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Abstract

To get something done, humans perform a sequence of
actions dictated by a goal. So, predicting the next action
in the sequence becomes easier once we know the goal that
guides the entire activity. We present an action anticipa-
tion model that uses goal information in an effective man-
ner. Specifically, we use a latent goal representation as a
proxy for the ”real goal” of the sequence and use this goal
information when predicting the next action. We design a
model to compute the latent goal representation from the
observed video and use it to predict the next action. We also
exploit two properties of goals to propose new losses for
training the model. First, the effect of the next action should
be closer to the latent goal than the observed action, termed
as ”goal closeness”. Second, the latent goal should remain
consistent before and after the execution of the next action
which we coined as ”goal consistency”. Using this tech-
nique, we obtain state-of-the-art action anticipation per-
formance on scripted datasets 50Salads and Breakfast that
have predefined goals in all their videos. We also evaluate
the latent goal-based model on EPIC-KITCHENS55 which
is an unscripted dataset with multiple goals being pursued
simultaneously. Even though this is not an ideal setup for
using latent goals, our model is able to predict the next noun
better than existing approaches on both seen and unseen
kitchens in the test set.1

1. Introduction

Humans perform complex activities like cooking by ex-
ecuting actions that follow a rational order. For example,
making a salad may involve the following sequence of ac-
tions - washing vegetables ≻ cutting vegetables ≻ season-
ing ≻ mixing. Humans can recognize the intent of an-
other human after observing a few actions being performed.
Moreover, humans have a belief over plausible goals based
on the observed actions. The most likely next action is the

1Code:https://github.com/debadityaroy/LatentGoal

Figure 1. Next action anticipation depends on the underlying goal.
Examples from the Breakfast dataset.

one that helps achieve the most plausible goal. In this pa-
per, we propose a model that uses goal information to antic-
ipate the next action. It has been shown that recognizing the
goal of a human can help robots better anticipate human ac-
tions [14]. Particularly in cooking activities, goal or overall
activity recognition is beneficial in anticipating one or more
future actions [23]. However, some cooking activities like
making pancake, making fried eggs, and making scrambled
eggs start with a similar sequence of actions. In such cases,
it is difficult to identify the intent or goal explicitly from the
first few actions. Hence, we propose an approach that uses
an abstract representation of the goal termed as latent goal
to anticipate the next action.

The concept of a latent goal has been used in pedestrian
intent detection [20, 21] and human trajectory prediction
[31]. For pedestrians, the latent goal is a single intent [31]
to reach a destination. On the other hand, complex activities
like cooking have sequential intent [31] where a person in-
teracts with various objects in the kitchen sequentially. The
sequential intent or latent goal becomes more apparent as
more actions are performed in the sequence but it always
guides the sequence of actions [15] as shown in Figure 1.
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Hence, in this work, we use a representation of the latent
goal derived from the observed visual representation. We
then use this latent goal representation and the observed vi-
sual representation to predict the next action and the next
visual representation.

A property of the latent goal is that every subsequent ac-
tion in the sequence should bring us closer to the goal. In the
trajectory prediction [27, 6], closeness to a goal is defined
as predicted destination of a trajectory to the actual destina-
tion. In procedure planning, goal closeness is defined based
on the final action, which is always known beforehand [3].
However, there are tasks where the final action may not be
the goal of the task. For example, pouring milk is the final
action for both making coffee and making cereal but does
not capture the intent of the activities. As the input to ”next
action anticipation” model is the observed visual represen-
tation, measuring the activity progress based on ”goal close-
ness” is not trivial. Hence, we propose goal closeness loss
which encourages the anticipated action to produce a vi-
sual representation that is closer to the latent goal compared
observed visual representation. Furthermore, the latent goal
representation should remain consistent throughout for con-
secutive actions. The current latent goal should not differ a
lot from the latent goal computed after anticipating the next
action. We propose goal consistency loss to minimize the
difference in the latent goal representation before and after
action anticipation.

We evaluate our method on two scripted datasets (50Sal-
ads and Breakfast) and we show that latent goal improves
action anticipation performance. We also evaluate the
impact of latent goals for anticipating unscripted actions
(nouns and verbs) using the EPIC-KITCHENS55 dataset.
With the use of latent goal we obtain better noun anticipa-
tion accuracy than existing approaches. In summary, our
contributions are as follows -

• We propose a novel latent goal-based action anticipa-
tion framework.

• We propose two new losses - a) goal closeness loss
that ensures progress towards the latent goal, and b)
goal consistency loss that ensures the latent goal rep-
resentation remains consistent for consecutive actions.

2. Related Work

Goals have been used in literature for predicting one or
more future actions. In [23], authors use the complex ac-
tivity label for the entire sequence of actions along with
the observed action to predict the next action. In [3], the
goal of the entire sequence is the final visual representa-
tion at the end of a sequence of actions. Each action in
the sequence is predicted based on its closeness to the goal.
These approaches are feasible for instructional videos [3]

where the final action/visual representation is the underly-
ing goal or the underlying complex activity is known for the
sequence [23]. However, in case of regular activities (EPIC-
KITCHENS55 [4]), the overall complex activity guiding the
sequence may not be known or the final action may not rep-
resent the overall goal. So, we devise a latent goal that
serves as a representation for the underlying intent or the
overall activity or the final action depending on the activ-
ity. Using a latent goal means that our approach does not
require the overall activity label [23] or the final action and
its visual representation [3] for action anticipation.

Action anticipation is defined as the task of generating
the visual representation of future frames by leveraging the
temporal structure of videos in [28]. From a single input
frame, multiple possible future frames are generated using
a regression-based CNN network and subsequently classi-
fied to predict the action label. In [17], the action label of
a frame 1 second into the future is predicted using a low-
rank linear model called the transitional model. In [1], a
sequence of future actions is predicted instead of a single fu-
ture action using an RNN and a CNN based on the observed
action labels as input. In [12], time-conditioned skip con-
nections are used in addition to attended temporal features
for anticipating future actions. In [8], a new Jaccard vector
similarity is used to correlate past features with the future
features for action anticipation. Effective use of human-
object feature interaction model for action anticipation is
presented in [22]. In our work, we leverage the visual fea-
tures directly to predict the next action.

Along with the action labels for each frame, spatial rep-
resentation of a frame was added to forecast future action la-
bels in [10]. Authors propose a neural memory network that
stores information in an LSTM cell by comparing the simi-
larity of the input with the existing memory content for both
the labels and spatial streams. Another approach that con-
siders three frame-based representations - spatial, motion,
and object, to predict future actions was proposed in [9].
Using an unrolling LSTM, the authors showed that multiple
time-steps in the future could be predicted. A multi-modal
attention network is used to decide the best possible com-
bination of the spatial, motion and object representations.
Apart from LSTMs, other temporal networks that have also
been used extensively used for action anticipation include
Recurrent Neural Networks (RNN) [24, 2, 26, 18, 21] and
Conditional Random Fields (CRF) [13, 30]. Instead of us-
ing RNNs or CRF for summarizing temporal information, a
simpler approach for aggregating both recent and long-term
temporal history using non-local blocks [29] is presented
in [23]. The authors show that while long-term aggregation
plays a part in anticipation, recent actions are more informa-
tive in determining the immediate future. We also show that
the recent past is more effective because the previous action
is more informative than the long-term past for anticipating
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Figure 2. Observed visual features of the current action are used to
generate a latent goal using a stacked RNN. A number of sample
action candidates are generated for the next action using the latent
goal and observed features. Each candidate produces a latent goal
and a visual feature and we compare them using - goal closeness
and goal consistency, respectively. The best candidate to fit these
criteria is the anticipated action. Best viewed in color.

the next action.

3. Action Anticipation with Latent Goal

For next action anticipation, we observe a video for a few
seconds and predict the action which occurs 1 second after
the observation period. The action to be predicted is the
next action in the sequence of actions which is not part of
the observed video. The goal of the action sequence may be
completed long after the anticipated action but it often de-
termines which action follows the action in observed video
as previously shown in Figure 1. So, in our proposed frame-
work (Figure 2), we use the latent goal representation along
with the visual features from the observed video to generate
multiple candidates for the next action and next visual fea-
ture. The next action is chosen from the candidates based
on two criteria - goal closeness and goal consistency. Goal
closeness helps choose the action candidate whose corre-
sponding next visual feature is closest to the latent goal.
Goal consistency ensures that the new latent goal computed
using the next visual feature is closest to the latent goal
computed using the observed visual feature.

Algorithm 1 lists the entire procedure of action antici-
pation with latent goal. At first, we need a single visual
feature from the observed video. The duration of actions
differ across actors and datasets which means that we need
to vary the observation period to cover the entire action. So,
we employ temporal aggregation to obtain a single visual
representation for the entire observed video. Temporal ag-
gregation can be through mean-pooling, max-pooling or an
RNN. We empirically found that max-pooling produces the
best aggregate representation. The aggregated visual repre-
sentation is a d-dimensional feature denoted by xo .

Algorithm 1 Action Anticipation with Latent Goal
Input: Features for observed video {xo

1,x
o
2, · · · ,xo

n}, ag-
gregation function f(·), inverse mapping h(·), consis-
tency threshold δ, next feature predictor k(·), separa-
tion threshold ϵ

1: xo = f({xo
1,x

o
2, · · · ,xo

n}) // observed visual feature
2: āo = ∅ // initial action representation
3: x∗ = xo, ā∗ = āo // best visual and action candidate
4: xo

g = StackedRNN(xo, āo) // initial latent goal
5: if ||x∗ − xo

g||22 > ϵ then
6: {ā′} ∼ RNN(xo, āo) //Sample actions
7: for āi ∈ ā′ do
8: x = ϕx(x

o, āi,x
o
g) // next visual representation

9: xg = StackedRNN(x, āi)
10: if ||x∗−xo

g||22−||x−xo
g||22 > 0 and ||xo

g−xg||22 <
δ then

11: x∗ = x // best next visual representation
12: ā∗ = āi // best next action representation
13: x∗

g = xg // best next latent goal
14: end if
15: end for
16: end if
17: â = ϕa(ā

∗) //anticipated action
18: return â,x∗,x∗

g,x
o,xo

g

3.1. Latent goal computation

In our paper, we define goal of the action sequence as the
visual representation after performing the final action based
on the procedure planning paradigm in [3]. Unlike proce-
dure planning, the final visual representation is not available
during next action anticipation. So, we use the observed vi-
sual feature to generate the latent goal representation as a
surrogate for the goal. There are two challenges in generat-
ing the latent goal representation. First, the observed video
may contain the first or second action in the sequence which
means the goal is far away in the future. Second, we do not
have access to the intermediate actions during anticipation
and need proxy representations for each intermediate ac-
tion. Our solution is to use stacked LSTMs that have been
shown to add levels of abstraction from input observations
over time by operating at different timescales [19]. We use
a stacked LSTM with the number of layers equal to the av-
erage number of actions per video (varies by dataset). Each
layer in the stacked LSTM represents an intermediate ac-
tion that leads to the latent goal. The latent goal based on
the observed visual feature is given by

xo
g = StackedRNN(xo, āo), (1)

where āo is the initial action representation initialized with
zeros instead of ground truth action labels to mimic the test-
ing scenario where action labels are not available.
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It is also important to check that the observed visual
representation is not very close to the latent goal estimate.
The next visual representation (effect of anticipated action)
should be closer to the latent goal than the observed vi-
sual representation. So, we enforce a minimum separation
threshold (ϵ) between the latent goal estimate and observed
visual representation. We determine the minimum separa-
tion threshold ϵ empirically.

3.2. Next Action Candidate Selection

The next action depends on the observed visual feature
and the latent goal. There can be multiple plausible next
actions and we employ an LSTM to sample all the possi-
ble candidates. Each candidate’s viability as the next action
depends on whether it takes us closest to the latent goal.
So, we derive a visual representation that shows the effect
of performing each candidate action called next visual fea-
ture. The next visual feature is computed using the action
candidate (āi), the observed visual representation, and the
sequence’s goal

x = ϕx([x
o, āi,x

o
g)]), (2)

where ϕx is a linear layer, [·, ·, ·] represents concatenation.
Once the next visual feature is obtained, we compute its
closeness to the latent goal to determine whether we have
moved closer to the goal compared to the observed visual
feature. We refer to this criteria as candidate closeness and
use it to determine the best action candidate (x∗) as follows

||x∗ − xo
g||22 > ||x− xo

g||22. (3)

Another criteria for ensuring that we have chosen the
best action candidate is to match the latent goal generated
and compare it to the initial latent goal. We term this crite-
rion as candidate goal consistency which measures the dis-
tance between latent goal representations for observed and
anticipated action given as

||xo
g − xg||22 < δ (4)

where δ is the closeness threshold and xg is the latent goal
generated using the action candidate and its corresponding
visual feature as per Equation1. The action candidate that
best satisfies both candidate goal closeness and candidate
goal consistency is chosen as the best action candidate.

The choice of the best action candidate is designed to
be greedy as we want to predict only the next action in the
sequence. Once the best action candidate is obtained, we
use an inverse mapping function to predict the actual action
class using a linear transformation (ϕa). The entire process
of next action anticipation is described in Algorithm 1.

3.3. Losses

The primary objective of the proposed architecture is to
predict the next action. So, we compute the cross entropy
loss for the next action â with respect to the ground truth
action a given by

Lant = −
C∑

c=1

aclog(âc), (5)

where C is the total number of action classes. Our network
also depends on the observed visual feature and its ability
to encode the information in the observed video. To ensure
that the observed visual feature represents the ongoing ac-
tion accurately we compute the following cross entropy loss

Lobs = −
C∑

c=1

aoclog(â
o
c), (6)

where âo is the prediction over the current action obtained
with a linear transformation on the observed visual feature.

The cross entropy loss focus on next action and current
action predictions. We also need to measure the quality of
the latent goal representation by the model. Hence, we pro-
pose goal consistency loss which ensures that the latent goal
representation is consistent during training. Goal consis-
tency loss is realized as a max-margin loss given as

Lcons = max(0, ||x∗
g − xo

g||22 − δ +m) (7)

which measures the deviation between the consistency
threshold δ and latent goal difference ||x∗

g − xo
g||. The mar-

gin m is a very small value to ensure numerical stability.
We also enforce the property of closeness to the latent

goal to improve the anticipation performance of the model.
Similar to goal consistency, goal closeness is represented as
a max-margin loss as follows

Lclose = max(0, ||x∗ − xo
g||22 − ||xo − xo

g||22 +m). (8)

We measure the distance to the latent goal xo
g from the ob-

served visual xo and the next visual (effect of anticipated
action) x∗. The max-margin criteria enforces the next vi-
sual to be closer to the latent goal than the observed visual.
Both goal consistency loss (Equation 7) and goal close-
ness (Equation 7) may appear similar to candidate close-
ness (Equation 3) and candidate consistency (Equation 4),
respectively. While candidate closeness and consistency are
used to obtain the best action candidate, the losses are ap-
plied on the obtained action candidate to ensure that the
model is trained to follow these properties.

4. Experiments and Results
4.1. Rationale for choosing datasets

We choose 3 datasets for our experiments - 50Sal-
ads [25], Breakfast [15], and EPIC-KITCHENS55 [4]. The
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goal of 50Salads dataset is for every person to make two dif-
ferent salads following recipes. For the Breakfast dataset,
the goal of every video is to prepare one of the 10 break-
fast items coffee, orange juice, chocolate milk, tea, cere-
als, fried eggs, pancakes, fruit salad, sandwich, and scram-
bled eggs. Though both 50Salads and Breakfast datasets
are scripted, all the videos in 50Salads have only one un-
derlying goal with a lot more actions per video compared
to Breakfast. The EPIC-KTICHENS55 dataset covers un-
scripted activities mostly involving cooking, food prepara-
tion, washing, and others. All the actions are unscripted and
depict real-life scenarios involving multi-tasking, searching
for an item, thinking what to do next, changing one’s mind,
or even unexpected surprises. Regular activities present the
most challenge as multiple goals may be pursued simulta-
neously, and the actions for different goals may be inter-
twined.

4.2. Datasets and Features

50 Salads[25] dataset consists of 50 videos of 25 actors
making salads based on recipes provided beforehand. The
videos are recorded with a resolution of 640 × 480 at 30
frames per second. The actors perform 17 different fine-
grained actions, and the gaps between these actions are an-
notated using a background class. The average video length
is 6.4 minutes, and there are 20 action instances per video.
The published dataset provides five splits, and all the results
presented here are averaged over the five splits.

Breakfast[15] dataset consists of 77 hours of procedural
videos or 4.1 million frames of 52 actors making breakfast
that yields 48 fine-grained action classes. The videos are
recorded with a resolution of 320 × 240 at 15 frames per
second. The videos’ average duration is comparably shorter
at 2.3 minutes with an average of 6 action instances. All
the results presented here are averaged over the four splits
provided by the authors of the dataset [15].

EPIC-KITCHENS55[4] contains a total of 55 hours of
unscripted videos comprising of 39,596 action annotations,
125 verbs, 351 nouns, and 2,513 actions. All the videos
are recorded at 60 frames per second with a resolution of
1920 × 1080. The training set is divided into 232 videos
for training (23,493 segments), and 40 videos for validation
(4,979 segments) based on the splits provided by [9]. We
perform ablation studies on the validation set to obtain the
best network architecture. The results of our proposed ap-
proach are then compared on the seen and unseen kitchens
of the test set using the evaluation server.

We use I3D features provided by [7] for both Breakfast
and 50 Salads datasets. I3D features have been shown bet-
ter for action anticipation than similar representations like
R(2+1)D [23]. In addition to I3D, we also demonstrate
our results on Fisher vector representation of dense trajec-
tory features provided by [16] for the 50 Salads dataset

Method Anticipation
Accuracy

Deep Regression [28] 8.1
RNN [1] 30.1
CNN [1] 29.8
Temporal Agg. [23] 40.7
Latent goal 59.6

Table 1. Comparison with state-of-the-art on 50 Salads

Method Anticipation
Accuracy

Deep Regression [28] 6.2
RNN [1] 30.1
CNN [1] 27.0
Predictive+
Transitional [17] 32.3

Temporal Agg. [23] 47.0
Latent goal (I3D) 47.2

Table 2. Comparison with state-of-the-art on Breakfast

Method
Top-1 Anticipation

Accuracy
Top-5 Anticipation

Accuracy
VERB NOUN ACT. VERB NOUN ACT.

Seen Kitchens (S1)
RU-LSTM [9] 33.04 22.78 14.39 79.55 50.95 33.73
Temp. Agg. [23] 37.87 24.10 16.64 79.74 53.98 36.06
Vid. Trans. [11] 34.36 20.16 16.84 80.03 51.57 36.52

Latent goal
TSN-RGB (Verb)

+ Obj. (Noun)
27.96 27.40 8.10 78.09 55.98 26.46

Unseen Kitchens (S2)
RU-LSTM [9] 27.01 15.19 08.16 69.55 34.38 21.10
Temp. Agg. [23] 29.50 16.52 10.04 70.13 37.83 23.42
Vid. Trans. [11] 30.66 15.64 10.41 72.17 40.76 24.27

Latent goal
TSN-RGB (Verb)

+ Obj. (Noun)
22.40 19.12 4.78 72.07 42.68 16.97

Table 3. Comparison with state-of-the-art on EPIC-KITCHENS55
test sets

and by [15] for the Breakfast dataset. For the EPIC-
KTICHENS55 dataset, we perform our experiments using
Temporal Segment Network (TSN) and bag-of-object fea-
tures as most approaches for action anticipation [9, 23] on
EPIC-KITCHENS55 have used the same.

All the LSTMs used for modeling the RNNs in Algo-
rithm 1 have 2048 hidden dimensions for Breakfast, 128 for
50Salads, and 1024 for EPIC-KITCHENS55 unless stated
otherwise. The StackedRNN in Algorithm 1 for predict-
ing the latent goal representation consists of 6 layers for
Breakfast, and 10 layers for 50Salads based on the average
number of actions in the video. As the number of actions
per video is quite large for EPIC-KITCHENS55, we choose
10 layers for the StackedRNN LSTM in our experiments.
The choice of the number of StackedRNN layers is em-
pirically validated (details in Supplementary).

4.3. Comparison with state-of-the-art

In Table 1 and 2, we compare the results of our latent
goal-based anticipation approach to state-of-the-art results
on 50Salads and Breakfast datasets, respectively. On the 50
Salads dataset, we achieve using latent goal achieves a vast
improvement of 18.9% over the state-of-the-art method [23]

5



using an observation period of 3 seconds. In case of Break-
fast, we see an improvement using the same I3D features as
temporal aggregation [23]. We see a significant improve-
ment in 50Salads compared to Breakfast because the dif-
ferent goals in Breakfast are harder to infer distinctly from
the video itself. The Breakfast dataset is recorded from var-
ious angles where the lighting conditions and low resolu-
tion make it more difficult to identify each action distinctly.
Hence, action segmentation labels are added in [23] to im-
prove the anticipation performance to 47.0%. Furthermore,
the 50Salads dataset is shot from an overhead camera where
all the actions are easily identifiable.

The observation period for Breakfast that produces the
best performance is 15 seconds which is close to the aver-
age duration of actions in the dataset. So, observing the pre-
vious action in Breakfast provides enough temporal context
for anticipating the next action as shown in [23] (a com-
bination of 10, 15, 20 seconds produces the best result on
Breakfast dataset). It also shows that using the latent goal
improves the next action anticipation performance on the
same features (I3D) with similar observation periods.

In Table 3, we compare state-of-the-art techniques on
EPIC-KITCHENS55. The EPIC-KITCHENS55 is not an
ideal setup for our model because there are multiple goals
being pursued simultaneously. The actions from different
goals are intertwined. So, our assumptions about actions
in a sequence sharing the same latent goal are not justi-
fied for this dataset. On verb anticipation, latent goal is
comparable to existing approaches in terms of Top-5 accu-
racy but not for Top-1 accuracy1. The unscripted nature
of EPIC-KITCHENS55 involves people multi-tasking and
changing their minds which makes the underlying goal dif-
ficult to identify. In such cases, using a latent goal can only
help in approximately predicting the next verb, which ex-
plains why latent goal performs better at Top-5 anticipation.
Interestingly, latent goal performs better than all other ap-
proaches for both Top-1 and Top-5 noun anticipation. There
are many more objects compared to verbs (352 vs 125), and
hence, the latent goals are limited for each object. Also, we
use bag-of-object features that have high weights for 2 to
3 objects per frame during the observed action. One of the
objects will most likely be used in the next action. So, the
latent goal obtained with respect to objects (nouns) can be
more precise than verbs and contribute to better noun antic-
ipation.

Our top-5 noun and verb anticipation performances are
comparable or better than prior state-of-the-art methods in
both S1 and S2 sets. However, our action anticipation per-
formance remains poor on both S1 and S2. This can be due
to the fact that when our noun model is correct, it seems
the verb model is not and vice-versa. This could also lead
to poor action anticipation results. Secondly, 92% of the

1Evaluation results under username royd

Obs.
duration Mean-pooling Max-pooling LSTM

Breakfast
3s 37.2 39.3 31.3

15s 46.6 47.2 37.8
25s 44.4 43.2 36.1

50 Salads
3s 54.7 59.6 52.8

15s 40.8 47.2 39.3
25s 37.4 37.4 40.6

Table 4. Comparison of different temporal aggregation approaches
for various observation periods.

actions in the EPIC-KITCHENS dataset has fewer than 5
examples in total across training, validation, and the two
test sets [5]. So, we do not encounter many of the actions
while training our model. Our model overfits on the seen
actions which leads to poorer action anticipation on unseen
actions in the test sets.

4.4. Performance of aggregation methods

Table 4 compares three different temporal aggregation
strategies - mean-pooling, max-pooling and LSTM. We
have a single-layer LSTM with a 2048 hidden dimen-
sions for Breakfast and 128 hidden dimensions for 50 Sal-
ads that produces the best results. Both max-pooling and
mean-pooling outperform LSTM for aggregation and max-
pooling performs the best. We hypothesize that taking the
maximum of all feature dimensions across frames preserves
salient features that maybe smoothed due to mean-pooling.

4.5. Impact of observation period

As the observation period changes the temporal context
available for anticipation, we study the performance of dif-
ferent observation periods in Table 4. For the Breakfast
dataset, increasing the observation period helps in antici-
pation till 15 seconds. Observing more than 15 seconds,
i.e., more than the preceding action causes a deterioration
in anticipation accuracy. Many activities in the Breakfast
dataset like making pancake, making fried eggs, and making
scrambled eggs share common actions. So, if these com-
mon actions are observed, it can cause confusion while pre-
dicting the next action. In the 50 Salads dataset, a shorter
observation period of 3 seconds yields the best anticipation
accuracy. So, very recent history towards the end of the pre-
ceding action is most informative for action anticipation on
50 Salads.

The actions in EPIC-KITCHENS55 dataset [4] are much
more fine-grained compared to Breakfast and 50Salads.
The median action segment duration is much shorter (8-
16x) than either the Breakfast and 50Salads. As Table 6
shows, we can see that 0.5 seconds of observation is also
sufficient for the next action anticipation. We observe a de-
terioration in performance when we increase the observed
duration to 3 seconds for both verb and noun anticipa-
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Obs.
duration

Dense Trajectory I3D
Mean Max LSTM Mean Max LSTM

Breakfast
10s 25.2 25.7 23.4 41.4 41.6 33.1
15s 26.2 28.4 25.2 44.4 47.2 36.2

50 Salads
3s 36.4 38.3 36.1 55.1 59.6 52.9
5s 35.9 37.3 34.9 53.1 57.9 53.4

Table 5. Comparison of dense trajectory and I3D features

tion. All the results shown here are based on the max-
pooling aggregation of features. The key difference in
EPIC-KITCHENS55 is that we train separate networks for
verbs and nouns. So, action anticipation refers to correctly
predicting both the noun and the verb.

4.6. Impact of features

We compare the effect of features on Breakfast and
50Salads datasets in Table 5. We use 64-dimensional Fisher
Vector representation of Dense Trajectory features (FVDT)
provided by [1] for both Breakfast and 50Salad datasets.
To accommodate the low-dimensional FVDT representa-
tion, we reduce the LSTM hidden dimensions to 64 for
both the for 50 Salads and Breakfast dataset. I3D eas-
ily outperforms FTDV by a handsome margin for all tem-
poral aggregation schemes which shows that choice of vi-
sual features is vital when anticipating the next action. For
EPIC-KITCHENS55, we compare Temporal Segment Net-
work (TSN) features on RGB frames (TSN-RGB), TSN fea-
tures on optical flow (TSN-Flow), and bag-of-object (Ob-
ject) features for our latent goal based approach. The abla-
tion studies are conducted on the validation set of the EPIC-
KITCHENS55. We obtain superior noun anticipation for
Object features than both TSN-RGB and TSN-Flow. The
bag-of-object features are histograms of detected objects in
a frame normalized by the total number of appearances of
every object in the entire training set. Hence, the bag-of-
object features can explicitly emphasize which objects are
in the frame compared to all objects. There is a often a di-
rect correlation between the objects used in consecutive ac-
tions which explains the performance of bag-of-object fea-
tures.

4.7. Component Validation

In this subsection, we show the impact of various com-
ponents in our anticipation framework. Table 7 shows that
computing new candidate-wise latent goals (CWLG) im-
proves anticipation instead of just the initial goal estimate
from the observed features. Further, if we check the con-
sistency of the CWLG with the initial goal estimate, it sub-
stantially improves anticipation accuracy (3.6% for Break-
fast and 6.1% for 50 Salads). Both these results show that
our proposed model predicts unique CWLG for next action
candidates that are different from the initial goal estimate.
Though we choose the best candidate for the next action

Feature Obs.
Duration

Anticipation
Accuracy

VERB NOUN ACTION
TSN-RGB

0.5s
29.21 14.09 05.21

TSN-Flow 28.45 12.32 03.36
Object 25.79 20.98 13.65
TSN-RGB

1s
30.94 13.32 02.54

TSN-Flow 27.96 12.32 04.67
Object 26.21 21.61 13.98
TSN-RGB

2s
33.21 13.21 04.34

TSN-Flow 29.06 12.25 05.24
Object 27.81 22.14 14.13
TSN-RGB

3s
30.82 12.23 04.12

TSN-Flow 28.73 12.01 04.26
Object 28.41 21.02 13.78

Table 6. Comparing performance of features on EPIC-
KITCHENS55 validation set on Top-1 verb, noun, and action
accuracy.

Candidate
choice Breakfast 50 Salads

w/o Candidate-wise Latent Goal
(CWLG) 41.8 54.4

w/ CWLG but
w/o consistency check (CC) 42.3 55.6

w/ CWLG and CC 47.2 59.6
Table 7. Effect of computing candidate-wise latent goal and goal
consistency check while choosing action candidates.

Loss Breakfast 50Salads
Cross-entropy (Lant) 44.8 54.1
Lant + Obs. action (Lobs) 45.8 54.2
Lant + Lobs + Goal closeness (Lclose) 46.2 56.2
Lant + Lobs + Goal consistency (Lcons) 46.9 55.2
Lant + Lobs + Lclose + Lcons 47.2 59.6

Table 8. Impact of different losses on anticipation performance

using the new latent goal and its properties, we also need
to enforce these conditions while training the network. Ta-
ble 8 compares the effect of each loss on anticipation ac-
curacy on both Breakfast and 50 Salads dataset. We can
observe that adding the goal closeness loss and goal consis-
tency loss to the cross-entropy loss improves the anticipa-
tion accuracy. The effect of these losses is more prominent
when they are applied together. Particularly, goal closeness
produces a larger improvement as it drives the network to
favor those actions that produce a closer representation to
the latent goal. A stable latent goal representation before
and after anticipation also allows us to compute the close-
ness to the latent goal more accurately.

4.8. Varying number of action candidates

We compare the effect of considering different number
of action candidates representations while predicting the an-
ticipated action. A comparison between 5, 10, and 15 can-
didates reveals that 10 candidates are optimal for Breakfast
and 15 for 50 Salads as shown in Table 9. As every video
of 50Salads contains all 17 actions in the datasets, every ac-
tion can be a possible next action, and having 15 candidates
helps in such a case. On the other hand, Breakfast has an
average of 6 actions per video, and choosing from a pool of
10 candidates is sufficient.
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# Sampled
candidates Breakfast 50 Salads

5 44.1 58.5
10 47.2 58.9
15 45.5 59.6

Table 9. Effect of varying the number of sampled action represen-
tation candidates on anticipation

Figure 3. Examples of next action prediction with and without la-
tent goal from the Breakfast dataset. Latent goal leads to the cor-
rect prediction of actions when there are multiple possibilities by
capturing the intention. The observed action labels are not sup-
plied to the network but are only mentioned for understanding.

4.9. Qualitative Results

We show the impact of latent goal on next action antici-
pation using some examples from the Breakfast in Figure 3.
For each example, we replace the computation of latent goal
(xo

g in line 3 and xg in line 8 of Algorithm 1) with a random
vector during inference. We term this network as without
(w/o) latent goal in Figure 3. All the examples in Figure 3
demonstrate that the latent goal helps in predicting the cor-
rect next action. For example, crack egg leads to an incor-
rect prediction of spoon flour without latent goal but leads
to the correct prediction of stir egg when latent goal is used.

We also study goal consistency between observed and
anticipated actions through qualitative examples in Fig-
ure 4. For most of the observed and anticipated action
pairs having close latent goal representation leads to cor-
rect anticipation. However, in some cases like (pour milk,
stir dough) or (pour dough2pan, fry pancake) having close
latent goals does not lead to correct anticipation. So, goal
consistency is not always enough to predict the next action
accurately.

5. Conclusion
Human activities are guided by an implicit or explicit

goal that determines the sequence of actions performed to
achieve the goal. We propose a novel technique to char-

Figure 4. Goal consistency vs. action anticipation. For most of
the observed and anticipated action pairs having close latent goal
representation leads to correct anticipation.

acterize the goal using a latent representation for action
anticipation. We exploit latent goal properties, namely,
goal closeness and goal consistency, to predict the next ac-
tion. Our experiments on both scripted datasets - 50Sal-
ads and Breakfast, and regular activities dataset - EPIC-
KITCHENS55 show that using latent goal achieves state-
of-the-art action anticipation performance. We show that
the proposed goal closeness and goal consistency losses im-
prove action anticipation and qualitative results show a la-
tent goal helps to make correct choice when there are mul-
tiple choices for the next action.
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