geometry, while the final layers learn the finer details. The
observation is in the context of shape transformations, but
we expect it also holds for reconstruction of single shapes.

We claim that this observation is significant with MLP ar-
chitecture used for implicit functions. compared with the
literature that shows emerging hierarchies in ConvNets for
image domain (Zeiler & Fergus, 2014; Bau et al., 2017).
ConvNets are inherently more structured with local convo-
lution operations, while similar structures are less expected
in MLPs as more general universal function approximators.

Mid-level features are the most distinctive. To better un-
derstand the difference of the features from different layers
in the network, we check whether the network can distin-
guish the features from a set of different corresponding
points obtained by feature matching. We take eight points

(a) source (c) uni-layer (d) multi-layer

(b) target

Figure 10. Effectiveness of transformation with features from com-
bined layers. Deformations shown from matching features from
layer 3 (c) and from layer 3 and layer 6 (d). Using feature from
multi-levels refines the local geometry to the target (e.g. the legs be-
come thinner) without breaking the topology of the source shape.

from one chair with farthest point sampling (fps). These
points are matched by our method to 100 randomly selected
chairs and taking the closest point on the target surface. and
we mark those from each of the eight source points as a
group of correspondents. We visually evaluate if clusters
are formed using t-SNE (Maaten & Hinton, 2008), showing
the points from each group of correspondents with different
colours in Figure 5. We observe that the first layer feature
as a linear projection from the input can hardly learn the
discrimination, while the mid-level features show good clus-
tering. In the last hidden layer the corresponding points mix,
which implies that the features from the layer cannot differ-
entiate between the groups. The reason is that the last layer
features are to be mapped to the output implicit field, which
is the same value 7 to all surface points. Thus, the final
layers focus on the local detail and lose global information
of the shape.

Our observations give an explanation to the fact that some
implicit methods require a shallow network design with
restricted expressivity in order to aim for either part-
level (Chen et al., 2019b) or point-level (Liu & Liu, 2020)
correspondence among the shapes with varying topology,
while their achievements cannot generalise to more standard
deep architectures. With a shallow architecture that limits
the expressive power, the output layer feature is less likely
to lose too much of the global information.

Direct matching vs. matching with interpolation Alter-
native to feature matching iteratively with interpolated latent,
one can also attempt direct matching between source and
target latent without iterations. As shown in Figure 8, points
transformed by direct matching fail to form a reasonable
shape. Using layer 3, all points move to shape edges, which
are expected to have more significant feature gradients. Us-
ing layer 6, the points become random, which is consistent
with the above analysis that deep layer features lose global
information. we hypothesize that the reason for this poor
behaviour could be the existence of a smooth non-Euclidean
data manifold in the shared latent-interpolated feature space
encoded by implicit features. Direct matching would fail
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Figure 11. Deforming from arm (source, blue) to no-arm (target, green) chairs. Appearance-fitting methods fail with overfitting to the
target shapes with no chairs. Adding rigidity constraints eases the problem, but not a fundamental solution. By contrast, our method
resolves the problem without enforcing rigidity, benefited from implicit features.

in case of such a non-Euclidean manifold, since the feature
difference is measured using distance in Euclidean space.
However, more investigation would be needed for this claim.

In Figure 9 we show qualitatively the ablation experiment
from transformation via feature matching without such a
regularisation. We show layer 3 and layer 6 as examples
with the same source and target shapes as in Figure 4 of
the main paper. We see that without regularisation, some
points are not at the ideal position to compose the shape,
especially on planar regions such as seat and back. Layer
6 features suffer more from no regularisation because it is
more complex and non-smooth. Those points more easily
goes to the direction of the edges of the shape where the
feature gradients are expected to be more significant. This is
probably due to that the change of latent code is not ideally
infinitesimal, so the resulting J; is not accurate enough.
Since on the planar region the adjacent points are expected
to have similar features, d; can easily drift aside.

4.2. Mesh Deformation

Based on the above observations and analysis, matching
mid-level features are able to fit the target shape outline
without breaking the local detail of the source. In addition,
mid-level layers encode the most high-level global infor-
mation. We apply feature matching for mesh deformation,
which requires to preserve the local edge connectivity.

Choice of layers to match. We mostly rely on layer 3
features for matching each vertex from the source mesh.
However, we are not restricted to using only single-level
features. Empirically we find that using mid-layer features
jointly with finer level features downweighted by a small
factor 0 < 1 < 1 helps to fit the local geometry of the
target shape better, as illustrated in Figure 10. We take a
combination of layer 3 and layer 6 features where the layer
6 feature is weighted by n = 0.1.

Qualitative results and analysis. We compare the quality
of mesh deformation to ShapeFlow (Jiang et al., 2020a)
MeshODE (Huang et al., 2020) and NeuralCage (Yifan
et al., 2020). We focus on an armchair to no-arm chair
transition as a challenging senario, as in Figure 11. We
conclude that our method produces much more plausible
results, while other methods, all following the appearance-
fitting paradigm, suffer from some degree of overfitting to
the target shape.

Though not a fundamental solution, appearance-fitting meth-
ods mitigates the problem of overfitting to the target by im-
posing explicit constraints on rigidity (Sorkine & Alexa),
measuring how much the source edge is preserved by the de-
formed mesh. Both ShapeFlow and MeshODE learn flexible
deformable flow fields, yet introduce unnatural distortions.
The difference is that MeshODE constrains deformation
with a rigidity loss such that the local connectivity is pre-
served better than ShapeFlow, and the distortion is less
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Table 1. Evaluation between deformed shape and the target. Numbers are CD(x0.001) / EMD(x0.01) in each cell. Note that the
whole shape measurements is biased towards overfitting to the target, e.g. distorting the chair arms in Figure 11 is considered as better
performance, hence tailored for appearance-fitting methods, and not always a good measure. Our method is consistently better at part-level

metrics, indicating better handling the semantics inconsistency.

Shape category chair airplane table
Part-level evaluation X v X v X v
ShapeFlow (Jiang et al., 2020a) 1.365/6.750 4.285/5.794 0.378/5.194 5.551/5.229 -/- -/-
MeshODE (Huang et al., 2020) 1.187/7.281 4.148/5.315 -/- -/- 2.564/8.298  14.859/7.578
NeuralCage (Yifan et al., 2020) 4.372/8.563 6.477/6.319 -/- -/- 11.367/11.116  21.676/9.378
This paper 1.744/7.143  3.772/3.256 0.935/5.601 5.458/4.193  4.998/8.387 14.748/4.174
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Figure 12. Examples of transforming chairs in a variety of styles
from source (blue) to target (green). Our method is able to handle
all variations meaningfully.

heavy. In NeuralCage the rigidity constraint is even stronger
by design,where the cage structure is used to bound an area
of vertices, and deformation is solved per cage rather than
per vertex by morphing the vertices accordingly. However,
NeuralCage still suffers occasionally. As seen in the figure,
the method bends down the arms and even the seats as a
whole, which indicates that the rigidity constraints do not
suffice. By contrast, our method proposes a more fundamen-
tal solution, which relies on the hierarchy and the high-level
information encoded by mid-level implicit features. We
resolve the overfitting to such semantics or topology incon-
sistencies without explicit rigidity constraints.

More results are available in Figure 12, where we see that
our method handles different styles of shapes. In Figure 13,
a few examples on three other categories of airplanes, ta-
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Figure 13. Deformations of car, table and airplane. From left to
right: source shape, target to source, source to target, and target
shape. Our method generalise to shapes from different categories.

T B

Figure 14. Failure cases. From source (blue) to target (green). Our
method is able to handle all variations meaningfully. Left: two back
cylinder legs are deformed to flakes to match the thin-plate table
stand on the target; Right: the seating part is not well-recognized
and stays at arms height on the target.

bles and cars. In Figure 14, we show some examples of
failure cases. We also include some results on the continu-
ous interpolation of the deformation process in supplement
material.

Quantitative evaluations. We evaluate the bidirectional
Chamfer distance (CD) and Earth Mover’s distance (EMD)
between the transformed shape 7 (A) and the target B to
quantify the matching quality. Both metrics measuring the
matching quality of the shapes as a whole are biased to-
wards the aforementioned overfitting issue, e.g. the unnat-
ural distortions in Figure 11 are regarded as better perfor-
mance. See supplementary material for more discussion
on the limitation of the global metrics. For this reason, we
also evaluate the part-averaged distances which better re-
flect the ability to handle semantic inconsistency. Formally
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CDyur (T(A), B) = Ni SN CD(T(AL), B.). Ao C A
is the part segment that belongs to the c-th of all N, part
category for shape A , and 5o is B.. EMDy, is defined sim-
ilarly. We evaluate on three representative shape categories,
chair, table and airplane. For each category, we randomly se-
lect 500 pairs of source and target shapes from the test split
of ShapeNetPart (Yi et al., 2016) with the data preprocessed
by Chen et al. 2019b. The results are in Table 1.

Our method is consistently better at handling semantic part
consistency. ShapeFlow and MeshODE are better at match-
ing the global shapes, although as motivated above they
often overfit. NeuralCage is not competitive in either of the
metrics, due to trading shape flexibility with higher rigidity
by over-constraining.

4.3. Evaluation of point correspondence

We further evaluate the correspondences obtained by fea-
ture matching. This can be achieved by matching a source
point to the target, and find the nearest point on target shape
surface. The goal is not to achieve state-of-the-art perfor-
mance, since correspondences is not our main focus. Rather,
we want to show that implicit features inherently encode
the correspondences across shapes to some extent, without
explicit training or specialized network designs.

Setup and baseline method. We compare with Occupancy
Flow (OccFlow) (Niemeyer et al., 2019). OccFlow recon-
structs 4D human motion from D-FAUST dataset (Bogo
et al., 2017) with 3D human motions such as punching
and jumping jacks, preprocessed into sequences of 17 (3D)
frames. OccFlow consists of two networks, an implicit 3D
function occupancy network (OccNet) (Mescheder et al.,
2019) for encoding the shape at the initial frame, and a ve-
locity network to predict the flow or the correspondences
over time, similar to that in ShapeFlow or MeshODE. By
contrast, we extract correspondences only from the 3D im-
plicit function of OccNet without a specific flow network,
see Figure 15.

We use the official release of the code from Oc-
cFlow (Niemeyer et al., 2019) for the evaluation of the ¢
loss of the correspondence as well as the implementation of
OccNet. We do not use correspondence ground truth, nor do
we need the velocity network with our method, which means
we only need half of the components compared with Oc-
cFlow. Following Niemeyer et al. 2019, dense point cloud
is used as input of the source shape (the first frame) and the
target shape (the last frame) to discover correspondences
between them. We match the implicit feature from OccNet,
and find the nearest point on the shape for correspondence.
See supplement material for more implementation details.

Results. We show the evaluation results in Table 2. When
no supervision is available, the proposed method performs

Table 2. Correspondences. The proposed method recovers inherent
correspondence from the implicit features without explicit flow or
correspondence functions or supervisions.

Supervised  Cor. {5

Nearest Neighbour X 0.374
Ours X 0.169
OccFlow (Niemeyer et al., 2019) v 0.167
3D-Coded (Groueix et al., 2018a) v 0.096

IRERRN

Figure 15. Joint reconstruction and correspondence of human mo-
tion sequence. Correspondence (in colour) is usually considered
as unavailable with a single implicit network OccNet for 3D shape,
as noted by Niemeyer et al. 2019. Our method extracts correspon-
dence from matching features.

favourably. we are competitive to OccFlow with supervision,
although we do not really focusing on correspondence. Our
method and OccFlow cannot catch the performance of 3D-
Coded (Groueix et al., 2018a) as a state-of-the-art method
specifically for the task, trained with large amount of data
and heavy augmentation. We conclude that feature in a
standard implicit function encodes correspondence and can
be extracted with feature matching, even without adopting a
specific architecture design.

5. Conclusion

In this work, we propose to extend deep implicit functions,
which normally give global representations, so that they are
amenable to local feature matching. To do so, we start from
a self-fitting learning paradigm for learning good shared
representation space, upon which we can condition implicit
functions. Then, to achieve local feature matching, we pro-
pose generalized correspondences by casting them as the
trajectories from one shape to another where we have mini-
mum change in the feature with interpolated latent code. By
introducing locality to implicit functions, we can analyze
what each layer in the implicit function learns, with earlier
layers encoding coarse shapes and higher layers encoding
finer details. What is more, locality enables shape defor-
mations, where the resulting shapes can handle complex
topologies and semantics inconsistencies.
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Neural Feature Matching in Implicit 3D Representations:
Supplementary Material
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A. Limitation of global shape matching error

We further clarify the inherent limitation of the global shape
distance metric for measuring the shape deformation quality
in the presence of inconsistencies in topology or semantics
between the source and the target shapes.

The global metrics assign a low error, when the two shapes
overlap significantly, even if this implies an unnatural fit-
ting. Figure 1 is a characteristic example. With our feature
matching, the source arms can only find the closest points
on the seat or the back of the target chair, leading to a larger
global fitting error; while, with cross-fitting, the arms are
forced very close to the seat and the back in an unnatural
and distorted manner, which, however, reduces the whole
shape error. By contrast, part-level metrics do not count
such errors with inconsistent semantics, which makes more
sense when shapes differ significantly.

appearance-fitting source feature matching

?1 _ target (ours) m
g |
large error |
g )

Figure 1. Limitation of global shape error metrics. Mesh deformed
from source (blue) to target (green). The appearance-fitting result,
generated with MeshODE (Huang et al., 2020), has a lower global
matching error from the target shape at the arms (e.g. Chamfer
distance), with an unnatural fitting.

small error

B. Interpolating mesh deformation

Some additional visual results are provided in Figure 2 for
chairs and Figure 3 for shapes in other categories, with
deformed shapes from intermediate time steps. We show
smooth and meaningful interpolated shapes as our method
transfers the vertices of the shape mesh continuously.
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C. Implementation Details

Analysis and mesh deformation (§4.1 and §4.2). Our
implementation is based on IM-Net or IM-AE from Chen
& Zhang 2019 with the codebase available at https:
//github.com/czgl42857/IM-NET-pytorch,

which is an improved implementation from the authors. We
use the preprocessed ShapeNet dataset (Chang et al., 2015)
available with the codebase. For evaluation of part-aware
measures in Table 1 in the main paper, we take semantic
part segmentation annotation from ShapeNetPart (Yi et al.,
2016) dataset preprocessed by Chen et al. 2019 (available
at https://github.com/czgl42857/BAE-NET).
For each of the shape categories we take the first 200 shapes
from the test split, and deform the first shape to the second,
the third to the fourth, until the 199th shape to the 200th.

The implicit decoder is 7-layer MLP with Leaky-Relu ac-
tivation except that the last layer to the output is linear.
The negative slope set for Leaky-Relu is -0.02. There are
no batch normalization or other normalization layers. The
widths of each layers {w;} from input to output are 259-
1024-1024-1024-512-256-128-1. Note, wy = 259 is for
the 3-dim input coordinates concatenated with 256-dim la-
tent code. The encoder is a 5-layer 3D ConvNet that takes
voxels of shapes as input. Each conv layer is followed by
an instance normalization and Leaky-Relu activation (with
negative slope -0.02). The widths are 1-32-64-128-256-256
and so the output is a 256-dim latent code.

We train one network per shape category with the same
architecture, following the coarse-to-fine progressive train-
ing scheme from Chen & Zhang 2019 with the resolutions
at 163, 323, 643 respectively for 100, 200 and 800 epochs.
The batch size is 32. Adam optimizer is used with learning
rate 0.00005. The supervised ¢; loss is used for training.
Training of each model takes around 30 hours on one single
Nvidia Geforce 1080 Ti.

The optimisation for feature matching uses the following
settings: we use dt = 0.02 for a total of 50 intermediate
steps with latent code interpolation. We use N = 3 New-
ton’s iterations at each time step. The regularisation factor
Ais set as 0.01. The entire feature matching process from
one source mesh with 3000 vertices to a target shape takes
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around 60 seconds. The bottleneck of runtime is mostly at
the calculation of Jacobian, which requires iterating over
the dimension in the hidden layer feature w; in modern deep
learning frameworks PyTorch or TensorFlow.

Inherent correspondence evaluation (§4.3). We
use the released code from OccFlow (Niemeyer
et al., 2019) available at https://github.com/
autonomousvision/occupancy_flow for the
preprocessed D-FAUST dataset (Bogo et al., 2017), the
evaluation of the /5 error of the correspondence as well as
the implementation of OccNet (Mescheder et al., 2019).
The velocity network component is not used.

The implicit function OccNet contains sequentially 5 resid-
ual blocks. Each block is with two fully-connected layers
followed by ReLU activation, with residual connection from
the input to the output of the block. In total, the implicit de-
coder as 10 fully-connected layers. All hidden layer widths
are 256. The input has 259 dimensions and the output is a
scalar occupancy probability. The encoder is a PointNet (Qi
et al., 2017) that takes point coordinate inputs and output
a 256-dim latent code. Following the original setup from
Niemeyer et al. 2019 in this evaluation, all vertices of the
human shape are taken as the point inputs.

We train the OccNet to reconstruct human shapes with all
poses from all training sequences, unlike Niemeyer et al.
2019 that trains the reconstruction network with only the
poses in the first frame of each sequence. Other training
details follow the original implementation. The batch size
is 16. Adam optimizer is used with learning rate 0.0001.
Training uses cross-entropy classification loss on the binary
occupancy probability and takes around 5 days for 3000
epochs.

‘We match the last hidden layer implicit feature from Occ-
Net as it outcomes points that are most close to the target
shape surface, and find the nearest point on the target shape
surface for correspondence. We use a total of 8 intermediate
steps with latent code interpolation. The /5 error of the cor-
respondence is evaluated on the test split with the author’s
code. For the number of Newton’s iterations at each time
step we use N = 4. The regularisation factor \ is set as
0.001.

More architectural and training details can be referred to the
original implementations, since the architecture and train-
ing processes highly rely on the existing standard implicit
function methods.
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Figure 2. Mesh deformation interpolation over time, chairs. Every two rows are a group of examples. The blue mesh is the source shape
and the green mesh is the target shape. The odd row shows interpolation from source to target (left to right), and the even row from target
to source (right to left).
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Figure 3. Mesh deformation interpolation over time, other categories. Every two rows are a group of examples. The blue mesh is the
source shape and the green mesh is the target shape. The odd row shows interpolation from source to target (left to right), and the even
row from target to source (right to left).



