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Abstract

Capsule networks (CapsNets) have recently shown
promise to excel in most computer vision tasks, especially
pertaining to scene understanding. In this paper, we explore
CapsNet’s capabilities in optical flow estimation, a task at
which convolutional neural networks (CNNs) have already
outperformed other approaches. We propose a CapsNet-
based architecture, termed FlowCaps, which attempts to a)
achieve better correspondence matching via finer-grained,
motion-specific, and more-interpretable encoding crucial
for optical flow estimation, b) perform better-generalizable
optical flow estimation, c) utilize lesser ground truth data,
and d) significantly reduce the computational complexity in
achieving good performance, in comparison to its CNN-
counterparts.

1. Introduction

Optical flow represents apparent motion of objects, sur-
faces, and edges in a visual scene caused by the relative mo-
tion between an observer and a scene [15]. Given a pair of
images from the scene, optical flow estimates the displace-
ment of pixels in spatial domain. Optical flow is important
for many applications, including action recognition, motion
detection, tracking and autonomous driving. In the recent
years, convolutional neural networks (CNNs) have made
breakthroughs in a variety of computer vision tasks, includ-
ing optical flow estimation [6, 24, 16, 32, 34, 36, 2]. For
example, FlowNet is an end-to-end trainable CNN to solve
the optical flow estimation problem in a data-driven, super-
vised fashion, which outperforms the conventional curated-
feature driven models such as [25]. Ideally, deep optical
flow estimation methods should be equivariant which al-
lows us to obtain feature representation equivalent to ge-
ometric changes in the image space. This would allows
us to obtain accurate optical flow estimation by measuring
feature displacements in functional form using deep neural

networks. Despite the success of CNNs and CNN-based
optical flow estimation, they suffer from the issue of invari-
ance to certain geometric attributes such as translation and
affine changes. On the other-hand capsule networks (Cap-
sNets) [14, 28] marked a milestone by identifying and at-
tempting to resolve several key limitations of CNNs, such
as the inability to understand spatial relationships between
features, being invariant rather than equivariant, inept rout-
ing of data between the layers, among others. Therefore in
this paper we exploit capsule networks for optical flow esti-
mation task, and to explore the aptness and potential gains
caused by the resulting optical flows in auxiliary tasks such
as action recognition.

Precise optical flow estimation requires pixel-wise lo-
calization as well as correspondence matching between
frames. However, raw pixel intensities from a pair-of-
frames carry sparse motion-related information useful for
optical flow estimation, often cluttered with non-motion re-
lated information. Hence, a key sub-task of an optical flow
estimator is to successfully untangle motion-related infor-
mation from raw pixel intensities. Yet, this sub-task is spe-
cially challenging for a CNN, since they learn primarily in-
variant encoding comprising of high level entities, and of-
ten lose other useful internal information pertaining to the
pose, orientation, whole-part relationships, and other phys-
ical properties of such entities, along with the spatial rela-
tionships between them. Furthermore, discarding informa-
tion that are not useful to the task at hand at a lower level,
prior to passing them to higher levels is crucial to the un-
tangling process. Yet, CNNs fail to filter out such unneces-
sary information since they routes data between layers using
pooling operators, especially during the initial training iter-
ations. Hence, we argue that the optical flow estimation task
will heavily benefit from a more comprehensive and selec-
tive encoding mechanism provided by capsule networks.

Capsule networks excel at comprehensively encoding
the physical properties of the entities present in the inputs
within their instantiation parameter vectors, while learning
the part-whole spatial relationships between such entities.



Studies have shown that the physical properties captured by
the capsules are often relevant to the task at hand, espe-
cially the properties corresponding to the instantiation pa-
rameters with the highest variances, and that the encod-
ing learnt by capsules are highly interpretable, by means
of a post-training perturbation analysis [19]. The same ob-
servation can be extended in our case to assume that the
representation learnt by a capsule encoder will comprise
motion-specific properties useful for optical flow estima-
tion. Hence, similar entities in the input images receive sim-
ilar encoding with finer-grained representations than CNNs,
allowing the correspondence-matching to be more conve-
nient and precise. Furthermore, the dynamic routing algo-
rithm [28] deployed in capsule networks achieves coinci-
dence filtering, which arguably aids the untangling process.
Higher level capsules represent complex motion-related en-
tities with higher degree of freedom, and dynamic routing
ensures that lower level entities that have little agreement
with these (non-motion related entities) are effectively cut-
off from the forward propagation. Hence, we hypothesize
that the use of a capsule encoder will aid the optical flow
estimation task by providing finer-grained, motion-specific
and more-interpretable encoding, in comparison to its CNN
counterpart.

Optical flow estimation is an object or class agnostic
task. The specific identities and the categories of the objects
and the actors are not attributed to the task, only where and
what kind of motion take place instead. Hence, it is intu-
itive that, if the meta-level conditions (such as the presence
of camera motion, range of displacement, and etc.) do not
drastically change, optical flow estimation models should
generalize beyond the data that they are trained for. To fur-
ther explore this property, among other reasons, we consider
action recognition as an auxiliary task. More specifically,
we compare the capabilities of CNN and capsule networks
in estimating class-agnostic optical flows, and generalizing
to other classes when trained on a subset of action classes.
CNNs are generally translation invariant, and not invariant
to other transforms such as the orientation changes. Hence,
they require a lot of training data with ample variations to
learn to handle such transforms, resulting in reduced gen-
eralization capabilities. In contrast, capsule networks are
equivariant, where lower level capsules exhibit place-coded
equivariance and higher level capsules exhibit rate-coded
equivariance [28]. For instance, CNNs learn rotational in-
variance by training on a large number augmented images,
whereas capsule networks learn to encode rotation in their
instantiation parameters without observing many such aug-
mentations. Subsequently, capsule networks are able to suc-
cessfully encode rotation, even for an image outside the
training domain. Hence, we argue that capsule networks
will better-generalize to unseen action classes for the optical
flow estimation, and require comparatively lesser ground

truth data with fewer augmentations to achieve similar per-
formances as CNNs.

In addition, capsule encoders provide a low-dimensional
concise representation in comparison to shallow convolu-
tional feature maps, and they undertake a significant por-
tion of the burden of untangling motion-related information.
Hence, it reduces the workload from network that generates
optical flow image known as expanding network. Simulta-
neously, a capsule encoder itself has less number of train-
able parameters than its direct CNN-counterpart, as capsule
networks group neurons together yielding in a fewer num-
ber of connections between layers. Hence, a capsule en-
coder contributes to drastically reducing the computational
complexity of the overall.

Estimated optical flows have a wide-utility in a range of
computer vision tasks, and action recognition is one such
task [30]. It is well known that motion stream obtained via
optical flow is complimentary to the spatial stream. As a
downstream task, we experiment with action recognition
using the estimated optical flows from our models. We
investigate two key approaches for this task, the standard
frame-wise approach [10] as well as a segment-wise ap-
proach which considers a set of consecutive frames together
for optical flow estimation (in contrast to two consecutive
frames in the frame-wise approach), in an attempt to ben-
efit from the additional contextual information in the seg-
ments. We demonstrate that segment-wise optical flow es-
timation with our model is more accurate and obtains better
action recognition results. To this end, we propose a cap-
sule networks-based architecture for optical flow prediction
and activity recognition, leveraging on the dynamic routing
algorithm [28]. More specifically, we make the following
contributions in this paper.

First, we propose a capsule networks based architecture,
termed FlowCaps, to achieve better optical flow estimation
than its convolutional counterpart. To the best of our knowl-
edge, this is the first attempt to investigate the use of cap-
sules for this task. Furthermore, we utilize the estimated
optical flows for action recognition, and propose a modified
loss function that improve upon the existing EPE loss.

Second, we evaluate the performance of FlowCaps
model on several datasets where we outperform other base-
lines in both optical flow estimation and action recognition
while being less computationally complex. Furthermore,
we investigate the capabilities of FlowCaps in terms of out-
of-domain generalization and training with only a few sam-
ples, in comparison to baselines.

2. Background and Related Works
The concept of grouping neurons to form a capsule was

first proposed by Hinton et al. in [14] and extended by
Sabour et al. in [28] introducing the dynamic routing algo-
rithm to route sets of capsules between layers. These mod-



els are primarily used for image classification, image pa-
rameterization and image reconstruction. Capsule networks
have proven that they excel at various computer vision tasks
throughout the literature. CapsGan[18] utilized capsule net-
works as a discriminator which produced visually better
results than conventional CNN-based GANs. Moreover,
SegCaps[21] implemented a capsule network based archi-
tecture for image segmentation and was able to achieve
state-of-the-art results on datasets such as LUNA16. Fur-
ther, Zhao et al.[35] employed capsule networks to clas-
sify, reconstruct and perform part-based segmentation on
sparse 3D point clouds. Extending capsule networks into
video analysis, Duarte et al. [7] introduced VideoCapsu-
leNet which consists of convolutional capsule layers and
capsule pooling layers in order to facilitate action recogni-
tion. Our method is drastically different from these models
as we use capsule network encoder to obtain a representa-
tion suitable for optical flow estimation and then use a so
called expanding network to generate optical flow images.
We also modified the capsule network architecture to avoid
issues related to squashing function and make architectural
changes to cater for optical flow estimation.

Deep nets based optical flow estimation has been stud-
ied in FlowNet, FlowNet 2.0, SpyNet and LiteFlowNet.
[6, 17, 24, 16]. LiteFlowNet is composed of two compact
sub-networks that are specialized in pyramidal feature ex-
traction and optical flow estimation [16]. This method is
able to extract features faster compared to [6]. Similarly,
SPyNet [24] also uses spatial pyramids similar to [16] with
a compact network. Spatial pyramids are used to make sure
that the representation captures some global spatial infor-
mation. However, our method is able to preserve physical
properties in the image space including the spatial structure
of entities due to properties of capsule networks. Therefore,
we do not need to use a multi-scale approach. Some meth-
ods also use additional tools such as external edge detec-
tors or image patch-based correlations in estimating optical
flow. Author in [37] interpolates third-party sparse flows
using a off-the-shelf edge detector. DeepFlow [33] uses
convolution and pooling operations similar to traditional
CNNs, however the filter weights are non-trainable image
patches. In-fact, similar to FlowNet, DeepFlow also uses
correlation. EpicFlow [25] uses externally matched flows
as initialization and then performs interpolation. Similarly,
Im2Flow [10] and Selflow [22] are related to us. However,
to the best of our knowledge, we are the first to use cap-
sule network-based architecture for optical flows estimation
which in principle is a better choice than traditional CNNs
for this task.

Action recognition methods have benefited a lot from op-
tical flow [30] and other methods use dense optical-flow ob-
tained by motion hallucination for action recognition [10].
Some methods such as Dynamic Images [4, 3] generate mo-

tion images for action recognition using rank pooling [9, 8].
Motion images are even used for tasks such as still image
action recognition [13] and action anticipation [26]. In this
work we also use action recognition as the primary applica-
tion of optical flow estimation, nevertheless, action recog-
nition is not the primary focus of this paper.

3. FlowCaps: Network Architecture

Figure 1. The FlowCaps architecture. The input is fed to the cap-
sule encoder, which passes a concise representation of the input to
the subsequent contracting and expanding parts, for optical flow
estimation.

Authors of [6] proposed the first end-to-end trainable
CNN architecture termed FlowNetS for optical flow esti-
mation. Motivated by the benefits of both FlowNetS and
capsule networks, in this work we propose a new model
for optical flow estimation by borrowing concepts from
both FlowNetS and capsule networks. We call our model
FlowCaps-S. Given a pair of RGB images, FlowCaps-S es-
timate optical flows using the architecture described in sec-
tion 3.1. If the input is a video, then we show how to use
generated optical flow to perform action recognition in sec-
tion 3.3.

3.1. FlowCaps-S Architecture

In FlowNet, the network learns the optical flow estima-
tion task by applying convolutional filters on the raw pixel
values of the considered image pairs. However, extraction
of motion information becomes more difficult, especially
when the datasets have small realistic displacements. We
hypothesize that the use of a capsule encoder as illustrated
in Fig. 1 instead of a shallow convolutional encoder prior
to the contracting part similar to FlowNet, learns a finer-
grained, concise, and more interpretable representation of
the physical properties attributed to motion, by eliminating
the information unrelated for motion via dynamic routing
[28]. Furthermore, our FlowCaps-S benefit from equivari-
ant properties as outlined in the introduction. Now we de-
scribe the details of our FlowCaps-S model.

As illustrated in Fig. 1, the proposed capsule encoder
consists of a convolutional layer (Conv1) having 32 ker-
nels of size 7 × 7 and a Leaky ReLU activation, followed
by three convolutional capsule layers coined Caps1, Caps2
and Caps3. The Caps1 layer consists of 32 channels of 8-
dimensional capsules, which will be dynamically routed to
each of the 16 channels of 8-dimensional capsules in the



Caps2 layer. We adopt the dynamic routing algorithm pro-
posed in [28], with the exception of squashing of capsule
output vectors. The squash function is used to ensure that
the length of each capsule output is kept between 0 − 1, as
the length represents the probability of existence. Albeit ex-
istence of motion is crucial for optical flow prediction, we
do not utilize the probabilities in a mathematical sense (for
instance as in classification), and hence do not require the
output lengths to be kept between 0− 1. On the other hand,
squashing high dimensional vectors leads to issues such as
extremely small individual values and vanishing gradients.
Hence, we do not utilize the squash function. Subsequently,
the representation is further projected down spatially as well
as feature-wise, via dynamic routing to a single channel of
8-dimensional capsules in the Caps3 layer. The decision
to keep the output of the capsule encoder to one channel
stems from the capsule representational assumption. Hence,
at each location in the input image, there is at most one in-
stance of the type of entity that a capsule represents. This
allows us to have a single capsule channel in our represen-
tation. This is useful for optical flow estimation task.

Let Ψl ∈ R(h1×w1×c1×n1) and Φl ∈ R(h2×w2×c2×n2)

be the input and output of the capsule layer l, where h,w
are the spatial dimensions, and c, n are the number of chan-
nels and the dimensionality of each capsule respectively.
Here, Φl−1 ≡ Ψl, and ψl

i is the ith(i ∈ [1, h1 × w1 × c1])
capsule in layer (l − 1) and φlj is the jth(j ∈ [1, h2 ×
w2 × c2]) capsule in the layer l. First, Ψl is reshaped in
to (h1, w1, c1×n1) to prepare the channels for the convolu-
tion operation, and subsequently convolved with (c2 × n2)
filters producing an output of the shape (h2, w2, c2 × n2),
which is then reshaped to (h2, w2, c2, n2). Subsequently,
each ψl

i is routed to each φlj dynamically based on their
agreement aij = ψ̂l

i · φlj , where ψ̂l
i = Wijψ

l
i and Wij is the

trainable transformation matrix which projects ψl
i from its

native space to the higher dimensional space of φlj .
The reduced representation Ψ3 is then fed to the con-

tracting part followed by the expanding path, which are
simplified versions of those proposed in FlowNet. The
simplified contracting part comprises seven convolution
blocks with batch normalization and Leaky ReLU activa-
tion. Downsampling by a factor of 2 occurs every other
block, starting from the second, with hyperparameters as
illustrated by Fig. 2. The resultant feature map is passed
on to the expanding path, which comprises four blocks of
upsampling. Each block constitutes a deconvolution layer
with Leaky ReLU activation which upsamples the feature
maps by a factor of 2, followed by a concatenation with
the corresponding block skip connected from the contract-
ing part. Further, we use skip connections between the con-
tracting and expanding parts to nourish the information flow
and provide lower-level entity information to the deconvo-
lutional layers, similar to FlowNet.

Figure 2. The FlowCaps contracting and the expanding parts. The
output of the capsule encoder, Ψ3, is fed in to the contracting part,
followed by the expanding part, which estimates the optical flows.

3.2. Improvements to the Loss Function

The loss function that is used in the state-of-the-art opti-
cal flow estimation approaches, endpoint error (EPE), sums
the L2 norms of the difference between the individual com-
ponents of the ground truth and estimated flow fields. We
identify two key issues of using EPE loss in optical flow es-
timation. First, EPE only considers the magnitude compo-
nent of the vector field in its calculations, whereas the angle
component is omitted. Yet, the angle component carries im-
portant information helpful for the optical flow estimation
task. Second, the L2 norm is highly susceptible to outliers
with higher values, even a few can have a significant impact
on the loss value. In an attempt to alleviate these key issues,
we propose the following loss function,

L = Lmag + αLang (1)
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where α is an empirically determined constant, N is the
mini-batch size, upi , u

t
i, v

p
i , v

t
i are the respective u, v com-

ponents of the estimated (p) and ground truth (t) optical
flows, and ||Ti||2 =

√
(uti)

2 + (vti)
2. We propose the log-

cosh loss function for the magnitude loss Lmag , denoted
in equation 2, since it is more robust to outliers while be-
having similar to the L2 loss. Furthermore, we propose a
variation of the cosine similarity for the angular loss, which
adaptively scales the loss with respect to the magnitude of
the ground truth optical flows. The scaling aids to alleviate
the issue of undefined loss values and gradients when both
ground truth and the predicted fields are zero vectors.

3.3. Optical flow estimation for activity recognition

In this study, we attempt two fundamental computer vi-
sion tasks, namely, optical flow estimation followed by ac-
tivity recognition. To this end, we consider two different



approaches based on the number of consecutive frames (k)
considered for prediction at a time. First, frame-wise pre-
diction focuses on estimating optical flows from only a pair
of consecutive frames (k = 2), similar to [6]. Subsequently,
the estimated optical flows are utilized in action recognition,
producing an action label per the said pair of images. Sec-
ond, segment-wise prediction focuses on simultaneously es-
timating the optical flows for a whole segment of consecu-
tive frames (k > 2). Similarly, the action recognition is
performed on the set of estimated optical flows, producing
an action label per the said segment.

We hypothesize that in the datasets where motion in-
formation are predominant, action classification performed
with optical flows achieves similar performance as with
original rgb frames, yet, requires shallower models that are
much faster. In the case of datasets where static informa-
tion are also significant, motion information derived from
the optical flows can be combined with the static informa-
tion to achieve similar performance, similar to [30].

3.4. Frame-wise Prediction

The input to the frame-wise prediction network Xfrm ∈
R(H×W×2C) is stacked along the channel dimension, where
H,W denote the spatial dimensions and C denotes the
number of channels per frame. Xfrm is fed to the network
and the estimated optical flows Ŷfrm are compared against
the ground truth Yfrm ∈ R(H×W×2). Note that optical
flow images have two channels, the flows in x and y di-
rections. Subsequently, the action recognition is performed
with a shallow CNN using predicted optical flow images
Ŷfrm as the input. Our simple optical flow classification
network consists of five blocks of convolutional layers and
a maxpooling layer each, followed by two fully connected
layers. The convolutional layers each have 3×3 filters with
ReLU activation, whereas the fully connected layers have
32 and κ units with ReLU and softmax activation respec-
tively, where κ is the number of action classes. We train
this network from scratch.

3.5. Segment-wise Prediction

Typically, the optical flow is estimated using consecutive
pair of frames, however, models can benefit from additional
contextual information. One solution is to predict the opti-
cal flow for a given video segment consisting of more than
two frames. To be precise, our segment-wise prediction
considers k number of frames to be stacked together as the
input Xseg ∈ R(k×H×W×C). We modify FlowNetS and
FlowCaps-S models to handle segment-wise optical flow
prediction using 3D convolutions. Specifically, we adopt
concepts in I3D [12] and DeepCaps [23]. The modified
FlowNetS-3D and FlowCaps-S-3D models estimate the op-
tical flows Ŷseg which are compared against the ground
truth optical flow Yseg ∈ R(H×W×2) corresponding to the

middle two frames of the segment. Subsequently, action
recognition is performed with Ŷseg similar to Section 3.4.

4. Experiments and Results
In this section we evaluate the validity of our method on

several optical flow estimation and video action recognition
datasets. Following prior deep optical flow estimation
methods [17, 16], we use Sintel [5] and KITTI15 [11]
benchmarks for evaluation. We also use the UCF101
[31], UTI [27] KTH [29] and JHMDB [20] datasets for
action recognition related experiments. More specifically,
for optical flow estimation, we extract frames from the
videos and stack k (k = 2 for frame-wise, and k > 2 for
segment-wise) consecutive frames together as the input
to the network. However, initial experiments revealed
that consecutive frames directly extracted from the videos
contained little motion information, yielding trivial optical
flows. As a solution, we extracted I-frames and P-frames,
corresponding to the keyframes of the video in order to
create the following datasets.

KTH I-Frames: All the 6 action classes in the KTH dataset
were used for training. After I-frames extraction, 19 videos
with only one I-frame were removed, yielding 5,811 sam-
ples which are randomly split at a 8:2 ratio for training and
testing respectively.
Sub UCF I-Frames: We use the following five classes
from the UCF 101 dataset: Rowing, BenchPress, CleanAnd-
Jerk, HulaHoop, and Lunges, selected at random based
on the availability of sufficient (more than 5 per video) I-
frames, amount of movement and the presence of camera
motion. Extraction of I-frames on these five classes yielded
in 10,262 optical flow samples which are randomly split at
a 8:2 ratio for training and validation respectively. Subse-
quently, we use I-frames extracted from the rest of the UCF-
101 classes as the testing set for out-of-domain generaliza-
tion.
UTI P-Frames: All the 6 action classes in the UTI dataset
were used for training. However, the extraction of I-frames
yielded only 1 frame per video. Hence, we decided to use P-
frames instead, which yielded in 2,748 optical flow samples,
which are split according to the predefined groups as in [27]
for training and testing.
Implementation details: We used PyTorch for the devel-
opment of FlowCaps. All the optical flow estimation mod-
els and the action recognition models were trained on GTX-
2080Ti and GTX-1080Ti GPUs for 1000 epochs and 50
epochs respectively, using the Adam optimizer with the
learning rate set to 0.001. For the models trained on the
above datasets, FlowNetS [17] has 38.68 million trainable
parameters, whereas the proposed FlowCaps-S has only
2.39 million trainable parameters. This is a drastic reduc-
tion in the computational complexity with a significant mar-



Model Params (M) Sintel clean Sintel final KITTI15
Conventional EpicFlow [25] - 2.27 3.56 9.27

FlowFields [1] - 1.86 3.06 8.33
Heavyweight CNN FlowNetS [6] 38.68 4.50 5.45 -

FlowNet2 [17] 162.49 2.02 3.54 10.08
Lightweight CNN LiteFlowNet [16] 5.37 2.48 4.04 10.39

SPyNet [24] 1.20 4.12 5.57 -
Ours 2.39 2.13 2.51 7.83

Table 1. Comparison of frame-wise training EPE values across different approaches for optical flow estimation datasets.

Model UCF I-Frames UTI P-Frames KTH I-Frames JHMDB
test epe action test epe action test epe action test epe action

GT - 79.4% - 81.37% - 68.90% - 51.49%
FlowNetS 1.53 55.58% 0.44 84.12% 1.19 61.30% 0.49 44.03%
LiteFlowNet - - - 83.17% - 59.79% - 40.30%
SPyNet 1.37 65.78% 0.42 87.66% 0.95 64.30% 0.44 42.54%
Ours 1.49 64.49% 0.39 86.02% 1.10 65.00% 0.40 48.51%
Ours - Mod Loss* 1.41 - 0.35 - 1.04 - 0.26 -
Ours - Segment 1.40 65.16% 0.37 88.34% 0.93 72.50% 0.71 41.90%

Table 2. Comparison of frame-wise testing EPE values and action recognition performances by different approaches on the benchmark
action datasets. *Training utilizing the modified loss function proposed in eq. 1, and testing using the EPE loss for comparison.

Model KTH-I Frames Sub UCF-I Frames UTI-P Frames
Optical flow estimation performance in EPE

Frame Seg. Frame Seg. Frame Seg.
FlowNetS 1.1934 1.1355 2.3149 2.3079 0.4426 0.4265
FlowCaps-S 1.1033 0.9384 2.2037 2.1930 0.3806 0.3672

Action classification performance
FlowNetS 61.30% 66.30% 85.50% 89.70% 84.12% 83.08%
FlowCaps-S 65.00% 72.50% 91.20% 92.30% 86.02% 85.93%
GT 68.90% 92.60% 81.37%

Table 3. The frame-wise and segment-wise testing EPE values and
classification performance achieved by FlowNetS and FlowCaps-
S models on the KTH I-frames, Sub UCF I-frames, and UTI P-
frames datasets.

gin of 94% by FlowCaps-S, while surpassing the perfor-
mance of FlowNetS. The reduction in computational com-
plexity can be directly attributed to the hypothesized con-
cise representation achieved by the capsule encoder.

4.1. Evaluating optical flow estimation

In this section we compare our FlowCaps-S model with
other state of the art methods in the literature [25, 1, 6,
17, 16, 24]. We train all models in Singtel clean dataset
and then evaluate the performance on other dataset us-
ing the same model. For comparisons, we may clas-
sify prior methods into three categories; ”conventional”,
”heavyweight” and ”lightweight” CNN. Our method also
falls under lightweight CNN category. Results are reported
in Table 1. From the results, we can conclude that our
method performs the best in lightweight category and only
FlowFields [1] method outperforms our results on Sintel

clean dataset. Our method outperforms recent methods
such as LiteFlowNet [16] across all compared datasets and
our method has good out of domain generalization perfor-
mance. Our method attains good results due to the suitable
properties of capsule networks for optical flow estimation
task such as equivariance. We conclude on conventional
datasets, our method is able to outperform most of the other
methods by a considerable margin for optical flow estima-
tion utilizing relatively small amount of parameters.

4.2. Evaluating on action recognition

In this section we compare our FlowCaps model with
other methods using four action recognition benchmarks for
optical flow estimation and action recognition. Results are
reported in Table 2. Overall our method obtains better re-
sults than other recent methods on several datasets. JHMDB
is a dataset having lot of motion and it benefits from mo-
tion stream. While the ground truth optical flow obtains a
classification accuracy of 51.49% our FlowCaps model ob-
tains 48.51 outperforming all other state-of-the-art methods
such as SPyNet. Interestingly, on this dataset we obtain the
best EPE score of 0.40 while SpyNet obtains only 0.44. On
UCF-I frames the ground truth optical flow obtains 79.4%
while our method obtains the only of 60.05% where state-
of-the-art SPyNet obtains better results than us. We con-
clude that out model performs well on both traditional opti-
cal flow estimation benchmarks as well as on action recog-
nition datasets.

Furthermore, we investigate on the effect of the modi-



Image Ground Truth FlowNetS FlowCaps-S

Figure 3. The optical flow estimation results on the KTH I-Frames
dataset.

fications proposed to the loss function in Equation 1, with
α empirically set to 0.1 − 0.2. For a fair comparison, we
train using the modified loss, while testing with the con-
ventional EPE loss. We obtain significant improvements in
optical flow estimation for all four datasets, as reported in
Table 2 (Ours - Mod Loss*), establishing that the proposed
modifications to the loss function are effective.

4.3. Evaluating the impact of segment-wise and
frame-wise model

Image Ground Truth FlowNetS FlowCaps-S

Figure 4. The optical flow estimation results on the UCF I-Frames
dataset.

Image Ground Truth FlowNetS FlowCaps-S

Figure 5. The optical flow estimation results on the UTI P-Frames
dataset.

Table 3 compare our results to that of FlowNetS obtained
for frame-wise and segment-wise optical flow estimation.

On the KTH I-frames dataset, the proposed FlowCaps-S
model outperformed the FlowNetS model by a significant
margin of 7.55%, by achieving an average testing EPE
value of 1.1033. The relative improvement obtained for
segment-wise is even significant where our model outper-
forms FlowNetS by 17.33% obtaining 0.938 EPE. The opti-
cal flows estimated by the two models in comparison to the
ground truth flows are illustrated by Fig. 3.

A similar result was observed on the Sub UCF I-Frames
dataset as the proposed FlowCaps-S model achieved an
average testing EPE value of 2.2037, after outperforming
the FlowNetS model performance by a notable margin of
4.80%. A visual inspection of generated optical flow shown
in Fig. 4 indicates the superiority of our method. Pre-
serving the trend, the FlowCaps-S model outperformed the
FlowNetS model by a comprehensive margin of 14.01%
while achieving an impressive average testing EPE value
of 0.3806. Fig. 5 illustrates the optical flows estimated
by the two models on the UTI P-Frames dataset. Hence,
it was evident that across all the datasets, the proposed
FlowCaps-S model outperformed the FlowNetS model for
the optical flow estimation task. Furthermore, it is interest-
ing to note that, the percentage improvement is inversely
proportional to both the complexity of the dataset and the
number of training samples, suggesting that the proposed
CapsNet-S model better generalizes with less number of
training data, and on less complex datasets, in compari-
son to the FlowNetS model. Most interestingly, segment-
wise model consistently outperform frame-wise model in-
dicating the advantage of our 3D convolution-based cap-
sule encoder and better exploitation of contextual motion
information. Both FlowNetS and FlowCaps-S benefit from
segment-wise model, however the improvements obtain by
our model is better than the FlowNetS.

As shown in Table 3, for action classification task from
the estimated optical flows, the results follow the same pat-
tern as the optical flow estimation task, where the flows esti-
mated with the proposed FlowCaps-S model outperformed
those of the FlowNetS model by significant margins. Quan-
titatively, the proposed FlowCaps-S model contributed to
achieving 65%, 91.20% and 86.02% on the KTH-I Frames,
Sub UCF I-Frames and UTI-P Frames datasets respectively,
while outperforming its counterpart model by respective
margins of 3.70%, 5.50% and 1.90%. Similar trends can be
seen for segment-wise model. Hence, it can be concluded
that the optical flows estimated by the proposed FlowCaps-
S model can be better-adopted to other tasks such as action
classification, than those by the FlowNetS model.

Furthermore, it is interesting to observe that ground truth
action recognition performance is sometimes lower than our
model. However, we do not expect this behavior on more
challenging datasets. Our model is a learning-based optical
flow estimation method. Essentially, the model learns about
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Figure 6. Testing EPE value differences between the FlowNetS and FlowCaps-S model performances on the out-of-domain action classes
of the UCF I-frames dataset.
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Figure 7. The comparison of testing EPE values achieved by the
FlowNetS and FlowCaps-S models: (a) Testing EPE vs Training
dataset size; (b) Testing EPE difference vs Training dataset size.

motion information through entire dataset and hence able to
capture dataset specific biases as well. Therefore, we hy-
pothesise that good optical flow learning models might be
able to exploit motion information and biases in a dataset
and may be able to output flow images that contain more
motion information suitable for action recognition. Further-
more, segment-wise approach with a 3-dimensional archi-
tecture outperforms the frame-wise approach for both opti-
cal flow estimation and action classification tasks across al-
most all datasets. We conclude that perhaps segment-wise
approach is better for optical flow estimation and action
recognition.

4.4. Other strengths of FlowCaps

FlowCaps is able to generalize to out-of-domain using
fewer training samples. Here, we consider the I-frames ex-
tracted from the entire UCF-101 dataset. We test with both
models on all the classes of UCF-101 except for classes
with no videos containing more than 5 I-frames, and for the
five classes considered for training in the Sub UCF I-Frames
dataset, which yields 88 out-of-domain action classes.

Fig. 6 illustrates the differences in the testing EPE values
obtained from the FlowNetS and FlowCaps-S models. It is
evident from observation that except for the Cricket Shot ac-
tion class, the proposed FlowCaps-S model achieves a lower
testing EPE than the FlowNetS model in rest of the 87 out-
of-domain classes, suggesting that the proposed FlowCaps-

S model generalizes to out-of-domain optical flow estima-
tion better than the FlowNetS model.

Our model learns well with a low amount of training
data. We hypothesize that when the fraction of the training
dataset used decreases, the difference between the average
testing EPEs of FlowNetS and FlowCaps-S models should
increase, indicating better generalization of the proposed
FlowCaps-S model with less training data. To this end, we
train the models with fractions of the training data ranging
from 50− 100% with 10% intervals for the KTH-I Frames
and UTI P-Frames datasets, and plot the raw EPE values
and the corresponding differences in Fig. 7 (a) and Fig. 7
(b) respectively. It is evident from observation that except
for the UTI P-Frames dataset instance with the full train-
ing set, the rest of the instances favor our hypothesis, across
both datasets. Hence, we concluded that the FlowCaps-S
model generalizes better than the FlowNetS model for opti-
cal flow estimation, with less training data.

5. Conclusion

In this paper we have investigated a deep model for opti-
cal flow estimation by extending FlowNetS [6] and Capsule
Networks [28] coined FlowCaps-S. We investigated frame-
based model and a video segment-based model that utilizes
3D convolutions. We consistently outperform several state-
of-the art models for both optical flow estimation on classi-
cal benchmarks and on some important action recognition
datasets. Interestingly, our model have only a fraction of pa-
rameters compared to other baselines. We demonstrate that
our model is able to learn with few examples and generalize
to out-of-domain examples better than other counterparts.
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